1
|
Sun Y, Sanders AM, Pashley DH, Alexander A, Bergeron BE, Gu L, Tay FR. Beyond hydrodynamics: The role of ion channels in dentine hypersensitivity. J Dent 2025; 157:105745. [PMID: 40216070 DOI: 10.1016/j.jdent.2025.105745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
OBJECTIVES This review examined the roles of ion channels in dentine hypersensitivity (DH), highlighting their contributions to pain perception and intercellular communication between odontoblasts and afferent sensory neurons. BACKGROUND Dentine hypersensitivity is a prevalent condition resulting from the exposure of dentinal tubules to the oral environment, leading to sharp pain triggered by mechanical, thermal, chemical, and osmotic stimuli. The prevailing hypothesis integrates aspects of the hydrodynamic and odontoblast transducer theories. It suggests that rapid intratubular fluid movement activates specific ion channels in odontoblasts and trigeminal sensory neurons, converting external stimuli into electrical signals interpreted as pain by the central nervous system. DATA & SOURCES A comprehensive literature review was conducted on ion channels involved in DH, with a focus on transient receptor potential (TRP) channels, Piezo channels, acid-sensing ion channels (ASICs), as well as other voltage-gated ion channels. Particular emphasis was placed on their physiological roles, responsiveness to stimuli, and contributions to DH pain. RESULTS PIEZO, TRP, and ASICs respond to pressure, heat, acidic environments, and chemical irritants, all of which contribute to DH pain. Activation of odontoblastic ion channels results in the release of adenosine triphosphate and glutamate, which bind respectively to purinergic and glutamate receptors on sensory neurons. This interaction induces depolarization, generating action potentials that transmit pain signals to the brain. CONCLUSION The diverse ion channels involved in dentine hypersensitivity play a crucial role in intercellular communication that leads to pain perception. However, their widespread physiological functions make direct pharmacological targeting challenging due to potential systemic effects. CLINICAL SIGNIFICANCE The use of antagonists for targeting specific ion channels involved in dentine hypersensitivity is difficult because of their involvement in other important physiological processes. Hence, clinical management strategies focusing on dentinal tubule occlusion or dentine desensitisation remain the safest and most effective approaches.
Collapse
Affiliation(s)
- Yutong Sun
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China
| | | | | | | | | | - Lisha Gu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, PR China.
| | | |
Collapse
|
2
|
Khasanov TA, Mineev KS, Kalinovskii AP, Korolkova YV, Palikov VA, Palikova YA, Dyachenko IA, Kozlov SA, Andreev YA, Osmakov DI. Sea anemone Cys-ladder peptide Ms13-1 induces a pain response as a positive modulator of acid-sensing ion channel 1a. FEBS J 2025; 292:2671-2687. [PMID: 39964805 DOI: 10.1111/febs.70032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/17/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Acid-sensing ion channel 1a (ASIC1a) is involved in processes associated with fear, learning, and neurodegeneration within the central nervous system. However, ASIC1a is also abundant in the peripheral nervous system, where its role is still poorly understood, largely due to the lack of selective ligands. In this study, we present the discovery of the first selective positive allosteric modulator for ASIC1a, isolated from the sea anemone Metridium senile. The active compound, a peptide named Ms13-1, features a novel type of fold named 'Cys-ladder'. Ms13-1 exhibits high affinity and selectivity for ASIC1a, enhancing channel activation in response to a broad range of acidic stimuli (pH 6.9-5.5) without altering the proton affinity for the channel. Moreover, injection of Ms13-1 into the hind paw of mice provokes robust and long-lasting pain-related behavior, which is significantly attenuated by a selective ASIC1 antagonist. The discovery of this novel selective positive allosteric modulator opens up new perspectives to investigate the role of ASIC1a in various physiological processes.
