1
|
Ichikawa I, Nagai Y, Kuniyoshi Y, Wada M. Machine learning model for reproducing subjective sensations and alleviating sound-induced stress in individuals with developmental disorders. Front Psychiatry 2025; 16:1412019. [PMID: 40160204 PMCID: PMC11949911 DOI: 10.3389/fpsyt.2025.1412019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction An everyday challenge frequently encountered by individuals with developmental disorders is auditory hypersensitivity, which causes distress in response to certain sounds and the overall sound environment. This study developed deep neural network (DNN) models to address this issue. One model predicts changes in subjective sound perception to quantify auditory hypersensitivity characteristics, while the other determines the modifications needed to sound stimuli to alleviate stress. These models are expected to serve as a foundation for personalized support systems for individuals with developmental disorders experiencing auditory hypersensitivity. Methods Experiments were conducted with participants diagnosed with autism spectrum disorder or attention deficit hyperactivity disorder who exhibited auditory hypersensitivity (the developmental disorders group, DD) and a control group without developmental disorders (the typically developing group, TD). Participants were asked to indicate either "how they perceived the sound in similar past situations" (Recollection task) or "how the sound should be modified to reduce stress" (Easing task) by applying various auditory filters to the input auditory stimulus. For both tasks, the DNN models were trained to predict the filter settings and subjective stress ratings based on the input stimulus, and the performance and accuracy of these predictions were evaluated. Results Three main findings were obtained. (a) Significant reductions in stress ratings were observed in the Easing task compared to the Recollection task. (b) The prediction models successfully estimated stress ratings, achieving a correlation coefficient of approximately 0.4 to 0.7 with the actual values. (c) Differences were observed in the performance of parameter predictions depending on whether data from the entire participant pool were used or whether data were analyzed separately for the DD and TD groups. Discussion These findings suggest that the prediction model for the Easing task can potentially be developed into a system that automatically reduces sound-induced stress through auditory filtering. Similarly, the model for the Recollection task could be used as a tool for assessing auditory stress. To establish a robust support system, further data collection, particularly from individuals with DD, is necessary.
Collapse
Affiliation(s)
- Itsuki Ichikawa
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Yukie Nagai
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
- Next Generation AI Research Center, The University of Tokyo, Tokyo, Japan
| | - Yasuo Kuniyoshi
- International Research Center for Neurointelligence, The University of Tokyo, Tokyo, Japan
- Next Generation AI Research Center, The University of Tokyo, Tokyo, Japan
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Makoto Wada
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| |
Collapse
|
2
|
Itahashi T, Aoki R, Nakamura M, Ohta H, Hashimoto RI. Sensory seeking and its influence on sustained attention performance in adult males with Autism Spectrum Condition. Sci Rep 2025; 15:4047. [PMID: 39901051 PMCID: PMC11790954 DOI: 10.1038/s41598-025-88733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
Atypical sensory responses and seeking behaviors constitute the core symptoms of autism spectrum condition (ASC). There are possible links between atypical sensory profiles and attentional challenges in ASC. Due to the paucity of studies in adults, the nature of attentional challenges and their associations with sensory profiles in autistic adults remain elusive. Here, we investigated sustained attention performance and its associations with sensory profiles in 28 autistic adult males and 23 typically developing controls (TDCs). A gradual-onset continuous performance task and the Adolescent/Adult Sensory Profile were employed to assess sustained attention performance and sensory profiles, respectively. Our results revealed that the two groups exhibited comparable sustained attention performance quantified by d-prime. A statistically significant negative correlation between d-prime and sensory seeking was observed only in the ASC group. Moreover, an interaction effect of group-by-sensory seeking was observed in d-prime, suggesting a unique interplay between sensory profiles and attention in autistic individuals. In the ASC group, omission error rate and post-error slowing were statistically significantly associated with difficulties in social communication and interactions. These results contribute to understanding attentional processes in ASC and highlight the potential influence of sensory profiles on cognitive functions in this population.
Collapse
Affiliation(s)
- Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo, 157-8577, Japan.
| | - Ryuta Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo, 157-8577, Japan
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo, 157-8577, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo, 157-8577, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya, Tokyo, 157-8577, Japan
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
3
|
Powell HJ, He JL, Khalil N, Wodka EL, DeRonda A, Edden RAE, Vasa RA, Mostofsky SH, Puts NA. Perceptual alterations in the relationship between sensory reactivity, intolerance of uncertainty, and anxiety in autistic children with and without ADHD. Dev Psychopathol 2025; 37:16-28. [PMID: 37990408 DOI: 10.1017/s0954579423001360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Sensory differences and anxiety disorders are highly prevalent in autistic individuals with and without ADHD. Studies have shown that sensory differences and anxiety are associated and that intolerance of uncertainty (IU) plays an important role in this relationship. However, it is unclear as to how different levels of the sensory processing pathway (i.e., perceptual, affective, or behavioral) contribute. Here, we used psychophysics to assess how alterations in tactile perception contribute to questionnaire measures of sensory reactivity, IU, and anxiety. Thirty-eight autistic children (aged 8-12 years; 27 with co-occurring ADHD) were included. Consistent with previous findings, mediation analyses showed that child-reported IU fully mediated an association between parent-reported sensory reactivity and parent-reported anxiety and that anxiety partially mediated an association between sensory reactivity and IU. Of the vibrotactile thresholds, only simultaneous frequency discrimination (SFD) thresholds correlated with sensory reactivity. Interestingly, we found that sensory reactivity fully mediated an association between SFD threshold and anxiety, and between SFD threshold and IU. Taken together, those findings suggest a mechanistic pathway whereby tactile perceptual alterations contribute to sensory reactivity at the affective level, leading in turn to increased IU and anxiety. This stepwise association can inform potential interventions for IU and anxiety in autism.
