1
|
Mak CCY, Klinkhammer H, Choufani S, Reko N, Christman AK, Pisan E, Chui MMC, Lee M, Leduc F, Dempsey JC, Sanchez-Lara PA, Bombei HM, Bernat JA, Faivre L, Mau-Them FT, Palafoll IV, Canham N, Sarkar A, Zarate YA, Callewaert B, Bukowska-Olech E, Jamsheer A, Zankl A, Willems M, Duncan L, Isidor B, Cogne B, Boute O, Vanlerberghe C, Goldenberg A, Stolerman E, Low KJ, Gilard V, Amiel J, Lin AE, Gordon CT, Doherty D, Krawitz PM, Weksberg R, Hsieh TC, Chung BHY. Artificial intelligence-driven genotype-epigenotype-phenotype approaches to resolve challenges in syndrome diagnostics. EBioMedicine 2025; 115:105677. [PMID: 40280028 DOI: 10.1016/j.ebiom.2025.105677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Decisions to split two or more phenotypic manifestations related to genetic variations within the same gene can be challenging, especially during the early stages of syndrome discovery. Genotype-based diagnostics with artificial intelligence (AI)-driven approaches using next-generation phenotyping (NGP) and DNA methylation (DNAm) can be utilized to expedite syndrome delineation within a single gene. METHODS We utilized an expanded cohort of 56 patients (22 previously unpublished individuals) with truncating variants in the MN1 gene and attempted different methods to assess plausible strategies to objectively delineate phenotypic differences between the C-Terminal Truncation (CTT) and N-Terminal Truncation (NTT) groups. This involved transcriptomics analysis on available patient fibroblast samples and AI-assisted approaches, including a new statistical method of GestaltMatcher on facial photos and blood DNAm analysis using a support vector machine (SVM) model. FINDINGS RNA-seq analysis was unable to show a significant difference in transcript expression despite our previous hypothesis that NTT variants would induce nonsense mediated decay. DNAm analysis on nine blood DNA samples revealed an episignature for the CTT group. In parallel, the new statistical method of GestaltMatcher objectively distinguished the CTT and NTT groups with a low requirement for cohort number. Validation of this approach was performed on syndromes with known DNAm signatures of SRCAP, SMARCA2 and ADNP to demonstrate the effectiveness of this approach. INTERPRETATION We demonstrate the potential of using AI-based technologies to leverage genotype, phenotype and epigenetics data in facilitating splitting decisions in diagnosis of syndromes with minimal sample requirement. FUNDING The specific funding of this article is provided in the acknowledgements section.
Collapse
Affiliation(s)
- Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hannah Klinkhammer
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Sanaa Choufani
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Nikola Reko
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Angela K Christman
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Elise Pisan
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université Paris Cité, Paris, 75015, France
| | - Martin M C Chui
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mianne Lee
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fiona Leduc
- CHU Lille, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Lille, F-59000, France
| | - Jennifer C Dempsey
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Pedro A Sanchez-Lara
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Department of Pediatrics, Guerin Children's at Cedars Sinai Medical Center, Los Angeles, CA, USA
| | - Hannah M Bombei
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals, Iowa City, IA, USA
| | - John A Bernat
- Division of Medical Genetics and Genomics, Stead Family Department of Pediatrics, University of Iowa Hospitals, Iowa City, IA, USA
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Institut GIMI, Hôpital d'Enfants, CHU Dijon-Bourgogne, Dijon, France; Equipe GAD INSERM UMR1231, Université de Bourgogne Franche Comté, Dijon, France
| | - Frederic Tran Mau-Them
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Institut GIMI, Hôpital d'Enfants, CHU Dijon-Bourgogne, Dijon, France; UF 6254 Innovation en diagnostic Génomique des Maladies Rares, Centre Hospitalier Universitaire de Dijon, Dijon, France
| | - Irene Valenzuela Palafoll
- Department of Clinical and Molecular Genetics, University Hospital Vall d'Hebron and Medicine Genetics Group, Valle Hebron Research Institute, Barcelona, Spain
| | - Natalie Canham
- Liverpool Centre for Genomic Medicine, Liverpool Women's Hospital, Crown Street, Liverpool, UK
| | - Ajoy Sarkar
- Department of Clinical Genetics, Nottingham University Hospitals National Health Service Trust, Nottingham, NG5 1PB, UK
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR, 72701, USA; Division of Genetics and Metabolism, University of Kentucky, Lexington, KY, USA
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Ewelina Bukowska-Olech
- Department of Laboratory Diagnostics, Poznan University of Medical Sciences, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland; Diagnostyka GENESIS, Center for Medical Genetics in Poznan, Poland
| | - Andreas Zankl
- Department of Clinical Genetics, The Children's Hospital at Westmead, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Garvan Institute of Medical Research, Sydney, Australia
| | - Marjolaine Willems
- Unité INSERM U 1051, Département de Génétique Médicale, CHRU de Montpellier, Montpellier, France
| | - Laura Duncan
- Department of Pediatrics at Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bertrand Isidor
- Service de Génétique Médicale and L'institut du Thorax, CHU Nantes, Nantes Université, CNRS, INSERM, Nantes, France
| | - Benjamin Cogne
- Medical Genetics Service, Nantes University Hospital Center, Nantes, France
| | - Odile Boute
- CHU Lille, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Lille, F-59000, France
| | - Clémence Vanlerberghe
- CHU Lille, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Lille, F-59000, France
| | - Alice Goldenberg
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders, FHU G4 Génomique, Rouen, F-76000, France
| | | | - Karen J Low
- Centre for Academic Child Health, Bristol Medical School, University of Bristol, UK; Department of Clinical Genetics, UHBW NHS Trust, Bristol, UK
| | - Vianney Gilard
- Department of Pediatric Neurosurgery, Rouen University Hospital, Rouen, 76000, France
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université Paris Cité, Paris, 75015, France
| | - Angela E Lin
- Medical Genetics, Mass General for Children, Boston, MA, 02114, USA
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université Paris Cité, Paris, 75015, France
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Peter M Krawitz
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Rosanna Weksberg
- Genetics and Genome Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada; Division of Clinical and Metabolic Genetics, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, M5G 1X8, Canada.
| | - Tzung-Chien Hsieh
- Institute for Genomic Statistics and Bioinformatics, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, School of Clinical Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Lee AS, Ayers LJ, Kosicki M, Chan WM, Fozo LN, Pratt BM, Collins TE, Zhao B, Rose MF, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Tenney AP, Lee C, Laricchia KM, Barry BJ, Bradford VR, Jurgens JA, England EM, Lek M, MacArthur DG, Lee EA, Talkowski ME, Brand H, Pennacchio LA, Engle EC. A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders. Nat Commun 2024; 15:8268. [PMID: 39333082 PMCID: PMC11436875 DOI: 10.1038/s41467-024-52463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 09/04/2024] [Indexed: 09/29/2024] Open
Abstract
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generate single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. We evaluate enhancer activity for 59 elements using an in vivo transgenic assay and validate 44 (75%), demonstrating that single cell accessibility can be a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieve significant reduction in our variant search space and nominate candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work delivers non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Collapse
Affiliation(s)
- Arthur S Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Lauren J Ayers
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Wai-Man Chan
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Lydia N Fozo
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brandon M Pratt
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas E Collins
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Boxun Zhao
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Matthew F Rose
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alan P Tenney
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cassia Lee
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Harvard College, Cambridge, MA, USA
| | - Kristen M Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brenda J Barry
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Victoria R Bradford
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie A Jurgens
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eleina M England
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel G MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Eunjung Alice Lee
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA, USA
| | - Len A Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Elizabeth C Engle
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.
- Medical Genetics Training Program, Harvard Medical School, Boston, MA, USA.
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Hussain SI, Muhammad N, Shah SA, Rehman AU, Khan SA, Saleha S, Khan YM, Muhammad N, Khan S, Wasif N. Variants in HCFC1 and MN1 genes causing intellectual disability in two Pakistani families. BMC Med Genomics 2024; 17:176. [PMID: 38956580 PMCID: PMC11221130 DOI: 10.1186/s12920-024-01943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/21/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Intellectual disability (ID) is a neurodevelopmental condition affecting around 2% of children and young adults worldwide, characterized by deficits in intellectual functioning and adaptive behavior. Genetic factors contribute to the development of ID phenotypes, including mutations and structural changes in chromosomes. Pathogenic variants in the HCFC1 gene cause X-linked mental retardation syndrome, also known as Siderius type X-linked mental retardation. The MN1 gene is necessary for palate development, and mutations in this gene result in a genetic condition called CEBALID syndrome. METHODS Exome sequencing was used to identify the disease-causing variants in two affected families, A and B, from various regions of Pakistan. Affected individuals in these two families presented ID, developmental delay, and behavioral abnormalities. The validation and co-segregation analysis of the filtered variant was carried out using Sanger sequencing. RESULTS In an X-linked family A, a novel hemizygous missense variant (c.5705G > A; p.Ser1902Asn) in the HCFC1 gene (NM_005334.3) was identified, while in family B exome sequencing revealed a heterozygous nonsense variant (c.3680 G > A; p. Trp1227Ter) in exon-1 of the MN1 gene (NM_032581.4). Sanger sequencing confirmed the segregation of these variants with ID in each family. CONCLUSIONS The investigation of two Pakistani families revealed pathogenic genetic variants in the HCFC1 and MN1 genes, which cause ID and expand the mutational spectrum of these genes.
Collapse
Affiliation(s)
- Syeda Iqra Hussain
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Nazif Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Shahbaz Ali Shah
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Adil U Rehman
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Sher Alam Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
- Department of Computer Science and Bioinformatics, Khushal Khan Khatak University, Karak, Pakistan
| | - Shamim Saleha
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Yar Muhammad Khan
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Noor Muhammad
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science & Technology (KUST), Kohat, Khyber Pakhtunkhwa, Pakistan.
| | - Naveed Wasif
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany.
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
4
|
de Masfrand S, Cogné B, Nizon M, Deb W, Goldenberg A, Lecoquierre F, Nicolas G, Bournez M, Vitobello A, Mau-Them FT, le Guyader G, Bilan F, Bauer P, Zweier C, Piard J, Pasquier L, Bézieau S, Gerard B, Faivre L, Saugier-Veber P, Piton A, Isidor B. Penetrance, variable expressivity and monogenic neurodevelopmental disorders. Eur J Med Genet 2024; 69:104932. [PMID: 38453051 DOI: 10.1016/j.ejmg.2024.104932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/09/2024]
Abstract
PURPOSE Incomplete penetrance is observed for most monogenic diseases. However, for neurodevelopmental disorders, the interpretation of single and multi-nucleotide variants (SNV/MNVs) is usually based on the paradigm of complete penetrance. METHOD From 2020 to 2022, we proposed a collaboration study with the French molecular diagnosis for intellectual disability network. The aim was to recruit families for whom the index case, diagnosed with a neurodevelopmental disorder, was carrying a pathogenic or likely pathogenic variant for an OMIM morbid gene and inherited from an asymptomatic parent. Grandparents were analyzed when available for segregation study. RESULTS We identified 12 patients affected by a monogenic neurodevelopmental disorder caused by likely pathogenic or pathogenic variant (SNV/MNV) inherited from an asymptomatic parent. These genes were usually associated with de novo variants. The patients carried different variants (1 splice-site variant, 4 nonsense and 7 frameshift) in 11 genes: CAMTA1, MBD5, KMT2C, KMT2E, ZMIZ1, MN1, NDUFB11, CUL3, MED13, ARID2 and RERE. Grandparents have been tested in 6 families, and each time the variant was confirmed de novo in the healthy carrier parent. CONCLUSION Incomplete penetrance for SNV and MNV in neurodevelopmental disorders might be more frequent than previously thought. This point is crucial to consider for interpretation of variants, family investigation, genetic counseling, and prenatal diagnosis. Molecular mechanisms underlying this incomplete penetrance still need to be identified.