Collapse
Affiliation(s)
- Timur A Khasanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Center for Advanced Studies, Russia
| | - Konstantin S Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Aleksandr P Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yuliya V Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Victor A Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Yulia A Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Igor A Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino, Russia
| | - Sergey A Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Yaroslav A Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry I Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Qualls KA, Kadakia FK, Serafin EK, Lückemeyer DDN, Davidson S, Strong JA, Zhang JM. mRNA Expression of Mineralocorticoid and Glucocorticoid Receptors in Human and Mouse Sensory Neurons of the Dorsal Root Ganglia. Anesth Analg 2025; 140:1216-1226. [PMID: 39808573 PMCID: PMC11919799 DOI: 10.1213/ane.0000000000007133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
BACKGROUND Corticosteroid receptors, including mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), play important roles in inflammatory pain in the dorsal root ganglion (DRG). Although it is widely known that activating the GR reduces inflammatory pain, it has recently been shown that MR activation contributes to pain and neuronal excitability in rodent studies. Moreover, little is known about the translation of this work to humans, or the mechanisms through which corticosteroid receptors regulate inflammatory pain. METHODS Corticosteroid receptor expression in human and mouse DRGs was characterized. RNAscope was used to perform high-resolution in situ hybridization for GR and MR mRNAs and to examine their colocalization with markers for nociceptors ( SCN10A , Na V 1.8 mRNA) and Aβ mechanoreceptors ( KCNS1 , Kv9.1 mRNA) in human DRG and C57BL/6J mouse DRG samples. RESULTS GR and MR mRNAs are expressed in almost all DRG neurons across species. The 2 receptors colocalize in 99.2% of human DRG neurons and 95.9% of mouse DRG neurons ( P = .0004, Fisher exact test). In both human and mouse DRGs, the large-diameter KCNS1+ Aβ mechanoreceptors showed a significantly higher MR/GR ratio (MR-leaning) compared to KCNS1- neurons (human: 0.23 vs 0.04, P = .0002; mouse: 0.35 vs -0.24, P < .0001; log ratios, unpaired t test), whereas small-diameter SCN10A+ nociceptive neurons showed a significantly lower MR/GR ratio (GR-leaning) compared to SCN10A- neurons (human: -0.02 vs 0.18, P = .0001; mouse: -0.16 vs 0.08, P < .0001; log ratios, unpaired t test). CONCLUSIONS These findings indicate that mouse corticosteroid receptor mRNA expression reflects human expression in the DRG, and that mice could be a suitable model for studying corticosteroid receptor involvement in pain. Additionally, this study supports the translatability of rodent data to humans for the use of more selective corticosteroids at the DRG in pain treatments.
Collapse
MESH Headings
- Ganglia, Spinal/metabolism
- Animals
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/biosynthesis
- Receptors, Mineralocorticoid/metabolism
- Humans
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/biosynthesis
- Receptors, Glucocorticoid/metabolism
- Mice, Inbred C57BL
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/biosynthesis
- Sensory Receptor Cells/metabolism
- Male
- Mice
- Female
- Middle Aged
- Species Specificity
- Nociceptors/metabolism
- Adult
- NAV1.8 Voltage-Gated Sodium Channel/genetics
- NAV1.8 Voltage-Gated Sodium Channel/metabolism
Collapse
Affiliation(s)
- Katherine A Qualls
- From the Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | | | | | | | | | | | | |
Collapse
|
4
|
Yatsushiro M, Katsuyama M, Nakamae T, Imahara K, Miyamoto M, Hayashi T. New molecular markers to differentiate carbon dioxide intoxication from asphyxia due to oxygen deficiency. Forensic Sci Med Pathol 2025:10.1007/s12024-025-00981-1. [PMID: 40167862 DOI: 10.1007/s12024-025-00981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2025] [Indexed: 04/02/2025]
Abstract
PURPOSE The lack of specific autopsy findings for carbon dioxide (CO2) intoxication hinders the determination of cause of death based on autopsy findings alone. In addition, when death occurs in a space is filled with CO2 or other gases, the cause of death must be distinguished between intoxication and asphyxia due to oxygen deficiency, which also has no specific autopsy findings. In this study, we aimed to identify diagnostic markers of mRNA expression in the brainstem that indicate cause of death in cases of suspected CO2 intoxication. METHODS Mouse models of CO2 intoxication (composition of ambient gases at 70% CO2, 20% O2, and 10% N2) and asphyxia due to oxygen deficiency (5% O2, 95% N2) were used to identify mRNA markers specific to intoxication or asphyxia. RESULTS Using RNA-Sequence analysis, we identified 7 candidate genes for qRT-PCR analysis: Acid-sensing ion channel 4 (Asic4), Early growth response protein 1 (Egr1), Neurogranin (Nrgn), Opioid receptor delta 1 (Oprd1), Semaphorin 3f (Sema3f), Transthyretin (Ttr), and Tryptophan hydroxylase 2 (Tph2). We observed a significant increase of Nrgn mRNA expression in the brainstem of CO2 intoxication and a significant increase of Ttr mRNA expression in the brainstem of asphyxia due to oxygen deficiency. CONCLUSION Assays for the expression of Nrgn and Ttr in the human brainstem may assist in the diagnosis/differential diagnosis of CO2 intoxication and asphyxia due to oxygen deficiency, respectively.