Collapse
Affiliation(s)
- Helen J Powell
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Nermin Khalil
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Ericka L Wodka
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioural Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa DeRonda
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Roma A Vasa
- Center for Autism and Related Disorders, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Psychiatry and Behavioural Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stewart H Mostofsky
- Department of Psychiatry and Behavioural Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
4
|
Horien C, Mandino F, Greene AS, Shen X, Powell K, Vernetti A, O’Connor D, McPartland JC, Volkmar FR, Chun M, Chawarska K, Lake EM, Rosenberg MD, Satterthwaite T, Scheinost D, Finn E, Constable RT. What is the best brain state to predict autistic traits? MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.14.24319457. [PMID: 39867399 PMCID: PMC11759253 DOI: 10.1101/2025.01.14.24319457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Autism is a heterogeneous condition, and functional magnetic resonance imaging-based studies have advanced understanding of neurobiological correlates of autistic features. Nevertheless, little work has focused on the optimal brain states to reveal brain-phenotype relationships. In addition, there is a need to better understand the relevance of attentional abilities in mediating autistic features. Using connectome-based predictive modelling, we interrogate three datasets to determine scanning conditions that can boost prediction of clinically relevant phenotypes and assess generalizability. In dataset one, a sample of youth with autism and neurotypical participants, we find that a sustained attention task (the gradual onset continuous performance task) results in high prediction performance of autistic traits compared to a free-viewing social attention task and a resting-state condition. In dataset two, we observe the predictive network model of autistic traits generated from the sustained attention task generalizes to predict measures of attention in neurotypical adults. In dataset three, we show the same predictive network model of autistic traits from dataset one further generalizes to predict measures of social responsiveness in data from the Autism Brain Imaging Data Exchange. In sum, our data suggest that an in-scanner sustained attention challenge can help delineate robust markers of autistic traits and support the continued investigation of the optimal brain states under which to predict phenotypes in psychiatric conditions.
Collapse
Affiliation(s)
- Corey Horien
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), University of Pennsylvania, Philadelphia, PA, USA
| | - Francesca Mandino
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Abigail S. Greene
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Brigham and Women’s Hospital, Boston, MA, USA
| | - Xilin Shen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Kelly Powell
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | | | - David O’Connor
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C. McPartland
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Fred R. Volkmar
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Psychology, Yale University, New Haven, CT, United States
| | - Marvin Chun
- Department of Psychology, Yale University, New Haven, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Katarzyna Chawarska
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Evelyn M.R. Lake
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Monica D. Rosenberg
- Department of Psychology, University of Chicago, Chicago, IL, USA
- Neuroscience Institute, University of Chicago, Chicago, IL, USA
| | - Theodore Satterthwaite
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), University of Pennsylvania, Philadelphia, PA, USA
- Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Emily Finn
- Department of Psychological and Brain Sciences, Dartmouth College, Dartmouth, NH, USA
| | - R. Todd Constable
- MD-PhD Program, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Norbom LB, Syed B, Kjelkenes R, Rokicki J, Beauchamp A, Nerland S, Kushki A, Anagnostou E, Arnold P, Crosbie J, Kelley E, Nicolson R, Schachar R, Taylor MJ, Westlye LT, Tamnes CK, Lerch JP. Probing Autism and ADHD subtypes using cortical signatures of the T1w/T2w-ratio and morphometry. Neuroimage Clin 2025; 45:103736. [PMID: 39837011 PMCID: PMC11788868 DOI: 10.1016/j.nicl.2025.103736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/09/2024] [Accepted: 01/15/2025] [Indexed: 01/23/2025]
Abstract
Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are neurodevelopmental conditions that share genetic etiology and frequently co-occur. Given this comorbidity and well-established clinical heterogeneity, identifying individuals with similar brain signatures may be valuable for predicting clinical outcomes and tailoring treatment strategies. Cortical myelination is a prominent developmental process, and its disruption is a candidate mechanism for both disorders. Yet, no studies have attempted to identify subtypes using T1w/T2w-ratio, a magnetic resonance imaging (MRI) based proxy for intracortical myelin. Moreover, cortical variability arises from numerous biological pathways, and multimodal approaches can integrate cortical metrics into a single network. We analyzed data from 310 individuals aged 2.6-23.6 years, obtained from the Province of Ontario Neurodevelopmental (POND) Network consisting of individuals diagnosed with ASD (n = 136), ADHD (n = 100), and typically developing (TD) individuals (n = 74). We first tested for differences in T1w/T2w-ratio between diagnostic categories and controls. We then performed unimodal (T1w/T2w-ratio) and multimodal (T1w/T2w-ratio, cortical thickness, and surface area) spectral clustering to identify diagnostic-blind subgroups. Linear models revealed no statistically significant case-control differences in T1w/T2w-ratio. Unimodal clustering mostly isolated single individual- or minority clusters, driven by image quality and intensity outliers. Multimodal clustering suggested three distinct subgroups, which transcended diagnostic boundaries, showing separate cortical patterns but similar clinical and cognitive profiles. T1w/T2w-ratio features were the most relevant for demarcation, followed by surface area. While our analysis revealed no significant case-control differences, multimodal clustering incorporating the T1w/T2w-ratio among cortical features holds promise for identifying biologically similar subsets of individuals with neurodevelopmental conditions.