Collapse
Affiliation(s)
- Servane de Masfrand
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France.
| | - Benjamin Cogné
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut Du Thorax, 44000 Nantes, France
| | - Mathilde Nizon
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut Du Thorax, 44000 Nantes, France
| | - Wallid Deb
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut Du Thorax, 44000 Nantes, France
| | - Alice Goldenberg
- CHU Rouen, Service de Génétique et Centre de Référence pour Les Troubles Du Développement, 76183, Rouen, France
| | - François Lecoquierre
- CHU Rouen, Service de Génétique et Centre de Référence pour Les Troubles Du Développement, 76183, Rouen, France
| | - Gaël Nicolas
- CHU Rouen, Service de Génétique et Centre de Référence pour Les Troubles Du Développement, 76183, Rouen, France
| | - Marie Bournez
- Centre de Référence Anomalies Du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon, 21000, Dijon, France
| | - Antonio Vitobello
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France; Génétique des Anomalies Du Développement, INSERM 123, Université de Bourgogne, Dijon, France
| | - Frédéric Tran Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon Bourgogne, Dijon, France; Génétique des Anomalies Du Développement, INSERM 123, Université de Bourgogne, Dijon, France
| | - Gwenaël le Guyader
- Service de Génétique Clinique, Centre de Compétence Maladies Rares Anomalies Du Développement, CHU de Poitiers, Poitiers, France
| | - Frédéric Bilan
- Service de Génétique Clinique, Centre de Compétence Maladies Rares Anomalies Du Développement, CHU de Poitiers, Poitiers, France
| | | | | | - Juliette Piard
- Centre de Génétique Humaine and Integrative and Cognitive Neuroscience Research Unit EA481, Université de Franche-Comté, Besançon, France
| | | | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut Du Thorax, 44000 Nantes, France
| | - Bénédicte Gerard
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laurence Faivre
- Centre de Référence Anomalies Du Développement et Syndromes Malformatifs, FHU TRANSLAD, CHU Dijon, 21000, Dijon, France; Génétique des Anomalies Du Développement, INSERM 123, Université de Bourgogne, Dijon, France
| | - Pascale Saugier-Veber
- CHU Rouen, Service de Génétique et Centre de Référence pour Les Troubles Du Développement, 76183, Rouen, France
| | - Amélie Piton
- Laboratoire de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale, 44000, Nantes, France; Nantes Université, CHU Nantes, CNRS, INSERM, L'institut Du Thorax, 44000 Nantes, France.
| |
Collapse
|
5
|
Zhang J, Zhang Y, Shang Q, Cheng Y, Su Y, Zhang J, Wang T, Ding J, Li Y, Xie Y, Xing Q. Gain-of-Function KIDINS220 Variants Disrupt Neuronal Development and Cause Cerebral Palsy. Mov Disord 2024; 39:498-509. [PMID: 38148610 DOI: 10.1002/mds.29694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/28/2023] Open
Abstract
BACKGROUND Kinase D-interacting substrate of 220 kDa (KIDINS220) is a multifunctional scaffolding protein essential for neuronal development. It has been implicated in neurological diseases with either autosomal dominant (AD) or autosomal recessive (AR) inheritance patterns. The molecular mechanisms underlying the AR/AD dual nature of KIDINS220 remain elusive, posing challenges to genetic interpretation and clinical interventions. Moreover, increased KIDINS220 exhibited neurotoxicity, but its role in neurodevelopment remains unclear. OBJECTIVE The aim was to investigate the genotype-phenotype correlations of KIDINS220 and elucidate its pathophysiological role in neuronal development. METHODS Whole-exome sequencing was performed in a four-generation family with cerebral palsy. CRISPR/Cas9 was used to generate KIDINS220 mutant cell lines. In utero electroporation was employed to investigate the effect of KIDINS220 variants on neurogenesis in vivo. RESULTS We identified in KIDINS220 a pathogenic nonsense variant (c.4177C > T, p.Q1393*) that associated with AD cerebral palsy. We demonstrated that the nonsense variants located in the terminal exon of KIDINS220 are gain-of-function (GoF) variants, which enable the mRNA to escape nonsense-mediated decay and produce a truncated yet functional KIDINS220 protein. The truncated protein exhibited significant resistance to calpain and consequently accumulated within cells, resulting in the hyperactivation of Rac1 and defects in neuronal development. CONCLUSIONS Our findings demonstrate that the location of variants within KIDINS220 plays a crucial role in determining inheritance patterns and corresponding clinical outcomes. The proposed interaction between Rac1 and KIDINS220 provides new insights into the pathogenesis of cerebral palsy, implying potential therapeutic perspectives. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jin Zhang
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yandong Zhang
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qing Shang
- Department of Pediatric Rehabilitation Medicine, Children's Hospital of Zhengzhou University and Henan Children's Hospital, Zhengzhou, China
| | - Ye Cheng
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yu Su
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Junjie Zhang
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Ting Wang
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Jian Ding
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yunqian Li
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| | - Yunli Xie
- Department of Anesthesia, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Zhongshan Hospital Fudan University, Shanghai, China
| | - Qinghe Xing
- Children's Hospital of Fudan University and Institutes of Biomedical Sciences of Fudan University, Shanghai, China
| |
Collapse
|
6
|
Torene RI, Guillen Sacoto MJ, Millan F, Zhang Z, McGee S, Oetjens M, Heise E, Chong K, Sidlow R, O'Grady L, Sahai I, Martin CL, Ledbetter DH, Myers SM, Mitchell KJ, Retterer K. Systematic analysis of variants escaping nonsense-mediated decay uncovers candidate Mendelian diseases. Am J Hum Genet 2024; 111:70-81. [PMID: 38091987 PMCID: PMC10806863 DOI: 10.1016/j.ajhg.2023.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/19/2023] [Indexed: 01/07/2024] Open
Abstract
Protein-truncating variants (PTVs) near the 3' end of genes may escape nonsense-mediated decay (NMD). PTVs in the NMD-escape region (PTVescs) can cause Mendelian disease but are difficult to interpret given their varying impact on protein function. Previously, PTVesc burden was assessed in an epilepsy cohort, but no large-scale analysis has systematically evaluated these variants in rare disease. We performed a retrospective analysis of 29,031 neurodevelopmental disorder (NDD) parent-offspring trios referred for clinical exome sequencing to identify PTVesc de novo mutations (DNMs). We identified 1,376 PTVesc DNMs and 133 genes that were significantly enriched (binomial p < 0.001). The PTVesc-enriched genes included those with PTVescs previously described to cause dominant Mendelian disease (e.g., SEMA6B, PPM1D, and DAGLA). We annotated ClinVar variants for PTVescs and identified 948 genes with at least one high-confidence pathogenic variant. Twenty-two known Mendelian PTVesc-enriched genes had no prior evidence of PTVesc-associated disease. We found 22 additional PTVesc-enriched genes that are not well established to be associated with Mendelian disease, several of which showed phenotypic similarity between individuals harboring PTVesc variants in the same gene. Four individuals with PTVesc mutations in RAB1A had similar phenotypes including NDD and spasticity. PTVesc mutations in IRF2BP1 were found in two individuals who each had severe immunodeficiency manifesting in NDD. Three individuals with PTVesc mutations in LDB1 all had NDD and multiple congenital anomalies. Using a large-scale, systematic analysis of DNMs, we extend the mutation spectrum for known Mendelian disease-associated genes and identify potentially novel disease-associated genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Matthew Oetjens
- Geisinger, Danville, PA, USA; Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | | | | | | | | | | | - Christa L Martin
- Geisinger, Danville, PA, USA; Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | - David H Ledbetter
- University of Florida, College of Medicine-Jacksonville, Jacksonville, FL, USA
| | - Scott M Myers
- Geisinger, Danville, PA, USA; Geisinger Autism & Developmental Medicine Institute, Lewisburg, PA, USA
| | - Kevin J Mitchell
- Smurfit Institute of Genetics and Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kyle Retterer
- GeneDx, Gaithersburg, MD, USA; Geisinger, Danville, PA, USA.
| |
Collapse
|
7
|
Lee AS, Ayers LJ, Kosicki M, Chan WM, Fozo LN, Pratt BM, Collins TE, Zhao B, Rose MF, Sanchis-Juan A, Fu JM, Wong I, Zhao X, Tenney AP, Lee C, Laricchia KM, Barry BJ, Bradford VR, Lek M, MacArthur DG, Lee EA, Talkowski ME, Brand H, Pennacchio LA, Engle EC. A cell type-aware framework for nominating non-coding variants in Mendelian regulatory disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.22.23300468. [PMID: 38234731 PMCID: PMC10793524 DOI: 10.1101/2023.12.22.23300468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Unsolved Mendelian cases often lack obvious pathogenic coding variants, suggesting potential non-coding etiologies. Here, we present a single cell multi-omic framework integrating embryonic mouse chromatin accessibility, histone modification, and gene expression assays to discover cranial motor neuron (cMN) cis-regulatory elements and subsequently nominate candidate non-coding variants in the congenital cranial dysinnervation disorders (CCDDs), a set of Mendelian disorders altering cMN development. We generated single cell epigenomic profiles for ~86,000 cMNs and related cell types, identifying ~250,000 accessible regulatory elements with cognate gene predictions for ~145,000 putative enhancers. Seventy-five percent of elements (44 of 59) validated in an in vivo transgenic reporter assay, demonstrating that single cell accessibility is a strong predictor of enhancer activity. Applying our cMN atlas to 899 whole genome sequences from 270 genetically unsolved CCDD pedigrees, we achieved significant reduction in our variant search space and nominated candidate variants predicted to regulate known CCDD disease genes MAFB, PHOX2A, CHN1, and EBF3 - as well as new candidates in recurrently mutated enhancers through peak- and gene-centric allelic aggregation. This work provides novel non-coding variant discoveries of relevance to CCDDs and a generalizable framework for nominating non-coding variants of potentially high functional impact in other Mendelian disorders.
