1
|
Ferreira LVDO, Amorim RM. Perspectives on Schwann-like cells derived from bone marrow-mesenchymal stem cells: Advancing peripheral nerve injury therapies. World J Stem Cells 2025; 17:102702. [PMID: 40061268 PMCID: PMC11885942 DOI: 10.4252/wjsc.v17.i2.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/18/2024] [Accepted: 01/18/2025] [Indexed: 02/24/2025] Open
Abstract
Peripheral nerve injuries are clinical conditions that often result in functional deficits, compromising patient quality of life. Given the relevance of these injuries, new treatment strategies are constantly being investigated. Although mesenchymal stem cells already demonstrate therapeutic potential due to their paracrine action, the transdifferentiation of these cells into Schwann-like cells (SLCs) represents a significant advancement in nerve injury therapy. Recent studies indicate that SLCs can mimic the functions of Schwann cells, with promising results in animal models. However, challenges remain, such as the diversity of transdifferentiation protocols and the scalability of these therapies for clinical applications. A recent study by Zou et al provided a comprehensive overview of the role of bone marrow-derived mesenchymal stem cells in the treatment of peripheral nerve injuries. Therefore, we would like to discuss and explore the use of SLCs derived from bone marrow-derived mesenchymal stem cells in more detail as a promising alternative in the field of nerve regeneration.
Collapse
Affiliation(s)
- Lucas Vinícius de Oliveira Ferreira
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, São Paulo, Brazil.
| | - Rogério Martins Amorim
- Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu 18618-681, São Paulo, Brazil
| |
Collapse
|
2
|
Wang C, Liu A, Zhao Z, Ying T, Deng S, Jian Z, Zhang X, Yi C, Li D. Application and progress of 3D printed biomaterials in osteoporosis. Front Bioeng Biotechnol 2025; 13:1541746. [PMID: 39968010 PMCID: PMC11832546 DOI: 10.3389/fbioe.2025.1541746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 01/17/2025] [Indexed: 02/20/2025] Open
Abstract
Osteoporosis results from a disruption in skeletal homeostasis caused by an imbalance between bone resorption and bone formation. Conventional treatments, such as pharmaceutical drugs and hormone replacement therapy, often yield suboptimal results and are frequently associated with side effects. Recently, biomaterial-based approaches have gained attention as promising alternatives for managing osteoporosis. This review summarizes the current advancements in 3D-printed biomaterials designed for osteoporosis treatment. The benefits of biomaterial-based approaches compared to traditional systemic drug therapies are discussed. These 3D-printed materials can be broadly categorized based on their functionalities, including promoting osteogenesis, reducing inflammation, exhibiting antioxidant properties, and inhibiting osteoclast activity. 3D printing has the advantages of speed, precision, personalization, etc. It is able to satisfy the requirements of irregular geometry, differentiated composition, and multilayered structure of articular osteochondral scaffolds with boundary layer structure. The limitations of existing biomaterials are critically analyzed and future directions for biomaterial-based therapies are considered.
Collapse
Affiliation(s)
- Chenxu Wang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Aiguo Liu
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Henan University, Kaifeng, China
| | - Ziwen Zhao
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ting Ying
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Shuang Deng
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Zhen Jian
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Xu Zhang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
3
|
Ganguly S, Margel S. Magnetic Polymeric Conduits in Biomedical Applications. MICROMACHINES 2025; 16:174. [PMID: 40047623 PMCID: PMC11857720 DOI: 10.3390/mi16020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 03/09/2025]
Abstract
Magnetic polymeric conduits are developing as revolutionary materials in regenerative medicine, providing exceptional benefits in directing tissue healing, improving targeted medication administration, and facilitating remote control via external magnetic fields. The present article offers a thorough examination of current progress in the design, construction, and functionalization of these hybrid systems. The integration of magnetic nanoparticles into polymeric matrices confers distinctive features, including regulated alignment, improved cellular motility, and targeted medicinal delivery, while preserving structural integrity. Moreover, the incorporation of multifunctional attributes, such as electrical conductivity for cerebral stimulation and optical characteristics for real-time imaging, expands their range of applications. Essential studies indicate that the dimensions, morphology, surface chemistry, and composition of magnetic nanoparticles significantly affect their biocompatibility, degrading characteristics, and overall efficacy. Notwithstanding considerable advancements, issues concerning long-term biocompatibility, biodegradability, and scalability persist, in addition to the must for uniform regulatory frameworks to facilitate clinical translation. Progress in additive manufacturing and nanotechnology is overcoming these obstacles, facilitating the creation of dynamic and adaptive conduit structures designed for particular biomedical requirements. Magnetic polymeric conduits, by integrating usefulness and safety, are set to transform regenerative therapies, presenting a new avenue for customized medicine and advanced healthcare solutions.