Collapse
Affiliation(s)
- Linn B Norbom
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway.
| | - Bilal Syed
- The Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rikka Kjelkenes
- Department of Psychology, University of Oslo, Norway; Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Jaroslav Rokicki
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Antoine Beauchamp
- The Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychiatry, Western University, London, Canada
| | - Stener Nerland
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Azadeh Kushki
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; University of Toronto, Institute of Biomedical Engineering, Toronto, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Paul Arnold
- Hotchkiss Brain Institute, Departments of Psychiatry & Medical Genetics, University of Calgary, Calgary, Canada
| | - Jennifer Crosbie
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Kelley
- Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, Canada
| | - Robert Nicolson
- Department of Psychiatry, Western University, London, Canada
| | - Russell Schachar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Margot J Taylor
- Diagnostic & Interventional Radiology, The Hospital for Sick Children, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Norway; Section for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; K.G Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Norway; Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Jason P Lerch
- The Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Segura P, Pagani M, Bishop SL, Thomson P, Colcombe S, Xu T, Factor ZZ, Hector EC, Kim SH, Lombardo MV, Gozzi A, Castellanos XF, Lord C, Milham MP, Martino AD. Connectome-based symptom mapping and in silico related gene expression in children with autism and/or attention-deficit/hyperactivity disorder. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.09.24318621. [PMID: 39711728 PMCID: PMC11661353 DOI: 10.1101/2024.12.09.24318621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Clinical, neuroimaging and genomics evidence have increasingly underscored a degree of overlap between autism and attention-deficit/hyperactivity disorder (ADHD). This study explores the specific contribution of their core symptoms to shared biology in a sample of N=166 verbal children (6-12 years) with rigorously-established primary diagnoses of either autism or ADHD (without autism). We investigated the associations between inter-individual differences in clinician-based dimensional measures of autism and ADHD symptoms and whole-brain low motion intrinsic functional connectivity (iFC). Additionally, we explored their linked gene expression patterns in silico. Whole-brain multivariate distance matrix regression revealed a transdiagnostic association between autism severity and iFC of two nodes: the middle frontal gyrus of the frontoparietal network and posterior cingulate cortex of the default mode network. Across children, the greater the iFC between these nodes, the more severe the autism symptoms, even after controlling for ADHD symptoms. Results from segregation analyses were consistent with primary findings, underscoring the significance of internetwork iFC interactions for autism symptom severity across diagnoses. No statistically significant brain-behavior relationships were observed for ADHD symptoms. Genetic enrichment analyses of the iFC maps associated with autism symptoms implicated genes known to: (i) have greater rate of variance in autism and ADHD, and (ii) be involved in neuron projection, suggesting shared genetic mechanisms for this specific brain-clinical phenotype. Overall, these findings underscore the relevance of transdiagnostic dimensional approaches in linking clinically-defined phenomena to shared presentations at the macroscale circuit- and genomic-levels among children with diagnoses of autism and ADHD.
Collapse
Affiliation(s)
- Patricia Segura
- Child Mind Institute, New York, NY, USA
- Department of Medical Physiology and Biophysics, University of Seville, Seville, Spain
| | - Marco Pagani
- Child Mind Institute, New York, NY, USA
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
- Istituzioni Mercati Tecnologie School for Advanced Studies, Lucca, Italy
| | - Somer L. Bishop
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | | | - Stanley Colcombe
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Ting Xu
- Child Mind Institute, New York, NY, USA
| | | | - Emily C. Hector
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - So Hyun Kim
- School of Psychology, Korea University, Seoul, South Korea
| | - Michael V. Lombardo
- Laboratory for Autism and Neurodevelopmental Disorders Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, 38068, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Xavier F. Castellanos
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Catherine Lord
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Michael P. Milham
- Child Mind Institute, New York, NY, USA
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | | |
Collapse
|
7
|
Nakua H, Yu JC, Abdi H, Hawco C, Voineskos A, Hill S, Lai MC, Wheeler AL, McIntosh AR, Ameis SH. Comparing the stability and reproducibility of brain-behavior relationships found using canonical correlation analysis and partial least squares within the ABCD sample. Netw Neurosci 2024; 8:576-596. [PMID: 38952810 PMCID: PMC11168718 DOI: 10.1162/netn_a_00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/17/2024] [Indexed: 07/03/2024] Open
Abstract
Canonical correlation analysis (CCA) and partial least squares correlation (PLS) detect linear associations between two data matrices by computing latent variables (LVs) having maximal correlation (CCA) or covariance (PLS). This study compared the similarity and generalizability of CCA- and PLS-derived brain-behavior relationships. Data were accessed from the baseline Adolescent Brain Cognitive Development (ABCD) dataset (N > 9,000, 9-11 years). The brain matrix consisted of cortical thickness estimates from the Desikan-Killiany atlas. Two phenotypic scales were examined separately as the behavioral matrix; the Child Behavioral Checklist (CBCL) subscale scores and NIH Toolbox performance scores. Resampling methods were used to assess significance and generalizability of LVs. LV1 for the CBCL brain relationships was found to be significant, yet not consistently stable or reproducible, across CCA and PLS models (singular value: CCA = .13, PLS = .39, p < .001). LV1 for the NIH brain relationships showed similar relationships between CCA and PLS and was found to be stable and reproducible (singular value: CCA = .21, PLS = .43, p < .001). The current study suggests that stability and reproducibility of brain-behavior relationships identified by CCA and PLS are influenced by the statistical characteristics of the phenotypic measure used when applied to a large population-based pediatric sample.