Collapse
Affiliation(s)
- Arthur S. Lee
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Lauren J. Ayers
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Michael Kosicki
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Wai-Man Chan
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Lydia N. Fozo
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Brandon M. Pratt
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Thomas E. Collins
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Boxun Zhao
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
| | - Matthew F. Rose
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Department of Pathology, Boston Children's Hospital, Boston, MA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA
| | - Alba Sanchis-Juan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Jack M. Fu
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Alan P. Tenney
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Cassia Lee
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Harvard College, Cambridge, MA
| | - Kristen M. Laricchia
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Brenda J. Barry
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
| | - Victoria R. Bradford
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Monkol Lek
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
| | - Daniel G. MacArthur
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney, Sydney, NSW, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Eunjung Alice Lee
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Michael E. Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
- Pediatric Surgical Research Laboratories, Massachusetts General Hospital, Boston, MA
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Elizabeth C. Engle
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
- Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
- Manton Center for Orphan Disease Research, Boston Children’s Hospital, Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA
- Howard Hughes Medical Institute, Chevy Chase, MD
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA
- Medical Genetics Training Program, Harvard Medical School, Boston, MA
- Department of Ophthalmology, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Riquin K, Isidor B, Mercier S, Nizon M, Colin E, Bonneau D, Pasquier L, Odent S, Le Guillou Horn XM, Le Guyader G, Toutain A, Meyer V, Deleuze JF, Pichon O, Doco-Fenzy M, Bézieau S, Cogné B. Integrating RNA-Seq into genome sequencing workflow enhances the analysis of structural variants causing neurodevelopmental disorders. J Med Genet 2023; 61:47-56. [PMID: 37495270 DOI: 10.1136/jmg-2023-109263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/09/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Molecular diagnosis of neurodevelopmental disorders (NDDs) is mainly based on exome sequencing (ES), with a diagnostic yield of 31% for isolated and 53% for syndromic NDD. As sequencing costs decrease, genome sequencing (GS) is gradually replacing ES for genome-wide molecular testing. As many variants detected by GS only are in deep intronic or non-coding regions, the interpretation of their impact may be difficult. Here, we showed that integrating RNA-Seq into the GS workflow can enhance the analysis of the molecular causes of NDD, especially structural variants (SVs), by providing valuable complementary information such as aberrant splicing, aberrant expression and monoallelic expression. METHODS We performed trio-GS on a cohort of 33 individuals with NDD for whom ES was inconclusive. RNA-Seq on skin fibroblasts was then performed in nine individuals for whom GS was inconclusive and optical genome mapping (OGM) was performed in two individuals with an SV of unknown significance. RESULTS We identified pathogenic or likely pathogenic variants in 16 individuals (48%) and six variants of uncertain significance. RNA-Seq contributed to the interpretation in three individuals, and OGM helped to characterise two SVs. CONCLUSION Our study confirmed that GS significantly improves the diagnostic performance of NDDs. However, most variants detectable by GS alone are structural or located in non-coding regions, which can pose challenges for interpretation. Integration of RNA-Seq data overcame this limitation by confirming the impact of variants at the transcriptional or regulatory level. This result paves the way for new routinely applicable diagnostic protocols.
Collapse
Affiliation(s)
- Kevin Riquin
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
| | - Bertrand Isidor
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Sandra Mercier
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Mathilde Nizon
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Estelle Colin
- CHU Angers, Service de Génétique médicale, Angers, France
- UMR CNRS 6214-INSERM 1083, Université d'Angers, Angers, France
| | - Dominique Bonneau
- CHU Angers, Service de Génétique médicale, Angers, France
- UMR CNRS 6214-INSERM 1083, Université d'Angers, Angers, France
| | | | - Sylvie Odent
- Service de Génétique Clinique, ERN ITHACA, Rennes, France
- Institut de Génétique et Développement de Rennes, IGDR UMR 6290 CNRS, INSERM, IGDR Univ Rennes, Rennes, France
| | - Xavier Maximin Le Guillou Horn
- Service de génétique médicale, CHU de Poitiers, Poitiers, France
- LabCom I3M-Dactim mis/LMA CNRS 7348, Université de Poitiers, Poitiers, France
| | | | - Annick Toutain
- UF de Génétique Médicale, Centre Hospitalier Universitaire, Tours, France
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Vincent Meyer
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Université Paris-Saclay, CEA, Evry, France
| | - Olivier Pichon
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Martine Doco-Fenzy
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Stéphane Bézieau
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| | - Benjamin Cogné
- l'institut du thorax, Nantes Université, CHU de Nantes, CNRS, INSERM, Nantes, France
- Service de Génétique médicale, Nantes Université, CHU de Nantes, Nantes, France
| |
Collapse
|
9
|
Hodapp M, Hing AV, Gallagher E, Blessing M, Cunningham ML. Isolated frontosphenoidal craniosynostosis: An argument for genetic testing. Am J Med Genet A 2023; 191:2651-2655. [PMID: 37421219 DOI: 10.1002/ajmg.a.63348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Isolated frontosphenoidal craniosynostosis (IFSC) is a rare congenital defect defined as premature fusion of the frontosphenoidal suture in the absence of other suture fusion. Until now, IFSC was regarded as a phenomenon with an unclear genetic etiology. We have identified three cases with IFSC with underlying syndromic diagnoses that were attributable to pathogenic mutations involving FGFR3 and MN1, as well as 22q11.2 deletion syndrome. These findings suggest a genetic predisposition to IFSC may exist, thereby justifying the recommendation for genetic evaluation and testing in this population. Furthermore, due to improved imaging resolution, cases of IFSC are now readily identified. With the identification of IFSC with underlying genetic diagnoses, in combination with significant improvements in imaging resolution, we recommend genetic evaluation in children with IFSC.
Collapse
Affiliation(s)
- Matthew Hodapp
- University of Nevada, Las Vegas School of Medicine, Las Vegas, Nevada, USA
| | - Anne V Hing
- Seattle Children's Craniofacial Center, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Emily Gallagher
- Seattle Children's Craniofacial Center, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Matthew Blessing
- Seattle Children's Craniofacial Center, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Michael L Cunningham
- Seattle Children's Craniofacial Center, Seattle Children's Hospital, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
10
|
Palma Milla C, Patricia PM, Lezana JM, Cruz J, Quesada JF, Vila S, Álvarez-Mora I, Arteche-López A, Gómez-Manjón I, Sánchez MT, Gómez-Rodríguez MJ, Sánchez J, Moreno-García M. A Novel Pathogenic Variant in the MN1 Gene in a Patient Presenting with Rhombencephalosynapsis and Craniofacial Anomalies, Expanding MN1 C-terminal Truncation Syndrome. J Pediatr Genet 2023; 12:254-257. [PMID: 37575653 PMCID: PMC10421676 DOI: 10.1055/s-0041-1728650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Meningioma-1 is a transcription activator that regulates mammalian palate development and is required for appropriate osteoblast proliferation, motility, differentiation, and function. Microdeletions involving the MN1 gene have been linked to syndromes including craniofacial anomalies, such as Toriello-Carey syndrome. Recently, truncating variants in the C-terminal portion of the MN1 transcriptional factor have been linked to a characteristic and distinct phenotype presenting with craniofacial anomalies and partial rhombencephalosynapsis, a rare brain malformation characterized by midline fusion of the cerebellar hemispheres with partial or complete loss of the cerebellar vermis. It has been called MN1 C-terminal truncation (MCTT) syndrome or CEBALID (Craniofacial defects, dysmorphic Ears, Brain Abnormalities, Language delay, and Intellectual Disability) and suggested to be caused by dominantly acting truncated protein MN1 instead of haploinsufficiency. As a proto-oncogene, MN1 is also involved in familial meningioma. In this study, we present a novel case of MCTT syndrome in a female patient presenting with craniofacial anomalies and rhombencephalosynapsis, harboring a de novo pathogenic variant in the MN1 gene: c.3686_3698del, p.(Met1229Argfs*87).
Collapse
Affiliation(s)
- Carmen Palma Milla
- Department of Genetics, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Pérez Mohand Patricia
- Department of Pediatric Endocrinology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - José M. Lezana
- Department of Genetics, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Jaime Cruz
- Department of Pediatric Endocrinology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Juan F. Quesada
- Department of Genetics, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Sara Vila
- Department of Pediatric Neurology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Isabel Álvarez-Mora
- Department of Genetics, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Ana Arteche-López
- Department of Genetics, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Irene Gómez-Manjón
- Department of Genetics, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - M. Teresa Sánchez
- Department of Genetics, Hospital Universitario Doce de Octubre, Madrid, Spain
| | | | - Jaime Sánchez
- Department of Pediatric Endocrinology, Hospital Universitario Doce de Octubre, Madrid, Spain
| | - Marta Moreno-García
- Department of Genetics, Hospital Universitario Doce de Octubre, Madrid, Spain
| |
Collapse
|
11
|
Tran Mau-Them F, Overs A, Bruel AL, Duquet R, Thareau M, Denommé-Pichon AS, Vitobello A, Sorlin A, Safraou H, Nambot S, Delanne J, Moutton S, Racine C, Engel C, De Giraud d’Agay M, Lehalle D, Goldenberg A, Willems M, Coubes C, Genevieve D, Verloes A, Capri Y, Perrin L, Jacquemont ML, Lambert L, Lacaze E, Thevenon J, Hana N, Van-Gils J, Dubucs C, Bizaoui V, Gerard-Blanluet M, Lespinasse J, Mercier S, Guerrot AM, Maystadt I, Tisserant E, Faivre L, Philippe C, Duffourd Y, Thauvin-Robinet C. Combining globally search for a regular expression and print matching lines with bibliographic monitoring of genomic database improves diagnosis. Front Genet 2023; 14:1122985. [PMID: 37152996 PMCID: PMC10157399 DOI: 10.3389/fgene.2023.1122985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 05/09/2023] Open
Abstract
Introduction: Exome sequencing has a diagnostic yield ranging from 25% to 70% in rare diseases and regularly implicates genes in novel disorders. Retrospective data reanalysis has demonstrated strong efficacy in improving diagnosis, but poses organizational difficulties for clinical laboratories. Patients and methods: We applied a reanalysis strategy based on intensive prospective bibliographic monitoring along with direct application of the GREP command-line tool (to "globally search for a regular expression and print matching lines") in a large ES database. For 18 months, we submitted the same five keywords of interest [(intellectual disability, (neuro)developmental delay, and (neuro)developmental disorder)] to PubMed on a daily basis to identify recently published novel disease-gene associations or new phenotypes in genes already implicated in human pathology. We used the Linux GREP tool and an in-house script to collect all variants of these genes from our 5,459 exome database. Results: After GREP queries and variant filtration, we identified 128 genes of interest and collected 56 candidate variants from 53 individuals. We confirmed causal diagnosis for 19/128 genes (15%) in 21 individuals and identified variants of unknown significance for 19/128 genes (15%) in 23 individuals. Altogether, GREP queries for only 128 genes over a period of 18 months permitted a causal diagnosis to be established in 21/2875 undiagnosed affected probands (0.7%). Conclusion: The GREP query strategy is efficient and less tedious than complete periodic reanalysis. It is an interesting reanalysis strategy to improve diagnosis.