Collapse
Affiliation(s)
- Sayan Ganguly
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Shlomo Margel
- Department of Chemistry, Bar-Ilan Institute for Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
4
|
Qiao M, Wu W, Tang W, Zhao Y, Wang J, Pei X, Zhang B, Wan Q. Applications and prospects of indirect 3D printing technology in bone tissue engineering. Biomater Sci 2025; 13:587-605. [PMID: 39717906 DOI: 10.1039/d4bm01374c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
In bone tissue engineering, manufacturing bone tissue constructs that closely replicate physiological features for regenerative repair remains a significant challenge. In recent years, the advent of indirect 3D printing technology has overcome the stringent material demands, confined resolution, and structural control challenges inherent to direct 3D printing. By utilizing sacrificial templates, the natural structures and physiological functions of bone tissues can be precisely duplicated. It facilitates the fabrication of vascularized and biomimetic bone constructs that are similar to natural counterparts. Hence, indirect 3D printing technology is increasingly recognized as a promising option for bone regenerative therapies. Based on the aforementioned research hotspots, this review outlines the classification and techniques of indirect 3D printing, along with the associated printing materials and methodologies. More importantly, a detailed summary of the clinical application prospects of indirect 3D printing in the regeneration of bone, cartilage and osteochondral tissues is provided, along with exploring the current challenges and outlook of this technology.
Collapse
Affiliation(s)
- Mingxin Qiao
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Wu
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wen Tang
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yifan Zhao
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jian Wang
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xibo Pei
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Bowen Zhang
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qianbing Wan
- Sichuan University, Chengdu, Sichuan, China
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Katana D, Jayasinghe SN, Trbojevic S, Yin CM, Rodgers VR, Almarza AJ, Marra KG. Synthetic conduits efficacy in neural repair: a comparative study of dip-coated polycaprolactone and electrospun polycaprolactone/polyurethane conduits. J Neural Eng 2024; 21:066037. [PMID: 39622174 DOI: 10.1088/1741-2552/ad995c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Objectives.Peripheral nerve injuries (PNI) represent the most common type of nervous system injuries, resulting in 5 million injuries per year. Current gold standard, autografts, still carry several limitations, including the inappropriate type, size, and function matches in grafted nerves, lack of autologous donor sites, neuroma formation, and secondary surgery incisions. Polymeric nerve conduits, also known as nerve guides, can help overcome the aforementioned issues that limit nerve recovery and regeneration by reducing tissue fibrosis, misdirection of regenerating axons, and the inability to maintain long- distance axonal growth. Polymer-based double-walled microspheres (DWMSs) are designed to locally and in a sustainable fashion deliver bioactive agents. Lysozyme is a natural antimicrobial protein that shares similar physical and chemical properties to glial cell line-derived neurotrophic factor, making it an ideal surrogate molecule to evaluate the release kinetics of encapsulated bioagent from polymeric biodegradable microspheres embedded in polycaprolactone and polycaprolactone/polyurethane blend nerve conduits.Approach.Lysozyme was encapsulated in poly(lactic-co-glycolic acid)/poly(L-lactide) DWMSs fabricated through a modified water-oil-water emulsion solvent evaporation method. Lysozyme-loaded DWMS were further embedded in PCL and PCL-PU based nerve guides constructed via polymer dip-coating and electrospinning method respectively. Lysozyme DWMS and nerve guides were imaged using scanning electron microscopy (SEM). Released lysozyme concentration was determined by using a colorimetric micro-BCA protein assay and spectrophotometric quantitation. Tensile and suture pull-out tests were utilized to evaluate the mechanical properties of both dip-coated and electrospun nerve guides, embedded and free of lysozyme DWMS.Main results.The study revealed significant distinctions in the lysozyme release profiles, and mechanical properties of the manufactured polymer nerve guides. Both PCL dip-coated and PCL/PU electrospun DWMS-embedded nerve guides revealed biphasic protein release profiles. PCL/PU electrospun and PCL dip-coated nerve guides released 16% and 29% of the total protein concentration within 72 h, plateauing at week 16 and week 8, respectively. SEM analysis of the nerve guides confirmed the homogeneity and integrity of the polymer nerve guides' structures. The electrospun guides were found to be more flexible with a higher extension under stress bending, while the dip-coated PCL nerve guides displayed more rigid behavior.Significance.This study provides useful insights on how to optimize nerve guide design and fabrication to enhance recovery progress of PNI.