Collapse
Affiliation(s)
- Masahiko Yatsushiro
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Midori Katsuyama
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takuma Nakamae
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Kotomi Imahara
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Machiko Miyamoto
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takahito Hayashi
- Department of Legal Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| |
Collapse
|
5
|
Beignon F, Notais M, Diochot S, Baron A, Fajloun Z, Tricoire-Leignel H, Lenaers G, Mattei C. Neurotoxins Acting on TRPV1-Building a Molecular Template for the Study of Pain and Thermal Dysfunctions. Toxins (Basel) 2025; 17:64. [PMID: 39998081 PMCID: PMC11861614 DOI: 10.3390/toxins17020064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
Transient Receptor Potential (TRP) channels are ubiquitous proteins involved in a wide range of physiological functions. Some of them are expressed in nociceptors and play a major role in the transduction of painful stimuli of mechanical, thermal, or chemical origin. They have been described in both human and rodent systems. Among them, TRPV1 is a polymodal channel permeable to cations, with a highly conserved sequence throughout species and a homotetrameric structure. It is sensitive to temperature above 43 °C and to pH below 6 and involved in various functions such as thermoregulation, metabolism, and inflammatory pain. Several TRPV1 mutations have been associated with human channelopathies related to pain sensitivity or thermoregulation. TRPV1 is expressed in a large part of the peripheral and central nervous system, most notably in sensory C and Aδ fibers innervating the skin and internal organs. In this review, we discuss how the transduction of nociceptive messages is activated or impaired by natural compounds and peptides targeting TRPV1. From a pharmacological point of view, capsaicin-the spicy ingredient of chilli pepper-was the first agonist described to activate TRPV1, followed by numerous other natural molecules such as neurotoxins present in plants, microorganisms, and venomous animals. Paralleling their adaptive protective benefit and allowing venomous species to cause acute pain to repel or neutralize opponents, these toxins are very useful for characterizing sensory functions. They also provide crucial tools for understanding TRPV1 functions from a structural and pharmacological point of view as this channel has emerged as a potential therapeutic target in pain management. Therefore, the pharmacological characterization of TRPV1 using natural toxins is of key importance in the field of pain physiology and thermal regulation.
Collapse
Affiliation(s)
- Florian Beignon
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
| | - Margaux Notais
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
| | - Sylvie Diochot
- Université Côte d’Azur, CNRS U7275, INSERM U1323, IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), 660 Route des Lucioles, Sophia-Antipolis, F-06560 Nice, France; (S.D.); (A.B.)
| | - Anne Baron
- Université Côte d’Azur, CNRS U7275, INSERM U1323, IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), 660 Route des Lucioles, Sophia-Antipolis, F-06560 Nice, France; (S.D.); (A.B.)
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Department of Cell Culture, Azm Center for Research in Biotechnology and Its Applications, EDST, Lebanese University, Tripoli 1300, Lebanon;
| | - Hélène Tricoire-Leignel
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
| | - Guy Lenaers
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
- Service de Neurologie, CHU d’Angers, F-49000 Angers, France
| | - César Mattei
- University of Angers, INSERM U1083, CNRS UMR6015, MITOVASC, SFR ICAT, F-49000 Angers, France; (F.B.); (M.N.); (H.T.-L.); (G.L.)