Collapse
Affiliation(s)
- Frédéric Tran Mau-Them
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
- INSERM UMR1231 GAD, Dijon, France
- *Correspondence: Frédéric Tran Mau-Them,
| | - Alexis Overs
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
| | - Ange-Line Bruel
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
- INSERM UMR1231 GAD, Dijon, France
| | - Romain Duquet
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
| | - Mylene Thareau
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
| | - Anne-Sophie Denommé-Pichon
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
- INSERM UMR1231 GAD, Dijon, France
| | - Antonio Vitobello
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
- INSERM UMR1231 GAD, Dijon, France
| | - Arthur Sorlin
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
- INSERM UMR1231 GAD, Dijon, France
| | - Hana Safraou
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
- INSERM UMR1231 GAD, Dijon, France
| | - Sophie Nambot
- Centre de Référence Maladies Rares “Anomalies du développement et syndromes malformatifs”, Centre de Génétique, FHUTRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Julian Delanne
- Centre de Référence Maladies Rares “Anomalies du développement et syndromes malformatifs”, Centre de Génétique, FHUTRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Sebastien Moutton
- Centre de Référence Maladies Rares “Anomalies du développement et syndromes malformatifs”, Centre de Génétique, FHUTRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Caroline Racine
- Centre de Référence Maladies Rares “Anomalies du développement et syndromes malformatifs”, Centre de Génétique, FHUTRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Camille Engel
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
| | | | - Daphne Lehalle
- Centre de Référence Maladies Rares “Anomalies du développement et syndromes malformatifs”, Centre de Génétique, FHUTRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Alice Goldenberg
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Rouen, France
- Department of Genetics and Reference Center for Developmental Disorders, Normandy Center for Genomic and Personalized Medicine, Rouen, France
| | - Marjolaine Willems
- Département de Génétique Médicale Maladies Rares et Médecine Personnalisée, Centre de Référence Maladies Rares Anomalies du Développement, Hôpital Arnaud de Villeneuve, Université Montpellier, Montpellier, France
| | - Christine Coubes
- Département de Génétique Médicale Maladies Rares et Médecine Personnalisée, Centre de Référence Maladies Rares Anomalies du Développement, Hôpital Arnaud de Villeneuve, Université Montpellier, Montpellier, France
| | - David Genevieve
- Département de Génétique Médicale Maladies Rares et Médecine Personnalisée, Centre de Référence Maladies Rares Anomalies du Développement, Hôpital Arnaud de Villeneuve, Université Montpellier, Montpellier, France
| | - Alain Verloes
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, Department of Medical Genetics, AP-HPNord- Université de Paris, Hôpital Robert Debré, Paris, France
- INSERM UMR 1141, Paris, France
| | - Yline Capri
- Service de Génétique Clinique, CHU Robert Debré, Paris, France
| | - Laurence Perrin
- Service de Génétique Clinique, CHU Robert Debré, Paris, France
| | - Marie-Line Jacquemont
- Unité de Génétique Médicale, Pole Femme-Mère-Enfant, Groupe Hospitalier Sud Réunion, CHU de La Réunion, La Réunion, France
| | | | - Elodie Lacaze
- Unité de Génétique Médicale, Groupe Hospitalier du Havre, Le Havre, France
| | - Julien Thevenon
- Centre de Référence Maladies Rares “Anomalies du développement et syndromes malformatifs”, Centre de Génétique, FHUTRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Nadine Hana
- Département de Génétique, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Paris, France
- INSERM U1148, Laboratory for Vascular Translational Science, Université Paris de Paris, Hôpital Bichat, Paris, France
| | - Julien Van-Gils
- Service de Génétique Médicale, CHU de Bordeaux, Bordeaux, France
| | - Charlotte Dubucs
- Department of Medical Genetics, Toulouse University Hospital, Toulouse, France
| | - Varoona Bizaoui
- Service de Génétique, Centre Hospitalier Universitaire Caen Normandie, Caen, France
| | | | | | - Sandra Mercier
- Service de Génétique Médicale, CHU Nantes, Nantes, France
| | - Anne-Marie Guerrot
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, CHU Rouen, Rouen, France
- Inserm U1245, FHU G4 Génomique, Rouen, France
| | - Isabelle Maystadt
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Emilie Tisserant
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
| | - Laurence Faivre
- INSERM UMR1231 GAD, Dijon, France
- Centre de Référence Maladies Rares “Anomalies du développement et syndromes malformatifs”, Centre de Génétique, FHUTRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
- INSERM UMR1231 GAD, Dijon, France
| | - Yannis Duffourd
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
- INSERM UMR1231 GAD, Dijon, France
| | - Christel Thauvin-Robinet
- Unité Fonctionnelle Innovation en Diagnostic Génomique des maladies rares, CHU Dijon, Dijon, France
- INSERM UMR1231 GAD, Dijon, France
- Centre de Référence Maladies Rares “Anomalies du développement et syndromes malformatifs”, Centre de Génétique, FHUTRANSLAD et Institut GIMI, CHU Dijon Bourgogne, Dijon, France
| |
Collapse
|
12
|
Sevinç K, Sevinç GG, Cavga AD, Philpott M, Kelekçi S, Can H, Cribbs AP, Yıldız AB, Yılmaz A, Ayar ES, Arabacı DH, Dunford JE, Ata D, Sigua LH, Qi J, Oppermann U, Onder TT. BRD9-containing non-canonical BAF complex maintains somatic cell transcriptome and acts as a barrier to human reprogramming. Stem Cell Reports 2022; 17:2629-2642. [PMID: 36332631 PMCID: PMC9768578 DOI: 10.1016/j.stemcr.2022.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
Epigenetic reprogramming to pluripotency requires extensive remodeling of chromatin landscapes to silence existing cell-type-specific genes and activate pluripotency genes. ATP-dependent chromatin remodeling complexes are important regulators of chromatin structure and gene expression; however, the role of recently identified Bromodomain-containing protein 9 (BRD9) and the associated non-canonical BRG1-associated factors (ncBAF) complex in reprogramming remains unknown. Here, we show that genetic or chemical inhibition of BRD9, as well as ncBAF complex subunit GLTSCR1, but not the closely related BRD7, increase human somatic cell reprogramming efficiency and can replace KLF4 and c-MYC. We find that BRD9 is dispensable for human induced pluripotent stem cells under primed but not under naive conditions. Mechanistically, BRD9 inhibition downregulates fibroblast-related genes and decreases chromatin accessibility at somatic enhancers. BRD9 maintains the expression of transcriptional regulators MN1 and ZBTB38, both of which impede reprogramming. Collectively, these results establish BRD9 as an important safeguarding factor for somatic cell identity whose inhibition lowers chromatin-based barriers to reprogramming.
Collapse
Affiliation(s)
- Kenan Sevinç
- School of Medicine, Koç University, Istanbul, Turkey
| | | | - Ayşe Derya Cavga
- School of Medicine, Koç University, Istanbul, Turkey; Biostatistics, Bioinformatics and Data Management Core, KUTTAM, Koç University, Istanbul, Turkey
| | - Martin Philpott
- Botnar Research Centre, Oxford NIHR BRU, University of Oxford, Oxford, UK
| | - Simge Kelekçi
- School of Medicine, Koç University, Istanbul, Turkey
| | - Hazal Can
- School of Medicine, Koç University, Istanbul, Turkey
| | - Adam P Cribbs
- Botnar Research Centre, Oxford NIHR BRU, University of Oxford, Oxford, UK
| | | | | | | | | | - James E Dunford
- Botnar Research Centre, Oxford NIHR BRU, University of Oxford, Oxford, UK
| | - Deniz Ata
- School of Medicine, Koç University, Istanbul, Turkey
| | - Logan H Sigua
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Jun Qi
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Udo Oppermann
- Botnar Research Centre, Oxford NIHR BRU, University of Oxford, Oxford, UK; Centre for Medicine Discovery, University of Oxford, Oxford, UK; Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford OX3 7LD, UK
| | - Tamer T Onder
- School of Medicine, Koç University, Istanbul, Turkey.
| |
Collapse
|
13
|
Yu J, Li C, Chen J, Ran Q, Zhao Y, Cao Q, Chen X, Yu L, Li W, Zhao Z. Diagnosis and treatment of MN1 C-terminal truncation syndrome. Mol Genet Genomic Med 2022; 10:e1965. [PMID: 36124717 PMCID: PMC9651612 DOI: 10.1002/mgg3.1965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND MN1 C-terminal truncation (MCTT) is a rare syndrome; only 27 cases have been reported. We report the first case of an 8-year-old girl with MCTT syndrome complicated with moderate obstructive sleep apnea (OSA). METHODS MCTT syndrome was diagnosed by whole-exome sequencing (WES) and validated by Sanger sequencing. The patient received 2 years of treatment with continuous positive airway pressure (CPAP) to relieve sleep apnea and hypoxia, and a reverse sector fan-shaped expander for maxillary expansion. RESULTS WES revealed a de novo MN1 variant, c.3760C>T (p.[Q1254*]). An arachnoid cyst was found in the right occipital brain. The patient presented mild symptoms of classic MCTT syndrome. The patient did not experience hearing loss and only mild intellectual disability. Radiological examinations showed cleft secondary palate, narrow upper arch, narrow upper airway, and mandibular skeletal retrusion. Polysomnography indicated moderate OSA, with an apnea/hypopnea index of 6.8, which decreased to 1 after CPAP during the night. Two-year maxillary expansion widened the upper arch, and the cleft secondary palate became visible. The mandible moved forward spontaneously, resulting in the improvement of profile and upper airway widening. General physical conditions, such as motor delay, muscle weakness, and developmental delay, were significantly improved two years later. CONCLUSION In conclusion, we discovered a MN1 variant [NM_002430.2: c.3760C>T, p.Q1254*] that causes mild MCTT symptoms compared to other MN1 variants. For patients with MCTT complicated with OSA, multidisciplinary combination therapy can improve maxillofacial development, widen the upper airway and relieve sleep apnea, improving the general physical condition.
Collapse
Affiliation(s)
- Jingjia Yu
- The First Clinic, Orthodontic Department, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Chen Li
- The First Clinic, Orthodontic Department, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Jialin Chen
- The First Clinic, Orthodontic Department, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Qiuchi Ran
- The First Clinic, Orthodontic Department, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Yingya Zhao
- The First Clinic, Orthodontic Department, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Qingxin Cao
- The First Clinic, Orthodontic Department, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Ximeng Chen
- The First Clinic, Orthodontic Department, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Linnan Yu
- The First Clinic, Orthodontic Department, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| | - Wenyang Li
- Institute of Respiratory Disease, The First Hospital of China Medical University, Shenyang, China
| | - Zhenjin Zhao
- The First Clinic, Orthodontic Department, School and Hospital of Stomatology, China Medical University, Liaoning Province Key Laboratory of Oral Disease, Shenyang, China
| |
Collapse
|
14
|
Perdomo-Sabogal A, Trakooljul N, Hadlich F, Murani E, Wimmers K, Ponsuksili S. DNA methylation landscapes from pig's limbic structures underline regulatory mechanisms relevant for brain plasticity. Sci Rep 2022; 12:16293. [PMID: 36175587 PMCID: PMC9522933 DOI: 10.1038/s41598-022-20682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/16/2022] [Indexed: 11/09/2022] Open
Abstract
Epigenetic dynamics are essential for reconciling stress-induced responses in neuro-endocrine routes between the limbic brain and adrenal gland. CpG methylation associates with the initiation and end of regulatory mechanisms underlying responses critical for survival, and learning. Using Reduced Representation Bisulfite Sequencing, we identified methylation changes of functional relevance for mediating tissue-specific responses in the hippocampus, amygdala, hypothalamus, and adrenal gland in pigs. We identified 4186 differentially methylated CpGs across all tissues, remarkably, enriched for promoters of transcription factors (TFs) of the homeo domain and zinc finger classes. We also detected 5190 differentially methylated regions (DMRs, 748 Mb), with about half unique to a single pairwise. Two structures, the hypothalamus and the hippocampus, displayed 860 unique brain-DMRs, with many linked to regulation of chromatin, nervous development, neurogenesis, and cell-to-cell communication. TF binding motifs for TFAP2A and TFAP2C are enriched amount DMRs on promoters of other TFs, suggesting their role as master regulators, especially for pathways essential in long-term brain plasticity, memory, and stress responses. Our results reveal sets of TF that, together with CpG methylation, may serve as regulatory switches to modulate limbic brain plasticity and brain-specific molecular genetics in pigs.