Collapse
Affiliation(s)
- Dzana Katana
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Suwan N Jayasinghe
- Department of Mechanical Engineering, University College London, London, United Kingdom
- Institute of Biomedical Engineering, University College London, London, United Kingdom
- Centre for Stem Cells and Regenerative Medicine, University College London, London, United Kingdom
- Biophysics Group, University College London, London, United Kingdom
| | - Sara Trbojevic
- Department of Oral Biology and Craniofacial Sciences and Bioengineering, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Casey M Yin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Vanessa R Rodgers
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Alejandro J Almarza
- Department of Oral Biology and Craniofacial Sciences and Bioengineering, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kacey G Marra
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Bioengineering, School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States of America
| |
Collapse
|
6
|
Chang PS, Lee TY, Kneiber D, Dy CJ, Ward PM, Kazarian G, Apostolakos J, Brogan DM. Design and In Vivo Testing of an Anatomic 3D-Printed Peripheral Nerve Conduit in a Rat Sciatic Nerve Model. HSS J 2024:15563316241299368. [PMID: 39583892 PMCID: PMC11583172 DOI: 10.1177/15563316241299368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024]
Abstract
Background: Three-dimensional (3D) printer technology has seen a surge in use in medicine, particularly in orthopedics. A recent area of research is its use in peripheral nerve repair, which often requires a graft or conduit to bridge segmental defects. Currently, nerve gaps are bridged using autografts, allografts, or synthetic conduits. Purpose: We sought to improve upon the current design of simple hollow, cylindrical conduits that often result in poor nerve regeneration. Previous attempts were made at reducing axonal dispersion with the use of multichanneled conduits. To our knowledge, none has attempted to mimic and test the anatomical topography of the nerve. Methods: Using serial histology sections, 3D reconstruction software, and computer-aided design, a scaffold was created based on the fascicular topography of a rat sciatic nerve. A 3D printer produced both cylindrical conduits and topography-based scaffolds. These were implanted in 12 Lewis rats: 6 rats with the topographical scaffold and 6 rats with the cylindrical conduit. Each rodent's uninjured contralateral limb was used as a control for comparison of functional and histologic outcomes. Walking track analysis was performed, and the Sciatic Functional Index (SFI) was calculated with the Image J software. After 6 weeks, rats were sacrificed and analyses performed on the regenerated nerve tissue. Primary outcomes measured included nerve (fiber) density, nerve fiber width, total number of nerve fibers, G-ratio (ratio of axon width to total fiber width), and percent debris. Secondary outcomes measured included electrophysiology studies of electromyography (EMG) latency and EMG amplitude and isometric force output by the gastrocnemius and tibialis anterior. Results: There were no differences observed between the cylindrical conduit and topographical scaffold in terms of histological outcomes, muscle force, EMG, or SFI. Conclusion: This study of regeneration of the sciatic nerve in a rat model suggests the feasibility of 3D-printed topographical scaffolds. More research is required to quantify the functional outcomes of this technology for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Peter S. Chang
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tony Y. Lee
- School of Medicine, Saint Louis University, St. Louis, MO, USA
| | - David Kneiber
- Department of Anesthesiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Christopher J. Dy
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| | - Patrick M. Ward
- Department of Orthopaedic Surgery, University of Chicago, Chicago, IL, USA
| | | | - John Apostolakos
- Department of Orthopaedic Surgery, Case Western Reserve University, Cleveland, OH, USA
| | - David M. Brogan
- Department of Orthopaedic Surgery, School of Medicine, Washington University, St. Louis, MO, USA
| |
Collapse
|
7
|
Zhang X, Gao X, Zhang X, Yao X, Kang X. Revolutionizing Intervertebral Disc Regeneration: Advances and Future Directions in Three-Dimensional Bioprinting of Hydrogel Scaffolds. Int J Nanomedicine 2024; 19:10661-10684. [PMID: 39464675 PMCID: PMC11505483 DOI: 10.2147/ijn.s469302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/10/2024] [Indexed: 10/29/2024] Open
Abstract