| |
Collapse
|
6
|
Min YG, Lee SY, Lim E, Park MY, Kim DH, Byun JM, Koh Y, Hong J, Shin DY, Yoon SS, Sung JJ, Oh SB, Kim I. Genetic Risk Factors for Bortezomib-induced Neuropathic Pain in an Asian Population: A Genome-wide Association Study in South Korea. THE JOURNAL OF PAIN 2024; 25:104552. [PMID: 38692398 DOI: 10.1016/j.jpain.2024.104552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Bortezomib-induced neuropathic pain (BINP) poses a challenge in multiple myeloma (MM) treatment. Genetic factors play a key role in BINP susceptibility, but research has predominantly focused on Caucasian populations. This research explored novel genetic risk loci and pathways associated with BINP development in Korean MM patients while evaluating the reproducibility of variants from Caucasians. Clinical data and buffy coat samples from 185 MM patients on bortezomib were collected. The cohort was split into discovery and validation cohorts through random stratification of clinical risk factors for BINP. Genome-wide association study was performed on the discovery cohort (n = 74) with Infinium Global Screening Array-24 v3.0 BeadChip (654,027 single nucleotide polymorphism [SNPs]). Relevant biological pathways were identified using the pathway scoring algorithm. The top 20 SNPs were validated in the validation cohort (n = 111). Previously reported SNPs were validated in the entire cohort (n = 185). Pathway analysis of the genome-wide association study results identified 31 relevant pathways, including immune systems and endosomal vacuolar pathways. Among the top 20 SNPs from the discovery cohort, 16 were replicated, which included intronic variants in ASIC2 and SMOC2, recently implicated in nociception, as well as intergenic variants or long noncoding RNAs. None of the 17 previously reported SNPs remained significant in our cohort (rs2274578, P = .085). This study represents the first investigation of novel genetic loci and biological pathways associated with BINP occurrence. Our findings, in conjunction with existing Caucasian studies, expand the understanding of personalized risk prediction and disease mechanisms. PERSPECTIVE: This article is the first to explore novel genetic loci and pathways linked to BINP in Korean MM patients, offering novel insights beyond the existing research focused on Caucasian populations into personalized risk assessment and therapeutic strategies of BINP.
Collapse
Affiliation(s)
- Young Gi Min
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | | | | | | | | | - Ja Min Byun
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Junshik Hong
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dong-Yeop Shin
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Joon Sung
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Neurology, Seoul National University Hospital, Seoul, South Korea; Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea; Wide River Institute of Immunology, Seoul National University, Hongcheon, Gangwon-do, South Korea
| | - Seog Bae Oh
- Department of Neurobiology and Physiology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea; ADA Forsyth Institute, 245 First St, Cambridge MA, 02142, USA.
| | - Inho Kim
- Department of Internal Medicine, Seoul National University Hospital, Biomedical Research Institute, Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
7
|
Hanani M. Satellite Glial Cells in Human Disease. Cells 2024; 13:566. [PMID: 38607005 PMCID: PMC11011452 DOI: 10.3390/cells13070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024] Open
Abstract
Satellite glial cells (SGCs) are the main type of glial cells in sensory ganglia. Animal studies have shown that these cells play essential roles in both normal and disease states. In a large number of pain models, SGCs were activated and contributed to the pain behavior. Much less is known about SGCs in humans, but there is emerging recognition that SGCs in humans are altered in a variety of clinical states. The available data show that human SGCs share some essential features with SGCs in rodents, but many differences do exist. SGCs in DRG from patients suffering from common painful diseases, such as rheumatoid arthritis and fibromyalgia, may contribute to the pain phenotype. It was found that immunoglobulins G (IgG) from fibromyalgia patients can induce pain-like behavior in mice. Moreover, these IgGs bind preferentially to SGCs and activate them, which can sensitize the sensory neurons, causing nociception. In other human diseases, the evidence is not as direct as in fibromyalgia, but it has been found that an antibody from a patient with rheumatoid arthritis binds to mouse SGCs, which leads to the release of pronociceptive factors from them. Herpes zoster is another painful disease, and it appears that the zoster virus resides in SGCs, which acquire an abnormal morphology and may participate in the infection and pain generation. More work needs to be undertaken on SGCs in humans, and this review points to several promising avenues for better understanding disease mechanisms and developing effective pain therapies.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel; ; Tel.: +972-2-5844721
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
8
|
Lin Y, Lee C, Sung J, Chen C. Genetic exploration of roles of acid-sensing ion channel subtypes in neurosensory mechanotransduction including proprioception. Exp Physiol 2024; 109:66-80. [PMID: 37489658 PMCID: PMC10988671 DOI: 10.1113/ep090762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/03/2023] [Indexed: 07/26/2023]
Abstract
Although acid-sensing ion channels (ASICs) are proton-gated ion channels responsible for sensing tissue acidosis, accumulating evidence has shown that ASICs are also involved in neurosensory mechanotransduction. However, in contrast to Piezo ion channels, evidence of ASICs as mechanically gated ion channels has not been found using conventional mechanoclamp approaches. Instead, ASICs are involved in the tether model of mechanotransduction, with the channels gated via tethering elements of extracellular matrix and intracellular cytoskeletons. Methods using substrate deformation-driven neurite stretch and micropipette-guided ultrasound were developed to reveal the roles of ASIC3 and ASIC1a, respectively. Here we summarize the evidence supporting the roles of ASICs in neurosensory mechanotransduction in knockout mouse models of ASIC subtypes and provide insight to further probe their roles in proprioception.