Collapse
Affiliation(s)
- Alvaro Perdomo-Sabogal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.,University Rostock, Faculty of Agricultural and Environmental Sciences, 18059, Rostock, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
15
|
Liao WP, Chen Q, Jiang YW, Luo S, Liu XR. Editorial: Sub-molecular mechanism of genetic epilepsy. Front Mol Neurosci 2022; 15:958747. [PMID: 35959103 PMCID: PMC9360914 DOI: 10.3389/fnmol.2022.958747] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wei-Ping Liao
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
- *Correspondence: Wei-Ping Liao
| | - Qian Chen
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Yu-Wu Jiang
- Department of Pediatrics, Peking University First Hospital, Peking, China
| | - Sheng Luo
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| | - Xiao-Rong Liu
- Department of Neurology, Institute of Neuroscience, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province, Ministry of Education of China, Guangzhou, China
| |
Collapse
|
16
|
Haldipur P, Millen KJ, Aldinger KA. Human Cerebellar Development and Transcriptomics: Implications for Neurodevelopmental Disorders. Annu Rev Neurosci 2022; 45:515-531. [PMID: 35440142 PMCID: PMC9271632 DOI: 10.1146/annurev-neuro-111020-091953] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Developmental abnormalities of the cerebellum are among the most recognized structural brain malformations in human prenatal imaging. Yet reliable information regarding their cause in humans is sparse, and few outcome studies are available to inform prognosis. We know very little about human cerebellar development, in stark contrast to the wealth of knowledge from decades of research on cerebellar developmental biology of model organisms, especially mice. Recent studies show that multiple aspects of human cerebellar development significantly differ from mice and even rhesus macaques, a nonhuman primate. These discoveries challenge many current mouse-centric models of normal human cerebellar development and models regarding the pathogenesis of several neurodevelopmental phenotypes affecting the cerebellum, including Dandy-Walker malformation and medulloblastoma. Since we cannot model what we do not know, additional normative and pathological human developmental data are essential, and new models are needed.
Collapse
Affiliation(s)
- Parthiv Haldipur
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA;
| | - Kathleen J Millen
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA; .,Department of Pediatrics, Division of Medical Genetics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kimberly A Aldinger
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, Washington, USA;
| |
Collapse
|
17
|
Chaudhari BP, Ho ML. Congenital Brain Malformations: An Integrated Diagnostic Approach. Semin Pediatr Neurol 2022; 42:100973. [PMID: 35868725 DOI: 10.1016/j.spen.2022.100973] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022]
Abstract
Congenital brain malformations are abnormalities present at birth that can result from developmental disruptions at various embryonic or fetal stages. The clinical presentation is nonspecific and can include developmental delay, hypotonia, and/or epilepsy. An informed combination of imaging and genetic testing enables early and accurate diagnosis and management planning. In this article, we provide a streamlined approach to radiologic phenotyping and genetic evaluation of brain malformations. We will review the clinical workflow for brain imaging and genetic testing with up-to-date ontologies and literature references. The organization of this article introduces a streamlined approach for imaging-based etiologic classification into malformative, destructive, and migrational abnormalities. Specific radiologic ontologies are then discussed in detail, with correlation of key neuroimaging features to embryology and molecular pathogenesis.
Collapse
Affiliation(s)
- Bimal P Chaudhari
- Assistant Professor of Pediatrics, Nationwide Children's Hospital and The Ohio State University, Columbus, OH
| | - Mai-Lan Ho
- Associate Professor of Radiology, Nationwide Children's Hospital and The Ohio State University, Columbus, OH.
| |
Collapse
|
18
|
Teng C, Zhu Y, Li Y, Dai L, Pan Z, Wanggou S, Li X. Recurrence- and Malignant Progression-Associated Biomarkers in Low-Grade Gliomas and Their Roles in Immunotherapy. Front Immunol 2022; 13:899710. [PMID: 35677036 PMCID: PMC9168984 DOI: 10.3389/fimmu.2022.899710] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Despite a generally better prognosis than high-grade glioma (HGG), recurrence and malignant progression are the main causes for the poor prognosis and difficulties in the treatment of low-grade glioma (LGG). It is of great importance to learn about the risk factors and underlying mechanisms of LGG recurrence and progression. In this study, the transcriptome characteristics of four groups, namely, normal brain tissue and recurrent LGG (rLGG), normal brain tissue and secondary glioblastoma (sGBM), primary LGG (pLGG) and rLGG, and pLGG and sGBM, were compared using Chinese Glioma Genome Atlas (CGGA) and Genotype-Tissue Expression Project (GTEx) databases. In this study, 296 downregulated and 396 upregulated differentially expressed genes (DEGs) with high consensus were screened out. Univariate Cox regression analysis of data from The Cancer Genome Atlas (TCGA) yielded 86 prognostically relevant DEGs; a prognostic prediction model based on five key genes (HOXA1, KIF18A, FAM133A, HGF, and MN1) was established using the least absolute shrinkage and selection operator (LASSO) regression dimensionality reduction and multivariate Cox regression analysis. LGG was divided into high- and low-risk groups using this prediction model. Gene Set Enrichment Analysis (GSEA) revealed that signaling pathway differences in the high- and low-risk groups were mainly seen in tumor immune regulation and DNA damage-related cell cycle checkpoints. Furthermore, the infiltration of immune cells in the high- and low-risk groups was analyzed, which indicated a stronger infiltration of immune cells in the high-risk group than that in the low-risk group, suggesting that an immune microenvironment more conducive to tumor growth emerged due to the interaction between tumor and immune cells. The tumor mutational burden and tumor methylation burden in the high- and low-risk groups were also analyzed, which indicated higher gene mutation burden and lower DNA methylation level in the high-risk group, suggesting that with the accumulation of genomic mutations and epigenetic changes, tumor cells continued to evolve and led to the progression of LGG to HGG. Finally, the value of potential therapeutic targets for the five key genes was analyzed, and findings demonstrated that KIF18A was the gene most likely to be a potential therapeutic target. In conclusion, the prediction model based on these five key genes can better identify the high- and low-risk groups of LGG and lay a solid foundation for evaluating the risk of LGG recurrence and malignant progression.
Collapse
Affiliation(s)
- Chubei Teng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurosurgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yongwei Zhu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Yueshuo Li
- Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Luohuan Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Zhouyang Pan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Siyi Wanggou
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| | - Xuejun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Hunan International Scientific and Technological Cooperation Base of Brain Tumor Research, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
19
|
Bukowska-Olech E, Sowińska-Seidler A, Larysz D, Gawliński P, Koczyk G, Popiel D, Gurba-Bryśkiewicz L, Materna-Kiryluk A, Adamek Z, Szczepankiewicz A, Dominiak P, Glista F, Matuszewska K, Jamsheer A. Results from Genetic Studies in Patients Affected with Craniosynostosis: Clinical and Molecular Aspects. Front Mol Biosci 2022; 9:865494. [PMID: 35591945 PMCID: PMC9112228 DOI: 10.3389/fmolb.2022.865494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Craniosynostosis (CS) represents a highly heterogeneous genetic condition whose genetic background has not been yet revealed. The abnormality occurs either in isolated form or syndromic, as an element of hundreds of different inborn syndromes. Consequently, CS may often represent a challenging diagnostic issue. Methods: We investigated a three-tiered approach (karyotyping, Sanger sequencing, followed by custom gene panel/chromosomal microarray analysis, and exome sequencing), coupled with prioritization of variants based on dysmorphological assessment and description in terms of human phenotype ontology. In addition, we have also performed a statistical analysis of the obtained clinical data using the nonparametric test χ2. Results: We achieved a 43% diagnostic success rate and have demonstrated the complexity of mutations’ type harbored by the patients, which were either chromosomal aberrations, copy number variations, or point mutations. The majority of pathogenic variants were found in the well-known CS genes, however, variants found in genes associated with chromatinopathies or RASopathies are of particular interest. Conclusion: We have critically summarized and then optimised a cost-effective diagnostic algorithm, which may be helpful in a daily diagnostic routine and future clinical research of various CS types. Moreover, we have pinpointed the possible underestimated co-occurrence of CS and intellectual disability, suggesting it may be overlooked when intellectual disability constitutes a primary clinical complaint. On the other hand, in any case of already detected syndromic CS and intellectual disability, the possible occurrence of clinical features suggestive for chromatinopathies or RASopathies should also be considered.
Collapse
Affiliation(s)
- Ewelina Bukowska-Olech
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- *Correspondence: Ewelina Bukowska-Olech, ; Aleksander Jamsheer,
| | - Anna Sowińska-Seidler
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Dawid Larysz
- Department of Head and Neck Surgery for Children and Adolescents, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
- Prof. St. Popowski Regional Specialized Children's Hospital, Olsztyn, Poland
| | - Paweł Gawliński
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | - Grzegorz Koczyk
- Centers for Medical Genetics GENESIS, Poznan, Poland
- Biometry and Bioinformatics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | - Anna Materna-Kiryluk
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| | | | - Aleksandra Szczepankiewicz
- Molecular and Cell Biology Unit, Department of Paediatric Pulmonology, Allergy and Clinical Immunology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Filip Glista
- Poznan University of Medical Sciences, Poznan, Poland
| | - Karolina Matuszewska
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
| | - Aleksander Jamsheer
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland
- Centers for Medical Genetics GENESIS, Poznan, Poland
- *Correspondence: Ewelina Bukowska-Olech, ; Aleksander Jamsheer,
| |
Collapse
|
20
|
Smogavec M, Gerykova Bujalkova M, Lehner R, Neesen J, Behunova J, Yerlikaya-Schatten G, Reischer T, Altmann R, Weis D, Duba HC, Laccone F. Singleton exome sequencing of 90 fetuses with ultrasound anomalies revealing novel disease-causing variants and genotype-phenotype correlations. Eur J Hum Genet 2022; 30:428-438. [PMID: 34974531 PMCID: PMC8991249 DOI: 10.1038/s41431-021-01012-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/25/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022] Open
Abstract
Exome sequencing has been increasingly implemented in prenatal genetic testing for fetuses with morphological abnormalities but normal rapid aneuploidy detection and microarray analysis. We present a retrospective study of 90 fetuses with different abnormal ultrasound findings, in which we employed the singleton exome sequencing (sES; 75 fetuses) or to a lesser extent (15 fetuses) a multigene panel analysis of 6713 genes as a primary tool for the detection of monogenic diseases. The detection rate of pathogenic or likely pathogenic variants in this study was 34.4%. The highest diagnostic rate of 56% was in fetuses with multiple anomalies, followed by cases with skeletal or renal abnormalities (diagnostic rate of 50%, respectively). We report 20 novel disease-causing variants in different known disease-associated genes and new genotype-phenotype associations for the genes KMT2D, MN1, CDK10, and EXOC3L2. Based on our data, we postulate that sES of fetal index cases with a concurrent sampling of parental probes for targeted testing of the origin of detected fetal variants could be a suitable tool to obtain reliable and rapid prenatal results, particularly in situations where a trio analysis is not possible.