Collapse
Affiliation(s)
- Hajer Nakua
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ju-Chi Yu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Hervé Abdi
- The University of Texas at Dallas, Richardson, TX, USA
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean Hill
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne L. Wheeler
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Stephanie H. Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Bashford-Largo J, Nakua H, Blair RJR, Dominguez A, Hatch M, Blair KS, Dobbertin M, Ameis S, Bajaj S. A Shared Multivariate Brain-Behavior Relationship in a Transdiagnostic Sample of Adolescents. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:377-386. [PMID: 37572936 PMCID: PMC10858974 DOI: 10.1016/j.bpsc.2023.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Internalizing and externalizing psychopathology typically present in early childhood and can have negative implications on general functioning and quality of life. Prior work has linked increased psychopathology symptoms with altered brain structure. Multivariate analysis such as partial least squares correlation can help identify patterns of covariation between brain regions and psychopathology symptoms. This study examined the relationship between gray matter volume (GMV) and psychopathology symptoms in adolescents with various psychiatric diagnoses. METHODS Structural magnetic resonance imaging data were collected from 490 participants with various internalizing and externalizing diagnoses (197 female/293 male; age = 14.68 ± 2.35 years; IQ = 104.05 ± 13.11). Cortical and subcortical volumes were parcellated using the Desikan-Killiany atlas. Partial least squares correlation was used to identify multivariate linear relationships between GMV and the Strength and Difficulties Questionnaire difficulties domains (emotional, peer, conduct, and hyperactivity issues). Resampling approaches were used to determine significance (permutation test), stability (bootstrap resampling), and reproducibility (split-half resampling) of identified relationships. RESULTS We found a significant, stable, and largely reproducible dimension that linked lower Strength and Difficulties Questionnaire scores (less impairment) across all difficulties domains with greater widespread GMV (singular value = 1.17, accounts for 87.1% of the covariance; p < .001). This dimension emphasized the relationship between lower conduct problems and greater GMV in frontotemporal regions. CONCLUSIONS Our results indicate that the most significant and stable brain-behavior relationship in a transdiagnostic sample is a domain-general relationship, linking lower psychopathology symptom scores to greater global GMV. This finding suggests that a shared brain-behavior relationship may be present across adolescents with and without clinically significant psychopathology symptoms.
Collapse
Affiliation(s)
- Johannah Bashford-Largo
- Boys Town National Research Hospital, Boys Town, Nebraska; Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, Nebraska.
| | - Hajer Nakua
- Center for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - R James R Blair
- Child and Adolescent Mental Health Centre, Mental Health Services, Capital Region of Denmark, Copenhagen, Denmark
| | - Ahria Dominguez
- Clinical Health, Emotion, and Neuroscience Laboratory, Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Melissa Hatch
- Mind and Brain Health Labs. Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Karina S Blair
- Boys Town National Research Hospital, Boys Town, Nebraska
| | - Matthew Dobbertin
- Boys Town National Research Hospital, Boys Town, Nebraska; Child and Adolescent Inpatient Psychiatric Unit, Boys Town National Research Hospital, Boys Town, Nebraska
| | - Stephanie Ameis
- Center for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sahil Bajaj
- Department of Cancer Systems Imaging, University of Texas, MD Anderson Center, Houston, Texas
| |
Collapse
|
9
|
Pride NA, Haebich KM, Walsh KS, Lami F, Rouel M, Maier A, Chisholm AK, Lorenzo J, Hearps SJC, North KN, Payne JM. Sensory Processing in Children and Adolescents with Neurofibromatosis Type 1. Cancers (Basel) 2023; 15:3612. [PMID: 37509275 PMCID: PMC10377664 DOI: 10.3390/cancers15143612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Despite the evidence of elevated autistic behaviors and co-occurring neurodevelopmental difficulties in many children with neurofibromatosis type 1 (NF1), we have a limited understanding of the sensory processing challenges that may occur with the condition. This study examined the sensory profile of children and adolescents with NF1 and investigated the relationships between the sensory profiles and patient characteristics and neuropsychological functioning. The parent/caregivers of 152 children with NF1 and 96 typically developing children completed the Sensory Profile 2 (SP2), along with standardized questionnaires assessing autistic behaviors, ADHD symptoms, internalizing symptoms, adaptive functioning, and social skills. Intellectual functioning was also assessed. The SP2 data indicated elevated sensory processing problems in children with NF1 compared to typically developing children. Over 40% of children with NF1 displayed differences in sensory registration (missing sensory input) and were unusually sensitive to and unusually avoidant of sensory stimuli. Sixty percent of children with NF1 displayed difficulties in one or more sensory modalities. Elevated autistic behaviors and ADHD symptoms were associated with more severe sensory processing difficulties. This first detailed assessment of sensory processing, alongside other clinical features, in a relatively large cohort of children and adolescents with NF1 demonstrates the relationships between sensory processing differences and adaptive skills and behavior, as well as psychological well-being. Our characterization of the sensory profile within a genetic syndrome may help facilitate more targeted interventions to support overall functioning.
Collapse
Affiliation(s)
- Natalie A Pride
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Kristina M Haebich
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Karin S Walsh
- Center for Neuroscience and Behavioral Medicine, Children's National Hospital, George Washington University School of Medicine, Washington, DC 20052, USA
| | - Francesca Lami
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Melissa Rouel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Alice Maier
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Anita K Chisholm
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
- Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Jennifer Lorenzo
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia
| | | | - Kathryn N North
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jonathan M Payne
- Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
- Department of Paediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
- Royal Children's Hospital, Parkville, VIC 3052, Australia
| |
Collapse
|
10
|
Wada M, Hayashi K, Seino K, Ishii N, Nawa T, Nishimaki K. Qualitative and quantitative analysis of self-care regarding sensory issues among people with neurodevelopmental disorders. FRONTIERS IN CHILD AND ADOLESCENT PSYCHIATRY 2023; 2:1177075. [PMID: 39816897 PMCID: PMC11731913 DOI: 10.3389/frcha.2023.1177075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/17/2023] [Indexed: 01/18/2025]
Abstract
Introduction Issues in sensory processing (hereafter, sensory issues) associated with neurodevelopmental disorders are known to be particularly prominent from 6 to 9 years of age and are a critical issue in school life. These issues affect each individual's quality of life. Some of the issues are known to be relieved by self-care while some are not. Methods To clarify the sensory issues that cannot be managed by self-care, this study examined self-care for sensory issues among people with neurodevelopmental disorders using a web survey. The survey encompassed questions about neurodevelopmental disorders, the sensory issues individuals experience, and the kind of self-care they perform. In the qualitative analysis, each was categorized by the type of sensory modality; we further scrutinized the descriptions of self-care, which were collected simultaneously, and examined how each problem was addressed. Results Self-care was categorized as "physically blocking," "leaving from," "relaxing," "devising," "help from others," "taking medication," "coping with body," "others," or "could not cope." Based on these findings, we quantitatively compared the frequency of sensory issues that could and could not be managed by self-care. Consequently, significantly higher percentages of the participants stated that they experienced difficulties in managing problems about "body representations," "contact with humans," "selective listening," and "force control." In contrast, significantly more participants stated that they could manage problems related to "loud sound" and "dazzling". Conclusion In this study, qualitative analysis allowed us to categorize methods of self-care for sensory issues, and quantitative research allowed us to identify issues that were difficult to manage. While it was possible to manage strong light and sound using sunglasses, earplugs, and so on, problems related to the senses of proprioception, selective attention, and so on were clearly difficult to manage.