Collapse
Affiliation(s)
- Yi‐Chen Lin
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
| | - Cheng‐Han Lee
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
| | - Jia‐Ying Sung
- Department of Neurology, Wan Fang HospitalTaipei Medical UniversityTaipeiTaiwan
- Taipei Neuroscience InstituteTaipei Medical UniversityNew Taipei CityTaiwan
- Department of Neurology, School of Medicine, College of MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chih‐Cheng Chen
- The Ph.D. Program for Translational MedicineTaipei Medical University and Academia SinicaNew Taipei CityTaiwan
- Institute of Biomedical SciencesAcademia SinicaTaipeiTaiwan
- Neuroscience Program of Academia SinicaAcademia SinicaTaipeiTaiwan
- Taiwan Mouse Clinic – National Comprehensive Mouse Phenotyping and Drug Testing CenterAcademia SinicaTaipeiTaiwan
- TMU Neuroscience Research Center, Taipei Medical UniversityNew Taipei CityTaiwan
| |
Collapse
|
9
|
Battaglia M, Rossignol O, Lorenzo LE, Deguire J, Godin AG, D’Amato FR, De Koninck Y. Enhanced harm detection following maternal separation: Transgenerational transmission and reversibility by inhaled amiloride. SCIENCE ADVANCES 2023; 9:eadi8750. [PMID: 37792939 PMCID: PMC10550232 DOI: 10.1126/sciadv.adi8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Early-life adversities are associated with altered defensive responses. Here, we demonstrate that the repeated cross-fostering (RCF) paradigm of early maternal separation is associated with enhancements of distinct homeostatic reactions: hyperventilation in response to hypercapnia and nociceptive sensitivity, among the first generation of RCF-exposed animals, as well as among two successive generations of their normally reared offspring, through matrilineal transmission. Parallel enhancements of acid-sensing ion channel 1 (ASIC1), ASIC2, and ASIC3 messenger RNA transcripts were detected transgenerationally in central neurons, in the medulla oblongata, and in periaqueductal gray matter of RCF-lineage animals. A single, nebulized dose of the ASIC-antagonist amiloride renormalized respiratory and nociceptive responsiveness across the entire RCF lineage. These findings reveal how, following an early-life adversity, a biological memory reducible to a molecular sensor unfolds, shaping adaptation mechanisms over three generations. Our findings are entwined with multiple correlates of human anxiety and pain conditions and suggest nebulized amiloride as a therapeutic avenue.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Child Youth and Emerging Adult Programme, Centre for Addiction and Mental Health, Toronto, ON, Canada
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Orlane Rossignol
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Louis-Etienne Lorenzo
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Jasmin Deguire
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Antoine G. Godin
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Francesca R. D’Amato
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| |
Collapse
|
10
|
Hung CH, Chin Y, Fong YO, Lee CH, Han DS, Lin JH, Sun WH, Chen CC. Acidosis-related pain and its receptors as targets for chronic pain. Pharmacol Ther 2023; 247:108444. [PMID: 37210007 DOI: 10.1016/j.pharmthera.2023.108444] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Sensing acidosis is an important somatosensory function in responses to ischemia, inflammation, and metabolic alteration. Accumulating evidence has shown that acidosis is an effective factor for pain induction and that many intractable chronic pain diseases are associated with acidosis signaling. Various receptors have been known to detect extracellular acidosis and all express in the somatosensory neurons, such as acid sensing ion channels (ASIC), transient receptor potential (TRP) channels and proton-sensing G-protein coupled receptors. In addition to sense noxious acidic stimulation, these proton-sensing receptors also play a vital role in pain processing. For example, ASICs and TRPs are involved in not only nociceptive activation but also anti-nociceptive effects as well as some other non-nociceptive pathways. Herein, we review recent progress in probing the roles of proton-sensing receptors in preclinical pain research and their clinical relevance. We also propose a new concept of sngception to address the specific somatosensory function of acid sensation. This review aims to connect these acid-sensing receptors with basic pain research and clinical pain diseases, thus helping with better understanding the acid-related pain pathogenesis and their potential therapeutic roles via the mechanism of acid-mediated antinociception.