Hydrogels are multifunctional platforms. Through reasonable structure and function design, they use material engineering to adjust their physical and chemical properties, such as pore size, microstructure, degradability, stimulus-response characteristics, etc. and have a variety of biomedical applications. Hydrogel three-dimensional (3D) printing has emerged as a promising technique for the precise deposition of cell-laden biomaterials, enabling the fabrication of intricate 3D structures such as artificial vertebrae and intervertebral discs (IVDs). Despite being in the early stages, 3D printing techniques have shown great potential in the field of regenerative medicine for the fabrication of various transplantable tissues within the human body. Currently, the utilization of engineered hydrogels as carriers or scaffolds for treating intervertebral disc degeneration (IVDD) presents numerous challenges. However, it remains an indispensable multifunctional manufacturing technology that is imperative in addressing the escalating issue of IVDD. Moreover, it holds the potential to serve as a micron-scale platform for a diverse range of applications. This review primarily concentrates on emerging treatment strategies for IVDD, providing an in-depth analysis of their merits and drawbacks, as well as the challenges that need to be addressed. Furthermore, it extensively explores the biological properties of hydrogels and various nanoscale biomaterial inks, compares different prevalent manufacturing processes utilized in 3D printing, and thoroughly examines the potential clinical applications and prospects of integrating 3D printing technology with hydrogels.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xidan Gao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xuefang Zhang
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xin Yao
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’An, Shaanxi, P.R. China
| | - Xin Kang
- Department of Sports Medicine, Honghui Hospital, Xi’an Jiao Tong University, Xi’An, Shaanxi, P.R. China
| |
Collapse
|
8
|
Wang S, Wen X, Fan Z, Ding X, Wang Q, Liu Z, Yu W. Research advancements on nerve guide conduits for nerve injury repair. Rev Neurosci 2024; 35:627-637. [PMID: 38517315 DOI: 10.1515/revneuro-2023-0093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/19/2023] [Indexed: 03/23/2024]
Abstract
Peripheral nerve injury (PNI) is one of the most serious causes of disability and loss of work capacity of younger individuals. Although PNS has a certain degree of regeneration, there are still challenges like disordered growth, neuroma formation, and incomplete regeneration. Regarding the management of PNI, conventional methods such as surgery, pharmacotherapy, and rehabilitative therapy. Treatment strategies vary depending on the severity of the injury. While for the long nerve defect, autologous nerve grafting is commonly recognized as the preferred surgical approach. Nevertheless, due to lack of donor sources, neurological deficits and the low regeneration efficiency of grafted nerves, nerve guide conduits (NGCs) are recognized as a future promising technology in recent years. This review provides a comprehensive overview of current treatments for PNI, and discusses NGCs from different perspectives, such as material, design, fabrication process, and composite function.
Collapse
Affiliation(s)
- Shoushuai Wang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Xinggui Wen
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Zheyuan Fan
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Xiangdong Ding
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Qianqian Wang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Zhongling Liu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| | - Wei Yu
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun City 130033, Jilin Province, China
| |
Collapse
|
9
|
Barcena AJR, Ravi P, Kundu S, Tappa K. Emerging Biomedical and Clinical Applications of 3D-Printed Poly(Lactic Acid)-Based Devices and Delivery Systems. Bioengineering (Basel) 2024; 11:705. [PMID: 39061787 PMCID: PMC11273440 DOI: 10.3390/bioengineering11070705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(lactic acid) (PLA) is widely used in the field of medicine due to its biocompatibility, versatility, and cost-effectiveness. Three-dimensional (3D) printing or the systematic deposition of PLA in layers has enabled the fabrication of customized scaffolds for various biomedical and clinical applications. In tissue engineering and regenerative medicine, 3D-printed PLA has been mostly used to generate bone tissue scaffolds, typically in combination with different polymers and ceramics. PLA's versatility has also allowed the development of drug-eluting constructs for the controlled release of various agents, such as antibiotics, antivirals, anti-hypertensives, chemotherapeutics, hormones, and vitamins. Additionally, 3D-printed PLA has recently been used to develop diagnostic electrodes, prostheses, orthoses, surgical instruments, and radiotherapy devices. PLA has provided a cost-effective, accessible, and safer means of improving patient care through surgical and dosimetry guides, as well as enhancing medical education through training models and simulators. Overall, the widespread use of 3D-printed PLA in biomedical and clinical settings is expected to persistently stimulate biomedical innovation and revolutionize patient care and healthcare delivery.