Collapse
Affiliation(s)
- Makoto Wada
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Information and Support Center for Persons with Developmental Disorders, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Katsuya Hayashi
- Information and Support Center for Persons with Developmental Disorders, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Kai Seino
- Psychological Experiment Section, Department of Social Rehabilitation, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Naomi Ishii
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Taemi Nawa
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| | - Kengo Nishimaki
- Information and Support Center for Persons with Developmental Disorders, National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Hospital of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Department of Pediatrics, Niigata National Hospital, National Hospital Organization, Kashiwazaki, Japan
| |
Collapse
|
11
|
Nakua H, Yu JC, Abdi H, Hawco C, Voineskos A, Hill S, Lai MC, Wheeler AL, McIntosh AR, Ameis SH. Comparing the stability and reproducibility of brain-behaviour relationships found using Canonical Correlation Analysis and Partial Least Squares within the ABCD Sample. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531763. [PMID: 36945610 PMCID: PMC10028915 DOI: 10.1101/2023.03.08.531763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Introduction Canonical Correlation Analysis (CCA) and Partial Least Squares Correlation (PLS) detect associations between two data matrices based on computing a linear combination between the two matrices (called latent variables; LVs). These LVs maximize correlation (CCA) and covariance (PLS). These different maximization criteria may render one approach more stable and reproducible than the other when working with brain and behavioural data at the population-level. This study compared the LVs which emerged from CCA and PLS analyses of brain-behaviour relationships from the Adolescent Brain Cognitive Development (ABCD) dataset and examined their stability and reproducibility. Methods Structural T1-weighted imaging and behavioural data were accessed from the baseline Adolescent Brain Cognitive Development dataset (N > 9000, ages = 9-11 years). The brain matrix consisted of cortical thickness estimates in different cortical regions. The behavioural matrix consisted of 11 subscale scores from the parent-reported Child Behavioral Checklist (CBCL) or 7 cognitive performance measures from the NIH Toolbox. CCA and PLS models were separately applied to the brain-CBCL analysis and brain-cognition analysis. A permutation test was used to assess whether identified LVs were statistically significant. A series of resampling statistical methods were used to assess stability and reproducibility of the LVs. Results When examining the relationship between cortical thickness and CBCL scores, the first LV was found to be significant across both CCA and PLS models (singular value: CCA = .13, PLS = .39, p < .001). LV1 from the CCA model found that covariation of CBCL scores was linked to covariation of cortical thickness. LV1 from the PLS model identified decreased cortical thickness linked to lower CBCL scores. There was limited evidence of stability or reproducibility of LV1 for both CCA and PLS. When examining the relationship between cortical thickness and cognitive performance, there were 6 significant LVs for both CCA and PLS (p < .01). The first LV showed similar relationships between CCA and PLS and was found to be stable and reproducible (singular value: CCA = .21, PLS = .43, p < .001). Conclusion CCA and PLS identify different brain-behaviour relationships with limited stability and reproducibility when examining the relationship between cortical thickness and parent-reported behavioural measures. However, both methods identified relatively similar brain-behaviour relationships that were stable and reproducible when examining the relationship between cortical thickness and cognitive performance. The results of the current study suggest that stability and reproducibility of brain-behaviour relationships identified by CCA and PLS are influenced by characteristics of the analyzed sample and the included behavioural measurements when applied to a large pediatric dataset.
Collapse
Affiliation(s)
- Hajer Nakua
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Ju-Chi Yu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Hervé Abdi
- The University of Texas at Dallas, Richardson, Texas, United States
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sean Hill
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne L. Wheeler
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Stephanie H. Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Vandewouw MM, Brian J, Crosbie J, Schachar RJ, Iaboni A, Georgiades S, Nicolson R, Kelley E, Ayub M, Jones J, Taylor MJ, Lerch JP, Anagnostou E, Kushki A. Identifying Replicable Subgroups in Neurodevelopmental Conditions Using Resting-State Functional Magnetic Resonance Imaging Data. JAMA Netw Open 2023; 6:e232066. [PMID: 36912839 PMCID: PMC10011941 DOI: 10.1001/jamanetworkopen.2023.2066] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/22/2023] [Indexed: 03/14/2023] Open
Abstract
Importance Neurodevelopmental conditions, such as autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD), have highly heterogeneous and overlapping phenotypes and neurobiology. Data-driven approaches are beginning to identify homogeneous transdiagnostic subgroups of children; however, findings have yet to be replicated in independently collected data sets, a necessity for translation into clinical settings. Objective To identify subgroups of children with and without neurodevelopmental conditions with shared functional brain characteristics using data from 2 large, independent data sets. Design, Setting, and Participants This case-control study used data from the Province of Ontario Neurodevelopmental (POND) network (study recruitment began June 2012 and is ongoing; data were extracted April 2021) and the Healthy Brain Network (HBN; study recruitment began May 2015 and is ongoing; data were extracted November 2020). POND and HBN data are collected from institutions across Ontario and New York, respectively. Participants who had diagnoses of ASD, ADHD, and OCD or were typically developing (TD); were aged between 5 and 19 years; and successfully completed the resting-state and anatomical neuroimaging protocol were included in the current study. Main Outcomes and Measures The analyses consisted of a data-driven clustering procedure on measures derived from each participant's resting-state functional connectome, performed independently on each data set. Differences between each pair of leaves in the resulting clustering decision trees in the demographic and clinical characteristics were tested. Results Overall, 551 children and adolescents were included from each data set. POND included 164 participants with ADHD; 217 with ASD; 60 