Collapse
Affiliation(s)
- Mateja Smogavec
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria.
| | | | - Reinhard Lehner
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Jürgen Neesen
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Jana Behunova
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| | - Gülen Yerlikaya-Schatten
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Theresa Reischer
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Reinhard Altmann
- Department of Prenatal Medicine, Kepler University Hospital, School of Medicine, Johannes Kepler University, Linz, Austria
| | - Denisa Weis
- Department of Medical Genetics, Kepler University Hospital, School of Medicine, Johannes Kepler University, Linz, Austria
| | - Hans-Christoph Duba
- Department of Medical Genetics, Kepler University Hospital, School of Medicine, Johannes Kepler University, Linz, Austria
| | - Franco Laccone
- Institute of Medical Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
21
|
Scott DA, Gofin Y, Berry AM, Adams AD. Underlying genetic etiologies of congenital diaphragmatic hernia. Prenat Diagn 2022; 42:373-386. [PMID: 35037267 PMCID: PMC8924940 DOI: 10.1002/pd.6099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 11/09/2022]
Abstract
Congenital diaphragmatic hernia (CDH) is often detectable prenatally. Advances in genetic testing have made it possible to obtain a molecular diagnosis in many fetuses with CDH. Here, we review the aneuploidies, copy number variants (CNVs), and single genes that have been clearly associated with CDH. We suggest that array-based CNV analysis, with or without a chromosome analysis, is the optimal test for identifying chromosomal abnormalities and CNVs in fetuses with CDH. To identify causative sequence variants, whole exome sequencing (WES) is the most comprehensive strategy currently available. Whole genome sequencing (WGS) with CNV analysis has the potential to become the most efficient and effective means of identifying an underlying diagnosis but is not yet routinely available for prenatal diagnosis. We describe how to overcome and address the diagnostic and clinical uncertainty that may remain after genetic testing, and review how a molecular diagnosis may impact recurrence risk estimations, mortality rates, and the availability and outcomes of fetal therapy. We conclude that after the prenatal detection of CDH, patients should be counseled about the possible genetic causes of the CDH, and the genetic testing modalities available to them, in accordance with generally accepted guidelines for pretest counseling in the prenatal setting.
Collapse
Affiliation(s)
- Daryl A. Scott
- Texas Children’s Hospital, Houston, TX, 77030,
USA,Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, 77030, USA,Department of Molecular Physiology and Biophysics, Baylor
College of Medicine, Houston, TX, 77030, USA,Correspondence: Daryl A. Scott, R813, One Baylor
Plaza. BCM225, Houston, TX 77030, USA, Phone: +1 713-203-7242,
| | - Yoel Gofin
- Texas Children’s Hospital, Houston, TX, 77030,
USA,Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, 77030, USA
| | - Aliska M. Berry
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, 77030, USA
| | - April D. Adams
- Department of Molecular and Human Genetics, Baylor College
of Medicine, Houston, TX, 77030, USA,Department of Obstetrics and Gynecology, Division of
Maternal Fetal Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| |
Collapse
|
22
|
Identification of novel SSX1 fusions in synovial sarcoma. Mod Pathol 2022; 35:228-239. [PMID: 34504309 DOI: 10.1038/s41379-021-00910-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 12/28/2022]
Abstract
Synovial sarcoma is characterized by variable epithelial differentiation and specific SS18-SSX gene fusions. The diagnosis is primarily based on phenotype, but fusion gene detection is increasingly being considered indispensable, with SS18 break-apart fluorescence in situ hybridization (FISH) being favored in many laboratories. However, SS18 FISH assay produces negative or atypical results in a minority of cases, leaving uncertainties in diagnosis and management. Here, we analyzed this challenging subset of SS18 FISH-negative/atypical synovial sarcoma using RNA sequencing and monoclonal antibodies that recognize SS18-SSX and the SSX C-terminus. Among 99 synovial sarcoma cases that were previously subjected to SS18 break-apart FISH, eight cases were reported as negative and three cases were indeterminate, owing to atypical signal patterns. Three of these 11 tumors (two monophasic and one biphasic) harbored novel EWSR1-SSX1 fusions, were negative for SS18-SSX staining, and were positive for SSX C-terminus staining. One monophasic tumor harbored a novel MN1-SSX1 fusion, and showed negative SS18-SSX expression and positive SSX C-terminus staining. Another monophasic tumor carried an SS18L1-SSX1 fusion, and was weakly positive for SS18-SSX, while SMARCB1 expression was reduced. The presence of these novel and/or rare fusions was confirmed using RT-PCR and Sanger sequencing. EWSR1-SSX1 was further validated by EWSR1 FISH assay. The remaining six tumors (five monophasic and one biphasic) showed strong SS18-SSX expression, and RNA sequencing successfully performed in three cases identified canonical SS18-SSX2 fusions. Based on a DNA methylation-based unsupervised clustering, the tumors with EWSR1-SSX1 and SS18L1-SSX1 clustered with synovial sarcoma, while the MN1-SSX1-positive tumor was not co-clustered despite classic histology and immunoprofile. In summary, we discovered novel and rare SSX1 fusions to non-SS18 genes in synovial sarcoma. The expanded genetic landscape carries significant diagnostic implications and advances our understanding of the oncogenic mechanism.
Collapse
|
23
|
Tian Q, Shu L, Zhang P, Zeng T, Cao Y, Xi H, Peng Y, Wang Y, Mao X, Wang H. MN1 Neurodevelopmental Disease-Atypical Phenotype Due to a Novel Frameshift Variant in the MN1 Gene. Front Mol Neurosci 2022; 14:789778. [PMID: 34975401 PMCID: PMC8716923 DOI: 10.3389/fnmol.2021.789778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background:MN1 C-terminal truncation (MCTT) syndrome is caused by variants in the C-terminal region of MN1, which were first described in 2020. The clinical features of MCTT syndrome includes severe neurodevelopmental and brain abnormalities. We reported on a patient who carried the MN1 variant in the C-terminal region with mild developmental delay and normal brain magnetic resonance image (MRI). Methods: Detailed clinical information was collected in the pedigree. Whole-exome sequencing (WES) accompanied with Sanger sequencing validation were performed. A functional study based on HEK239T cells was performed. Results: A de novo heterozygous c.3734delT: p.L1245fs variant was detected. HEK239T cells transinfected with the de novo variant showed decreased proliferation, enhanced apoptotic rate, and MN1 nuclear aggregation. Conclusion: Our study expended the clinical and genetic spectrum of MCTT which contributes to the genetic counseling of the MN1 gene.
Collapse
Affiliation(s)
- Qi Tian
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.,Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Li Shu
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Pu Zhang
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Ting Zeng
- The Ministry of Education and Science, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Yang Cao
- Department of Radiology, Chenzhou First People's Hospital, Chenzhou, China
| | - Hui Xi
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Ying Peng
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Yaqin Wang
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Hua Wang
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China.,National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| |
Collapse
|
24
|
Krajden Haratz K, Oliveira Szejnfeld P, Govindaswamy M, Leibovitz Z, Gindes L, Severino M, Rossi A, Paladini D, Garcia Rodriguez R, Ben-Sira L, Borkowski Tillman T, Gupta R, Lotem G, Raz N, Hamamoto TENK, Kidron D, Arad A, Birnbaum R, Brussilov M, Pomar L, Vial Y, Leventer RJ, McGillivray G, Fink M, Krzeszowski W, Fernandes Moron A, Lev D, Tamarkin M, Shalev J, Har Toov J, Lerman-Sagie T, Malinger G. Prenatal diagnosis of rhombencephalosynapsis: neuroimaging features and severity of vermian anomaly. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2021; 58:864-874. [PMID: 33942916 DOI: 10.1002/uog.23660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/24/2021] [Accepted: 04/16/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES To describe the prenatal neuroimaging spectrum of rhombencephalosynapsis (RES) and criteria for its classification according to the severity of vermian anomaly. METHODS In this multicenter retrospective study of fetuses with RES between 2002 and 2020, the medical records and brain ultrasound and magnetic resonance images were evaluated comprehensively to determine the severity of the vermian anomaly and the presence of associated brain findings. RES was classified, according to the pattern of vermian agenesis and the extent of the fusion of the hemispheres, as complete RES (complete absence of the vermis) or partial RES (further classified according to the part of the vermis that was missing and, consequently, the region of hemispheric fusion, as anterior, posterior, severe or mixed RES). Findings were compared between cases with complete and those with partial RES. RESULTS Included in the study were 62 fetuses with a gestational age ranging between 12 and 37 weeks. Most had complete absence of the vermis (complete RES, 77.4% of cases), a 'round-shaped' cerebellum on axial views (72.6%) and a transverse cerebellar diameter (TCD) < 3rd centile (87.1%). Among the 22.6% of cases with partial RES, 6.5% were classified as severe partial, 6.5% as partial anterior, 8.1% as partial mixed and 1.6% as partial posterior. Half of these cases presented with normal or nearly normal cerebellar morphology and 28.5% had a TCD within the normal limits. Infratentorially, the fourth ventricle was abnormal in 88.7% of cases overall, and anomalies of the midbrain and pons were frequent (93.5% and 77.4%, respectively). Ventriculomegaly was observed in 80.6% of all cases, being more severe in cases with complete RES than in those with partial RES, with high rates of parenchymal and septal disruption. CONCLUSIONS This study provides prenatal neuroimaging criteria for the diagnosis and classification of RES, and identification of related features, using ultrasound and magnetic resonance imaging. According to our findings, a diagnosis of RES should be considered in fetuses with a small TCD (severe cerebellar hypoplasia) and/or a round-shaped cerebellum on axial views, during the second or third trimester, especially when associated with ventriculomegaly. Partial RES is more common than previously thought, but presents an extreme diagnostic challenge, especially in cases with normal or nearly-normal cerebellar morphobiometric features. © 2021 International Society of Ultrasound in Obstetrics and Gynecology.