Collapse
Affiliation(s)
- Chih-Hsien Hung
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin Chin
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-On Fong
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Cheng-Han Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Der-Shen Han
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital, Bei-Hu Branch, Taipei, Taiwan
| | - Jiann-Her Lin
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Hsin Sun
- Department of Life Science & Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
11
|
Walters ET, Crook RJ, Neely GG, Price TJ, Smith ESJ. Persistent nociceptor hyperactivity as a painful evolutionary adaptation. Trends Neurosci 2023; 46:211-227. [PMID: 36610893 PMCID: PMC9974896 DOI: 10.1016/j.tins.2022.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 01/07/2023]
Abstract
Chronic pain caused by injury or disease of the nervous system (neuropathic pain) has been linked to persistent electrical hyperactivity of the sensory neurons (nociceptors) specialized to detect damaging stimuli and/or inflammation. This pain and hyperactivity are considered maladaptive because both can persist long after injured tissues have healed and inflammation has resolved. While the assumption of maladaptiveness is appropriate in many diseases, accumulating evidence from diverse species, including humans, challenges the assumption that neuropathic pain and persistent nociceptor hyperactivity are always maladaptive. We review studies indicating that persistent nociceptor hyperactivity has undergone evolutionary selection in widespread, albeit selected, animal groups as a physiological response that can increase survival long after bodily injury, using both highly conserved and divergent underlying mechanisms.
Collapse
Affiliation(s)
- Edgar T Walters
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| | - Robyn J Crook
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
| | - G Gregory Neely
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - Theodore J Price
- Department of Neuroscience and Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Ewan St John Smith
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
12
|
Group II metabotropic glutamate receptor activation attenuates acid-sensing ion channel currents in rat primary sensory neurons. J Biol Chem 2023; 299:102953. [PMID: 36731795 PMCID: PMC9976456 DOI: 10.1016/j.jbc.2023.102953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Acid-sensing ion channels (ASICs) play an important role in pain associated with tissue acidification. Peripheral inhibitory group II metabotropic glutamate receptors (mGluRs) have analgesic effects in a variety of pain conditions. Whether there is a link between ASICs and mGluRs in pain processes is still unclear. Herein, we show that the group II mGluR agonist LY354740 inhibited acid-evoked ASIC currents and action potentials in rat dorsal root ganglia neurons. LY354740 reduced the maximum current response to protons, but it did not change the sensitivity of ASICs to protons. LY354740 inhibited ASIC currents by activating group II mGluRs. We found that the inhibitory effect of LY354740 was blocked by intracellular application of the Gi/o protein inhibitor pertussis toxin and the cAMP analogue 8-Br-cAMP and mimicked by the protein kinase A (PKA) inhibitor H-89. LY354740 also inhibited ASIC3 currents in CHO cells coexpressing mGluR2 and ASIC3 but not in cells expressing ASIC3 alone. In addition, intraplantar injection of LY354740 dose-dependently alleviated acid-induced nociceptive behavior in rats through local group II mGluRs. Together, these results suggested that activation of peripheral group II mGluRs inhibited the functional activity of ASICs through a mechanism that depended on Gi/o proteins and the intracellular cAMP/PKA signaling pathway in rat dorsal root ganglia neurons. We propose that peripheral group II mGluRs are an important therapeutic target for ASIC-mediated pain.
Collapse
|