with OCD; and 110 with TD (median [IQR] age, 11.87 [9.51-14.76] years; 393 [71.2%] male participants; 20 [3.6%] Black, 28 [5.1%] Latino, and 299 [54.2%] White participants) and HBN included 374 participants with ADHD; 66 with ASD; 11 with OCD; and 100 with TD (median [IQR] age, 11.50 [9.22-14.20] years; 390 [70.8%] male participants; 82 [14.9%] Black, 57 [10.3%] Hispanic, and 257 [46.6%] White participants). In both data sets, subgroups with similar biology that differed significantly in intelligence as well as hyperactivity and impulsivity problems were identified, yet these groups showed no consistent alignment with current diagnostic categories. For example, there was a significant difference in Strengths and Weaknesses ADHD Symptoms and Normal Behavior Hyperactivity/Impulsivity subscale (SWAN-HI) between 2 subgroups in the POND data (C and D), with subgroup D having increased hyperactivity and impulsivity traits compared with subgroup C (median [IQR], 2.50 [0.00-7.00] vs 1.00 [0.00-5.00]; U = 1.19 × 104; P = .01; η2 = 0.02). A significant difference in SWAN-HI scores between subgroups g and d in the HBN data was also observed (median [IQR], 1.00 [0.00-4.00] vs 0.00 [0.00-2.00]; corrected P = .02). There were no differences in the proportion of each diagnosis between the subgroups in either data set. Conclusions and Relevance The findings of this study suggest that homogeneity in the neurobiology of neurodevelopmental conditions transcends diagnostic boundaries and is instead associated with behavioral characteristics. This work takes an important step toward translating neurobiological subgroups into clinical settings by being the first to replicate our findings in independently collected data sets.
Collapse
Affiliation(s)
- Marlee M. Vandewouw
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Jessica Brian
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Crosbie
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Russell J. Schachar
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Robert Nicolson
- Department of Psychiatry, Western University, London, Ontario, Canada
| | - Elizabeth Kelley
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Psychiatry, Queen’s University, Kingston, Ontario, Canada
| | - Muhammad Ayub
- Department of Psychiatry, Queen’s University, Kingston, Ontario, Canada
| | - Jessica Jones
- Department of Psychology, Queen’s University, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
- Department of Psychiatry, Queen’s University, Kingston, Ontario, Canada
| | - Margot J. Taylor
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Diagnostic Imaging, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Jason P. Lerch
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Azadeh Kushki
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Wada M, Hayashi K, Seino K, Ishii N, Nawa T, Nishimaki K. Qualitative and quantitative analysis of self-reported sensory issues in individuals with neurodevelopmental disorders. Front Psychiatry 2023; 14:1077542. [PMID: 36846233 PMCID: PMC9948627 DOI: 10.3389/fpsyt.2023.1077542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Individuals with neurodevelopmental disorders, such as autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), and specific learning disorders (SLD) have various types of sensory characteristics. METHODS This study investigated sensory issues in individuals with neurodevelopmental disorders using a web-based questionnaire for qualitative and quantitative analysis, categorized the contents of their three most distressful sensory issues, and evaluated their order of priority. RESULTS Auditory problems were reported as the most distressing sensory issue among the participants. In addition to auditory problems, individuals with ASD frequently reported more tactile problems, and individuals with SLD reported more visual problems. Among the individual sensory issues, in addition to aversion to sudden, strong, or specific stimuli, some participants reported confusions regarding multiple stimuli presenting concurrently. Additionally, the sensory issues related to foods (i.e., taste) was relatively more common in the minor group. CONCLUSION These results suggest that the diversity of sensory issues experienced should be carefully considered when aiding persons with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Makoto Wada
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan
| | - Katsuya Hayashi
- Information and Support Center for Persons With Developmental Disorders, National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan
| | - Kai Seino
- Psychological Experiment Section, Department of Social Rehabilitation, Research Institute of National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan
| | - Naomi Ishii
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan
| | - Taemi Nawa
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan
| | - Kengo Nishimaki
- Information and Support Center for Persons With Developmental Disorders, National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan.,Hospital of National Rehabilitation Center for Persons With Disabilities, Tokorozawa, Japan
| |
Collapse
|
14
|
Grossman A, Avital A. Emotional and sensory dysregulation as a possible missing link in attention deficit hyperactivity disorder: A review. Front Behav Neurosci 2023; 17:1118937. [PMID: 36935890 PMCID: PMC10017514 DOI: 10.3389/fnbeh.2023.1118937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/16/2023] [Indexed: 03/06/2023] Open
Abstract
Attention Deficit Hyperactivity Disorder (ADHD) is a common developmental disorder affecting 5-7% of adults and children. We surveyed the literature to examine ADHD through three pillars: developmental characteristics, symptomatology, and treatment strategies. Firstly, in terms of developmental characterstics, early life stress may increase the risk of developing ADHD symptoms according to animal models' research. Secondly, the current core symptoms of ADHD are comprised of inattention, hyperactivity, and impulsivity. However, the up-to-date literature indicates individuals with ADHD experience emotional and sensory dysregulation as well, which early-life stress may also increase the risk of. Finally, we discuss the therapeutic benefits of methylphenidate on both the current core ADHD symptoms and the sensory and emotional dysregulation found in those with ADHD. In summation, we surveyed the recent literature to analyze (i) the potential role of early-life stress in ADHD development, (ii) the involvement of emotional and sensory dysregulation in ADHD symptomatology and finally, (iii) the therapeutic intervention with methylphenidate, aiming to reduce the potential effect of early life stress in ADHD, and mainly emotional and sensory dysregulation. The apparent but currently less recognized additional symptoms of emotional and sensory dysregulation in ADHD call for further investigation of these possible causes and thus increasing treatments efficacy in individuals with ADHD.