Collapse
Affiliation(s)
- K Krajden Haratz
- Fetal Neurology Multidisciplinary Group, Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - P Oliveira Szejnfeld
- Instituto D'Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
- DDI UNIFESP, São Paulo, Brazil
- Fundação Instituto de Pesquisa e Estudo de Diagnostico por Imagem, São Paulo, Brazil
| | - M Govindaswamy
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Z Leibovitz
- Ultrasound in Obstetrics and Gynecology Unit, Bnai-Zion Medical Center, Haifa, Israel
- Technion Faculty of Medicine, Haifa, Israel
- Fetal Neurology Clinic, Ultrasound in Obstetrics and Gynecology Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel
| | - L Gindes
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Fetal Neurology Clinic, Ultrasound in Obstetrics and Gynecology Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel
| | - M Severino
- Neuroradiology Unit, IRCCS Istituto Giannini Gaslini, Genoa, Italy
| | - A Rossi
- Neuroradiology Unit, IRCCS Istituto Giannini Gaslini, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - D Paladini
- Fetal Medicine Unit, IRCCS Istituto G. Gaslini, Genoa, Italy
| | - R Garcia Rodriguez
- Complejo Hospitalario Insular Materno Infantil de Canarias, Las Palmas de Gran Canaria, Spain
| | - L Ben-Sira
- Fetal Neurology Multidisciplinary Group, Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Pediatric Radiology Unit, Department of Radiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - T Borkowski Tillman
- Fetal Neurology Multidisciplinary Group, Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - R Gupta
- Sunehri Devi Hospital, Sonepat India, Indraprastha Apollo Hospital, New Delhi, India
| | - G Lotem
- Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel
| | - N Raz
- Technion Faculty of Medicine, Haifa, Israel
- Department of Obstetrics and Gynecology, Hillel Yaffe Medical Center, Hedera, Israel
| | - T E N K Hamamoto
- Departamento de Obstetrícia da Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - D Kidron
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Meir Medical Center, Kfar Saba, Israel
| | - A Arad
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Pathology, Bnai Zion Medical Center, Haifa, Israel
| | - R Birnbaum
- Fetal Neurology Multidisciplinary Group, Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Brussilov
- Fetal Neurology Multidisciplinary Group, Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - L Pomar
- Ultrasound and Fetal Medicine Unit, Department Woman-Mother-Child, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - Y Vial
- Ultrasound and Fetal Medicine Unit, Department Woman-Mother-Child, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - R J Leventer
- Department of Neurology, The Royal Children's Hospital, Murdoch Children's Research Institute and University of Melbourne Department of Pediatrics, Melbourne, Australia
| | - G McGillivray
- Royal Women's Hospital, Mercy Hospital for Women and Murdoch Children's Research Institute, Melbourne, Australia
| | - M Fink
- Department of Medical Imaging, The Royal Children's Hospital and Perinatal Unit, The Mercy Hospital for Women, Melbourne, Australia
| | | | - A Fernandes Moron
- Departamento de Obstetrícia da Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - D Lev
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Fetal Neurology Clinic, Ultrasound in Obstetrics and Gynecology Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel
- Institute of Genetics, Wolfson Medical Center, Holon, Israel
| | - M Tamarkin
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Fetal Neurology Clinic, Ultrasound in Obstetrics and Gynecology Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel
| | - J Shalev
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Fetal Neurology Clinic, Ultrasound in Obstetrics and Gynecology Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel
- Institute of Genetics, Wolfson Medical Center, Holon, Israel
| | - J Har Toov
- Fetal Neurology Multidisciplinary Group, Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - T Lerman-Sagie
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Fetal Neurology Clinic, Ultrasound in Obstetrics and Gynecology Unit, Department of Obstetrics and Gynecology, Wolfson Medical Center, Holon, Israel
- Pediatric Neurology Unit, Wolfson Medical Center, Holon, Israel
| | - G Malinger
- Fetal Neurology Multidisciplinary Group, Division of Ultrasound in Obstetrics and Gynecology, Lis Maternity Hospital, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
25
|
Zhao A, Shu D, Zhang D, Yang B, Hong L, Wang A, Yao R, Wang J, Lv H, Wang J, Shen Y, Wang H, Gu Q. Novel truncating variant of MN1 penultimate exon identified in a Chinese patient with newly recognized MN1 C-terminal truncation syndrome: Case report and literature review. Int J Dev Neurosci 2021; 82:96-103. [PMID: 34708882 DOI: 10.1002/jdn.10154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 10/11/2021] [Indexed: 12/23/2022] Open
Abstract
MN1 C-terminal truncation (MCTT) syndrome is a newly recognized neurodevelopmental disorder due to heterozygous gain-of-function C-terminal truncating mutations clustering in the last or penultimate exon of MN1 gene (MIM: 156100). Up to date, only 25 affected patients have been reported. Here, we report a 2-year-old Chinese girl with MCTT syndrome. The girl presented with the characteristic features of the syndrome, including global developmental delay (GDD), facial dysmorphism and hearing impairment. Notably, the patient did not have other frequently observed symptoms such as hypotonia, cranial or brain abnormalities, indicating variability of the phenotype of patients with MN1 C-terminal truncating mutations. Trio whole-exome sequencing revealed a novel de novo heterozygous nonsense variant in the extreme 3' region of penultimate exon of MN1 (NM_002430.3: c.3743G > A, p.Trp1248*). This rare truncating variant was classified as pathogenic due to its predicted gain-of-function effect, given that the gain-of-function MN1 truncating variants producing C-terminally truncated proteins have been confirmed to cause the recognizable syndrome. Additionally, a systematic review of previously reported MN1 variants including C-terminal truncating variants and N-terminal truncating variants shows that different location of MN1 truncating variants causes two distinct clinical subtypes. To our knowledge, this is the first reported case of MCTT syndrome caused by a novel MN1 C-terminal truncating variant in a Chinese population, which enriched the mutation spectrum of MN1 gene and further supporting the association of the novel MCTT syndrome with MN1 C-terminal truncating variants.
Collapse
Affiliation(s)
- Arman Zhao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Dandan Shu
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Daxue Zhang
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| | - Bin Yang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Liyi Hong
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Andi Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haitao Lv
- Department of Cardiology, Children's Hospital of Soochow University, Suzhou, China
| | - Jian Wang
- Department of Pediatric Surgery, Children's Hospital of Soochow University, Suzhou, China
| | - Yiping Shen
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Genetics and Metabolism, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, USA.,Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Hongying Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China.,Department of Clinical Laboratory, Children's Hospital of Wujiang District, Suzhou, Suzhou, China
| | - Qin Gu
- Department of Rehabilitation Medicine, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
26
|
Rees E, Creeth HDJ, Hwu HG, Chen WJ, Tsuang M, Glatt SJ, Rey R, Kirov G, Walters JTR, Holmans P, Owen MJ, O'Donovan MC. Schizophrenia, autism spectrum disorders and developmental disorders share specific disruptive coding mutations. Nat Commun 2021; 12:5353. [PMID: 34504065 PMCID: PMC8429694 DOI: 10.1038/s41467-021-25532-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/16/2021] [Indexed: 12/24/2022] Open
Abstract
People with schizophrenia are enriched for rare coding variants in genes associated with neurodevelopmental disorders, particularly autism spectrum disorders and intellectual disability. However, it is unclear if the same changes to gene function that increase risk to neurodevelopmental disorders also do so for schizophrenia. Using data from 3444 schizophrenia trios and 37,488 neurodevelopmental disorder trios, we show that within shared risk genes, de novo variants in schizophrenia and neurodevelopmental disorders are generally of the same functional category, and that specific de novo variants observed in neurodevelopmental disorders are enriched in schizophrenia (P = 5.0 × 10-6). The latter includes variants known to be pathogenic for syndromic disorders, suggesting that schizophrenia be included as a characteristic of those syndromes. Our findings imply that, in part, neurodevelopmental disorders and schizophrenia have shared molecular aetiology, and therefore likely overlapping pathophysiology, and support the hypothesis that at least some forms of schizophrenia lie on a continuum of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Elliott Rees
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Hugo D J Creeth
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | | | - Wei J Chen
- National Taiwan University, Taipei, Taiwan
| | - Ming Tsuang
- University of California, San Diego, La Jolla, CA, USA
| | | | - Romain Rey
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- INSERM, U1028; CNRS, UMR5292; Lyon Neuroscience Research Center, Psychiatric Disorders: from Resistance to Response Team, Lyon, F-69000, France
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| | - Michael C O'Donovan
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
27
|
Sánchez-Villalobos JM, Torres-Perales AM, Serrano-Velasco L, Pérez-Vicente JA. Adult rhombencephalosynapsis: an unusual presentation of an infrequent entity. NEUROLOGÍA (ENGLISH EDITION) 2021; 36:628-630. [PMID: 34238715 DOI: 10.1016/j.nrleng.2020.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/19/2020] [Indexed: 11/18/2022] Open
Affiliation(s)
| | - A M Torres-Perales
- Servicio de Neurología, Hospital Universitario Santa Lucía, Cartagena, Murcia, Spain
| | - L Serrano-Velasco
- Servicio de Radiodiagnóstico, Hospital Universitario Santa Lucía, Cartagena, Murcia, Spain
| | - J A Pérez-Vicente
- Servicio de Neurología, Hospital Universitario Santa Lucía, Cartagena, Murcia, Spain
| |
Collapse
|
28
|
Shu L, He D, Wu D, Peng Y, Xi H, Mao X, Wang H. MN1 gene loss-of-function mutation causes cleft palate in a pedigree. Brain 2021; 144:e18. [PMID: 33351070 PMCID: PMC7940500 DOI: 10.1093/brain/awaa431] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Affiliation(s)
- Li Shu
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Department of School of Life Sciences, Central South University, Changsha, China
| | - Dinghua He
- Department of Otorhinolaryngology, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Dan Wu
- Department of Otorhinolaryngology, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Ying Peng
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Hui Xi
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
| | - Xiao Mao
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Correspondence may also be addressed to: Xiao Mao E-mail:
| | - Hua Wang
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Correspondence to: Hua Wang Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, China E-mail:
| |
Collapse
|
29
|
Vegas N, Low K, Mak CCY, Fung JLF, Hing AV, Chung BHY, Doherty D, Amiel J, Gordon CT. Reply: MN1 gene loss-of-function mutation causes cleft palate in a pedigree. Brain 2021; 144:e19. [PMID: 33351141 DOI: 10.1093/brain/awaa432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Nancy Vegas
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, 75015 Paris, France
| | - Karen Low
- Department of Clinical Genetics, St Michaels Hospital, University Hospitals Bristol and Weston NHS Trust, Bristol BS2 8EJ, UK
| | - Christopher C Y Mak
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jasmine L F Fung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Anne V Hing
- Division of Craniofacial Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Seattle Craniofacial Center, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Brian H Y Chung
- Department of Paediatrics and Adolescent Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA.,Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jeanne Amiel
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, 75015 Paris, France.,Département de Génétique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris (AP-HP), 75015 Paris, France
| | - Christopher T Gordon
- Laboratory of Embryology and Genetics of Human Malformations, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR 1163, Institut Imagine, Université de Paris, 75015 Paris, France
| |
Collapse
|
30
|
Abstract
Cerebellar hypoplasia (CH) refers to a cerebellum of reduced volume with preserved shape. CH is associated with a broad heterogeneity in neuroradiologic features, etiologies, clinical characteristics, and neurodevelopmental outcomes, challenging physicians evaluating children with CH. Traditionally, neuroimaging has been a key tool to categorize CH based on the pattern of cerebellar involvement (e.g., hypoplasia of cerebellar vermis only vs. hypoplasia of both the vermis and cerebellar hemispheres) and the presence of associated brainstem and cerebral anomalies. With the advances in genetic technologies of the recent decade, many novel CH genes have been identified, and consequently, a constant updating of the literature and revision of the classification of cerebellar malformations are needed. Here, we review the current literature on CH. We propose a systematic approach to recognize specific neuroimaging patterns associated with CH, based on whether the CH is isolated or associated with posterior cerebrospinal fluid anomalies, specific brainstem or cerebellar malformations, brainstem hypoplasia with or without cortical migration anomalies, or dysplasia. The CH radiologic pattern and clinical assessment will allow the clinician to guide his investigations and genetic testing, give a more precise diagnosis, screen for associated comorbidities, and improve prognostication of associated neurodevelopmental outcomes.
Collapse
|
31
|
Saini M, Jha AN, Tangri R, Qudratullah M, Ali S. MN1 overexpression with varying tumor grade is a promising predictor of survival of glioma patients. Hum Mol Genet 2021; 29:3532-3545. [PMID: 33105486 PMCID: PMC7788295 DOI: 10.1093/hmg/ddaa231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
Gliomas have substantial mortality to incidence rate ratio and a dismal clinical course. Newer molecular insights, therefore, are imperative to refine glioma diagnosis, prognosis and therapy. Meningioma 1 (MN1) gene is a transcriptional co-regulator implicated in other malignancies, albeit its significance in glioma pathology remains to be explored. IGFBP5 is regulated transcriptionally by MN1 and IGF1 and is associated with higher glioma grade and shorter survival time, prompting us to ascertain their correlation in these tumors. We quantified the expression of MN1, IGFBP5 and IGF1 in 40 glioma samples and examined their interrelatedness. MN1 mRNA-protein inter-correlation and the gene's copy number were evaluated in these tumors. Publicly available TCGA datasets were used to examine the association of MN1 expression levels with patient survival and for validating our findings. We observed MN1 overexpression correlated with low-grade (LGGs) and not high-grade gliomas and is not determined by the copy number alteration of the gene. Notably, gliomas with upregulated MN1 have better overall survival (OS) and progression-free survival (PFS). IGFBP5 expression associated inversely with MN1 expression levels in gliomas but correlated positively with IGF1 expression in only LGGs. This suggests a potential grade-specific interplay between repressive and activating roles of MN1 and IGF1, respectively, in the regulation of IGFBP5. Thus, MN1 overexpression, a promising predictor of OS and PFS in gliomas, may serve as a prognostic biomarker in clinical practice to categorize patients with survival advantage.