Collapse
|
15
|
Tamon H, Itahashi T, Yamaguchi S, Tachibana Y, Fujino J, Igarashi M, Kawashima M, Takahashi R, Shinohara NA, Noda Y, Nakajima S, Hirota T, Aoki YY. Autistic children and adolescents with frequent restricted interest and repetitive behavior showed more difficulty in social cognition during mask-wearing during the COVID-19 pandemic: a multisite survey. BMC Psychiatry 2022; 22:608. [PMID: 36104779 PMCID: PMC9471034 DOI: 10.1186/s12888-022-04249-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The public health measures enacted in order to control the coronavirus disease (COVID-19) pandemic have caused considerable changes to daily life. For autistic children and adolescents, adapting to the "new normal," including mask-wearing, may be difficult because of their restricted interest and repetitive behavior (RRB) characteristics. We aimed to examine the relationships between RRB characteristics and the impact of mask-wearing on their social communications during the pandemic. METHODS We recruited participants with a clinical diagnosis of autism spectrum disorder based on DSM-5 diagnostic criteria from two outpatient clinics in Tokyo, Japan, between November 2020 and April 2021 using a convenience sampling methodology. As a result, the participants consisted of 102 children and adolescents (mean (SD) age = 11.6 (5.3)). We collected data on RRB characteristics frequency before and during the pandemic using the CoRonavIruS Health Impact Survey (CRISIS) - Adapted for Autism and Related Neurodevelopmental conditions (AFAR). We then conducted factor analyses to compute the RRB severity composite scores, which are divided into lower- (e.g., sensory seeking), and higher-order (e.g., restricted interest). We also investigated mask-wearing culture using a bespoke questionnaire, and using Spearman's rank correlation analyses, we examined the relationships between before pandemic RRB characteristics, and the impact of mask-wearing on social communications during the pandemic. RESULTS We found that children and adolescents who exhibited lower-order RRB before the pandemic had difficulties in going-out with mask-wearing (rho = -0.25, q = .031), more challenges with mask-wearing (rho = - 0.34, q = .0018), and difficulty in referring to others' emotions while wearing masks (rho = - 0.36, q = .0016). We also found an association between higher-order RRB before the pandemic and an uncomfortable sensation (rho = - 0.42, q = .0002) and difficulties in referring to other's emotions while wearing masks (rho = - 0.25, q = .031). CONCLUSIONS We revealed that various behaviors, such as sensory seeking, repetitive motor mannerisms and movements, and rituals and routines, undertaken before the pandemic could be important predictors of difficulties with mask-wearing and social communication for autistic children and adolescents during the pandemic. Caregivers and teachers wearing masks may need to provide extra support for social communication to autistic children and adolescents showing RRB characteristics frequently.
Collapse
Affiliation(s)
- Hiroki Tamon
- Division of Infant and Toddler Mental Health, Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo, Japan
- Graduate School of Medicine, Tohoku University, Miyagi, Japan
- Department of Functional Brain Imaging, IDAC, Tohoku University, Miyagi, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
| | | | - Yoshiyuki Tachibana
- Division of Infant and Toddler Mental Health, Department of Psychosocial Medicine, National Center for Child Health and Development, Tokyo, Japan
- Department of Perinatal Mental Health, Shinshu University School of Medicine, Nagano, Japan
- Smart-Aging Research Center, IDAC, Tohoku University, Miyagi, Japan
| | - Junya Fujino
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miki Igarashi
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan
| | - Makiko Kawashima
- Department of Psychology, Koishikawa Tokyo Hospital, Tokyo, Japan
| | - Riina Takahashi
- Department of Psychology, Koishikawa Tokyo Hospital, Tokyo, Japan
| | | | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Tomoya Hirota
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, 6-11-11 Kita-karasuyama, Setagaya-ku, Tokyo, 157-8577, Japan.
| |
Collapse
|
16
|
Kovács I, Kovács K, Gerván P, Utczás K, Oláh G, Tróznai Z, Berencsi A, Szakács H, Gombos F. Ultrasonic bone age fractionates cognitive abilities in adolescence. Sci Rep 2022; 12:5311. [PMID: 35351941 PMCID: PMC8964807 DOI: 10.1038/s41598-022-09329-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/22/2022] [Indexed: 12/12/2022] Open
Abstract
Adolescent development is not only shaped by the mere passing of time and accumulating experience, but it also depends on pubertal timing and the cascade of maturational processes orchestrated by gonadal hormones. Although individual variability in puberty onset confounds adolescent studies, it has not been efficiently controlled for. Here we introduce ultrasonic bone age assessment to estimate biological maturity and disentangle the independent effects of chronological and biological age on adolescent cognitive abilities. Comparing cognitive performance of female participants with different skeletal maturity we uncover the impact of biological age on both IQ and specific abilities. We find that biological age has a selective effect on abilities: more mature individuals within the same age group have higher working memory capacity and processing speed, while those with higher chronological age have better verbal abilities, independently of their maturity. Based on our findings, bone age is a promising biomarker of adolescent maturity.