Collapse
Affiliation(s)
- Masum Saini
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad 121001, India
| | - Ajaya Nand Jha
- Max Super Specialty Hospital, 1, Press Enclave Road, Saket, New Delhi 110017, India
| | - Rajiv Tangri
- Max Super Specialty Hospital, 1, Press Enclave Road, Saket, New Delhi 110017, India
- Dr. Lal PathLabs, National Reference Laboratory, Sector 18, Rohini, New Delhi 110085, India
| | - Md Qudratullah
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sher Ali
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
- Department of Life Sciences, SBSR, Sharda University, KP-III, Greater Noida 201310, India
| |
Collapse
|
32
|
Perrone E, Perez ABA, D'Almeida V, de Mello CB, Jacobina MAA, Loureiro RM, Burlin S, Migliavacca M, do Amaral Virmond L, Graziadio C, Pedroso JL, Mendes EL, Gomy I, de Macena Sobreira NL. Clinical and molecular evaluation of 13 Brazilian patients with Gomez-López-Hernández syndrome. Am J Med Genet A 2020; 185:1047-1058. [PMID: 33381921 DOI: 10.1002/ajmg.a.62059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 01/21/2023]
Abstract
We aim to characterize patients with Gomez-López-Hernández syndrome (GLHS) clinically and to investigate them molecularly. A clinical protocol, including a morphological and neuropsychological assessment, was applied to 13 patients with GLHS. Single-nucleotide polymorphism (SNP) array and whole-exome sequencing were undertaken; magnetic resonance imaging was performed in 12 patients, including high-resolution, heavily T2-weighted sequences (HRT2) in 6 patients to analyze the trigeminal nerves. All patients presented alopecia; two did not present rhombencephalosynapsis (RES); trigeminal anesthesia was present in 5 of the 11 patients (45.4%); brachycephaly/brachyturricephaly and mid-face retrusion were found in 84.6 and 92.3% of the patients, respectively. One patient had intellectual disability. HRT2 sequences showed trigeminal nerve hypoplasia in four of the six patients; all four had clinical signs of trigeminal anesthesia. No common candidate gene was found to explain GLHS phenotype. RES does not seem to be an obligatory finding in respect of GLHS diagnosis. We propose that a diagnosis of GLHS should be considered in patients with at least two of the following criteria: focal non-scarring alopecia, rhombencephalosynapsis, craniofacial anomalies (brachyturrycephaly, brachycephaly or mid-face retrusion), trigeminal anesthesia or anatomic abnormalities of the trigeminal nerve. Studies focusing on germline whole genome sequencing or DNA and/or RNA sequencing of the alopecia tissue may be the next step for the better understanding of GLHS etiology.
Collapse
Affiliation(s)
- Eduardo Perrone
- Clinical Genetics Department, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Vânia D'Almeida
- Psychobiology Department, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | | | - Rafael Maffei Loureiro
- Department of Radiology, Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Stênio Burlin
- Department of Radiology, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Luiza do Amaral Virmond
- Clinical Genetics Department, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Carla Graziadio
- Department of Clinical Genetics, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA) and Complexo Hospitalar Santa Casa de Porto Alegre (CHSCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - José Luiz Pedroso
- Ataxia Unit, Department of Neurology, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Israel Gomy
- Departament of Pediatrics, Universidade Federal do Paraná, Paraná, Brazil
| | - Nara Lygia de Macena Sobreira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
33
|
Sánchez-Villalobos JM, Torres-Perales AM, Serrano-Velasco L, Pérez-Vicente JA. Adult rhombencephalosynapsis: An unusual presentation of an infrequent entity. Neurologia 2020; 36:S0213-4853(20)30302-9. [PMID: 33160728 DOI: 10.1016/j.nrl.2020.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/10/2020] [Accepted: 09/19/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
| | - A M Torres-Perales
- Servicio de Neurología, Hospital Universitario Santa Lucía, Cartagena, Murcia, España
| | - L Serrano-Velasco
- Servicio de Radiodiagnóstico, Hospital Universitario Santa Lucía, Cartagena, Murcia, España
| | - J A Pérez-Vicente
- Servicio de Neurología, Hospital Universitario Santa Lucía, Cartagena, Murcia, España
| |
Collapse
|
34
|
Bonnetain MF, Rougeot-Jung C, Sarret C, Lion-François L, Revol O, Peyric E, Velazquez-Dominguez J, Miret A, Rossi M, Massoud M, Laurichesse-Delmas H, Guibaud L, des Portes V. Normal intellectual skills in patients with Rhombencephalosynapsis. Eur J Paediatr Neurol 2020; 29:92-100. [PMID: 33046393 DOI: 10.1016/j.ejpn.2020.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 09/27/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Rhombencephalosynapsis (RES) is a very rare cerebellar malformation. Neurodevelopmental outcome of apparently isolated RES remains poorly documented and standardized cognitive assessment, reported in only nine published cases so far, is lacking. Prenatal counselling is challenging considering the uncertain prognosis of isolated RES. The aim of this study was to focus on cognitive and motor outcome of isolated RES with a clinical description of six new cases and a detailed review of the literature. METHODS A single-centre retrospective study of all RES patients over a 15-year period. Ataxia and fine motor skills were scored using a five-grade scale, according to the degree of disturbance of daily living. Intelligence Quotient (IQ) was established according to age-related Weschler Intelligence Scales. A systematic literature review included published cases with relevant outcome data. RESULTS Six new cases of apparently isolated RES were reported, including three diagnosed in prenatal settings. The onset age for walking was delayed in four patients. Three patients had head shaking and three had a strabismus. One patient had a mild motor disability, one had subtle ataxia that did not impair daily life and four patients had a normal neurological examination at the last visit. Intellectual abilities were normal in all patients (full IQ score from 90 to 142), although three had ADHD. All received standard schooling. Based on these six new cases, as well as cases from 12 publications in the literature, a total of 28 patients with non-syndromic RES were analysed. Concerning motor outcome, 72% had no complaint or minimal impairment, 16% moderate and 12% severe impairment. Concerning cognitive outcome, 68% had normal cognitive skills, 18% borderline intellectual functioning and 14% moderate to severe disability.
Collapse
Affiliation(s)
| | - Christelle Rougeot-Jung
- Department of Pediatric Neurology, Competence Centre for Cerebellar Malformations, Lyon University Hospital, F-69677, Bron, France
| | - Catherine Sarret
- Department of Pediatric Neurology, CEMC Auvergne, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Laurence Lion-François
- Department of Pediatric Neurology, Competence Centre for Cerebellar Malformations, Lyon University Hospital, F-69677, Bron, France
| | - Olivier Revol
- Department of Psychopathology, Lyon University Hospital, F-69677, Bron, France
| | - Emeline Peyric
- Department of Pediatric Neurology, Competence Centre for Cerebellar Malformations, Lyon University Hospital, F-69677, Bron, France
| | - Juan Velazquez-Dominguez
- Department of Pediatric Neurology, Competence Centre for Cerebellar Malformations, Lyon University Hospital, F-69677, Bron, France
| | - Anne Miret
- Department of Pediatric Neurology, CEMC Auvergne, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Massimiliano Rossi
- Genetics Department, Referral Centre for Developmental Abnormalities, Lyon University Hospital, And INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Centre, GENDEV Team, Lyon, France; University Lyon 1, F-69008, Lyon, France
| | - Mona Massoud
- Department of Obstetrics, Lyon University Hospital, F-69677, Bron, France
| | - Hélène Laurichesse-Delmas
- Department of Obstetrics, CEMC Auvergne, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Laurent Guibaud
- Department of Pediatric Radiology and Fetal Medicine, Lyon University Hospital, F-69677, Bron, France; University Lyon 1, F-69008, Lyon, France
| | - Vincent des Portes
- Department of Pediatric Neurology, Competence Centre for Cerebellar Malformations, Lyon University Hospital, F-69677, Bron, France; University Lyon 1, F-69008, Lyon, France.
| |
Collapse
|
35
|
A three-year follow-up study evaluating clinical utility of exome sequencing and diagnostic potential of reanalysis. NPJ Genom Med 2020; 5:37. [PMID: 32963807 PMCID: PMC7484757 DOI: 10.1038/s41525-020-00144-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/14/2020] [Indexed: 01/05/2023] Open
Abstract
Exome sequencing (ES) has become one of the important diagnostic tools in clinical genetics with a reported diagnostic rate of 25–58%. Many studies have illustrated the diagnostic and immediate clinical impact of ES. However, up to 75% of individuals remain undiagnosed and there is scarce evidence supporting clinical utility beyond a follow-up period of >1 year. This is a 3-year follow-up analysis to our previous publication by Mak et al. (NPJ Genom. Med. 3:19, 2018), to evaluate the long-term clinical utility of ES and the diagnostic potential of exome reanalysis. The diagnostic yield of the initial study was 41% (43/104). Exome reanalysis in 46 undiagnosed individuals has achieved 12 new diagnoses. The additional yield compared with the initial analysis was at least 12% (increased from 41% to at least 53%). After a median follow-up period of 3.4 years, change in clinical management was observed in 72.2% of the individuals (26/36), leading to positive change in clinical outcome in four individuals (11%). There was a minimum healthcare cost saving of HKD$152,078 (USD$19,497; €17,282) annually for these four individuals. There were a total of six pregnancies from five families within the period. Prenatal diagnosis was performed in four pregnancies; one fetus was affected and resulted in termination. None of the parents underwent preimplantation genetic diagnosis. This 3-year follow-up study demonstrated the long-term clinical utility of ES at individual, familial and health system level, and the promising diagnostic potential of subsequent reanalysis. This highlights the benefits of implementing ES and regular reanalysis in the clinical setting.
Collapse
|
36
|
When phenotype does not match genotype: importance of "real-time" refining of phenotypic information for exome data interpretation. Genet Med 2020; 23:215-221. [PMID: 32801363 DOI: 10.1038/s41436-020-00938-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Clinical data provided to genetic testing laboratories are frequently scarce. Our purpose was to evaluate clinical scenarios where phenotypic refinement in proband's family members might impact exome data interpretation. METHODS Of 614 exomes, 209 were diagnostic and included in this study. Phenotypic information was gathered by the variant interpretation team from genetic counseling letters and images. If a discrepancy between reported clinical findings and presumably disease-causing variant segregation was observed, referring clinicians were contacted for phenotypic clarification. RESULTS In 16/209 (7.7%) cases, phenotypic refinement was important due to (1) lack of cosegregation of disease-causing variant with the reported phenotype; (2) identification of different disorders with overlapping symptoms in the same family; (3) similar features in proband and family members, but molecular cause identified in proband only; and (4) previously unrecognized maternal condition causative of child's phenotype. As a result of phenotypic clarification, in 12/16 (75%) cases definition of affected versus unaffected status in one of the family members has changed, and in one case variant classification has changed. CONCLUSION Detailed description of phenotypes in family members including differences in clinical presentations, even if subtle, are important in exome interpretation and should be communicated to the variant interpretation team.
Collapse
|