Collapse
Affiliation(s)
- Ilona Kovács
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth sq., 1088, Budapest, Hungary. .,Adolescent Development Research Group, Hungarian Academy of Sciences-Pázmány Péter Catholic University, 1088, Budapest, Hungary. .,Institute of Cognitive Neuroscience and Psychology, Res. Centre for Natural Sciences, 1117, Budapest, Hungary.
| | - Kristóf Kovács
- Institute of Psychology, ELTE Eötvös Loránd University, 1075, Budapest, Hungary
| | - Patrícia Gerván
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth sq., 1088, Budapest, Hungary.,Adolescent Development Research Group, Hungarian Academy of Sciences-Pázmány Péter Catholic University, 1088, Budapest, Hungary
| | - Katinka Utczás
- Research Centre for Sport Physiology, University of Physical Education, 1123, Budapest, Hungary
| | - Gyöngyi Oláh
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth sq., 1088, Budapest, Hungary.,Adolescent Development Research Group, Hungarian Academy of Sciences-Pázmány Péter Catholic University, 1088, Budapest, Hungary
| | - Zsófia Tróznai
- Research Centre for Sport Physiology, University of Physical Education, 1123, Budapest, Hungary
| | - Andrea Berencsi
- Institute for the Methodology of Special Needs Education and Rehabilitation, Bárczi Gusztáv Faculty of Special Needs Education, Eötvös Loránd University, 1097, Budapest, Hungary
| | - Hanna Szakács
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth sq., 1088, Budapest, Hungary
| | - Ferenc Gombos
- Laboratory for Psychological Research, Pázmány Péter Catholic University, 1 Mikszáth sq., 1088, Budapest, Hungary.,Adolescent Development Research Group, Hungarian Academy of Sciences-Pázmány Péter Catholic University, 1088, Budapest, Hungary
| |
Collapse
|
17
|
Qian C, Tei S, Itahashi T, Aoki YY, Ohta H, Hashimoto RI, Nakamura M, Takahashi H, Kato N, Fujino J. Intergroup bias in punishing behaviors of adults with autism spectrum disorder. Front Psychiatry 2022; 13:884529. [PMID: 36061271 PMCID: PMC9437315 DOI: 10.3389/fpsyt.2022.884529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Groups are essential elements of society, and humans, by nature, commonly manifest intergroup bias (i.e., behave more positively toward an ingroup member than toward an outgroup member). Despite the growing evidence of various types of altered decision-making in individuals with autism spectrum disorder (ASD), their behavior under the situation involving group membership remains largely unexplored. By modifying a third-party punishment paradigm, we investigated intergroup bias in individuals with ASD and typical development (TD). In our experiment, participants who were considered as the third party observed a dictator game wherein proposers could decide how to distribute a provided amount of money while receivers could only accept unconditionally. Participants were confronted with two different group situations: the proposer was an ingroup member and the recipient was an outgroup member (IN/OUT condition) or the proposer was an outgroup member and the recipient was an ingroup member (OUT/IN condition). Participants with TD punished proposers more severely when violating social norms in the OUT/IN condition than in IN/OUT condition, indicating that their decisions were influenced by the intergroup context. This intergroup bias was attenuated in individuals with ASD. Our findings deepen the understanding of altered decision-making and socioeconomic behaviors in individuals with ASD.
Collapse
Affiliation(s)
- Chenyu Qian
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shisei Tei
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute of Applied Brain Sciences, Waseda University, Saitama, Japan.,School of Human and Social Sciences, Tokyo International University, Saitama, Japan
| | - Takashi Itahashi
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Yuta Y Aoki
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Haruhisa Ohta
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.,Department of Psychiatry, School of Medicine, Showa University, Tokyo, Japan
| | - Ryu-Ichiro Hashimoto
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.,Department of Language Sciences, Graduate School of Humanities, Tokyo Metropolitan University, Tokyo, Japan
| | - Motoaki Nakamura
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.,Kanagawa Psychiatric Center, Kanagawa, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobumasa Kato
- Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan
| | - Junya Fujino
- Department of Psychiatry and Behavioral Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Medical Institute of Developmental Disabilities Research, Showa University, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Park S, Haak KV, Cho HB, Valk SL, Bethlehem RAI, Milham MP, Bernhardt BC, Di Martino A, Hong SJ. Atypical Integration of Sensory-to-Transmodal Functional Systems Mediates Symptom Severity in Autism. Front Psychiatry 2021; 12:699813. [PMID: 34489757 PMCID: PMC8417581 DOI: 10.3389/fpsyt.2021.699813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
A notable characteristic of autism spectrum disorder (ASD) is co-occurring deficits in low-level sensory processing and high-order social interaction. While there is evidence indicating detrimental cascading effects of sensory anomalies on the high-order cognitive functions in ASD, the exact pathological mechanism underlying their atypical functional interaction across the cortical hierarchy has not been systematically investigated. To address this gap, here we assessed the functional organisation of sensory and motor areas in ASD, and their relationship with subcortical and high-order trandmodal systems. In a resting-state fMRI data of 107 ASD and 113 neurotypical individuals, we applied advanced connectopic mapping to probe functional organization of primary sensory/motor areas, together with targeted seed-based intrinsic functional connectivity (iFC) analyses. In ASD, the connectopic mapping revealed topological anomalies (i.e., excessively more segregated iFC) in the motor and visual areas, the former of which patterns showed association with the symptom severity of restricted and repetitive behaviors. Moreover, the seed-based analysis found diverging patterns of ASD-related connectopathies: decreased iFCs within the sensory/motor areas but increased iFCs between sensory and subcortical structures. While decreased iFCs were also found within the higher-order functional systems, the overall proportion of this anomaly tends to increase along the level of cortical hierarchy, suggesting more dysconnectivity in the higher-order functional networks. Finally, we demonstrated that the association between low-level sensory/motor iFCs and clinical symptoms in ASD was mediated by the high-order transmodal systems, suggesting pathogenic functional interactions along the cortical hierarchy. Findings were largely replicated in the independent dataset. These results highlight that atypical integration of sensory-to-high-order systems contributes to the complex ASD symptomatology.
Collapse
Affiliation(s)
- Shinwon Park
- Institute for Basic Science, Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Koen V. Haak
- Donders Institute of Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Han Byul Cho
- Institute for Basic Science, Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sofie L. Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany
| | - Richard A. I. Bethlehem
- Department of Psychiatry, Autism Research Centre, University of Cambridge, Cambridge, United Kingdom
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Michael P. Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, United States
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, New York, NY, United States
| | - Boris C. Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | | | - Seok-Jun Hong
- Institute for Basic Science, Center for Neuroscience Imaging Research, Sungkyunkwan University, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, NY, United States
| |
Collapse
|