Collapse
Affiliation(s)
- Allan John R. Barcena
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Prashanth Ravi
- Department of Radiology, University of Cincinnati, Cincinnati, OH 45219, USA;
| | - Suprateek Kundu
- Department of Biostatistics, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Karthik Tappa
- Department of Breast Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
10
|
Li L, Chu Z, Li S, Zheng T, Wei S, Zhao Y, Liu P, Lu Q. BDNF-loaded chitosan-based mimetic mussel polymer conduits for repair of peripheral nerve injury. Front Cell Dev Biol 2024; 12:1431558. [PMID: 39011392 PMCID: PMC11246889 DOI: 10.3389/fcell.2024.1431558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 07/17/2024] Open
Abstract
Care for patients with peripheral nerve injury is multifaceted, as traditional methods are not devoid of limitations. Although the utilization of neural conduits shows promise as a therapeutic modality for peripheral nerve injury, its efficacy as a standalone intervention is limited. Hence, there is a pressing need to investigate a composite multifunctional neural conduit as an alternative treatment for peripheral nerve injury. In this study, a BDNF-loaded chitosan-based mimetic mussel polymer conduit was prepared. Its unique adhesion characteristics allow it to be suture-free, improve the microenvironment of the injury site, and have good antibacterial properties. Researchers utilized a rat sciatic nerve injury model to evaluate the progression of nerve regeneration at the 12-week postoperative stage. The findings of this study indicate that the chitosan-based mimetic mussel polymer conduit loaded with BDNF had a substantial positive effect on myelination and axon outgrowth. The observed impact demonstrated a favorable outcome in terms of sciatic nerve regeneration and subsequent functional restoration in rats with a 15-mm gap. Hence, this approach is promising for nerve tissue regeneration during peripheral nerve injury.
Collapse
Affiliation(s)
- Lei Li
- Department of Adult Joint Reconstructive Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Ziyue Chu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shihao Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Tong Zheng
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shusheng Wei
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yunpeng Zhao
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Peilai Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qunshan Lu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
11
|
Trâmbițaș C, Cordoș BA, Dorobanțu DC, Vintilă C, Ion AP, Pap T, Camelia D, Puiac C, Arbănași EM, Ciucanu CC, Mureșan AV, Arbănași EM, Russu E. Application of Adipose Stem Cells in 3D Nerve Guidance Conduit Prevents Muscle Atrophy and Improves Distal Muscle Compliance in a Peripheral Nerve Regeneration Model. Bioengineering (Basel) 2024; 11:184. [PMID: 38391670 PMCID: PMC10886226 DOI: 10.3390/bioengineering11020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Peripheral nerve injuries (PNIs) represent a significant clinical problem, and standard approaches to nerve repair have limitations. Recent breakthroughs in 3D printing and stem cell technologies offer a promising solution for nerve regeneration. The main purpose of this study was to examine the biomechanical characteristics in muscle tissue distal to a nerve defect in a murine model of peripheral nerve regeneration from physiological stress to failure. METHODS In this experimental study, we enrolled 18 Wistar rats in which we created a 10 mm sciatic nerve defect. Furthermore, we divided them into three groups as follows: in Group 1, we used 3D nerve guidance conduits (NGCs) and adipose stem cells (ASCs) in seven rats; in Group 2, we used only 3D NGCs for seven rats; and in Group 3, we created only the defect in four rats. We monitored the degree of atrophy at 4, 8, and 12 weeks by measuring the diameter of the tibialis anterior (TA) muscle. At the end of 12 weeks, we took the TA muscle and analyzed it uniaxially at 10% stretch until failure. RESULTS In the group of animals with 3D NGCs and ASCs, we recorded the lowest degree of atrophy at 4 weeks, 8 weeks, and 12 weeks after nerve reconstruction. At 10% stretch, the control group had the highest Cauchy stress values compared to the 3D NGC group (0.164 MPa vs. 0.141 MPa, p = 0.007) and the 3D NGC + ASC group (0.164 MPa vs. 0.123 MPa, p = 0.007). In addition, we found that the control group (1.763 MPa) had the highest TA muscle stiffness, followed by the 3D NGC group (1.412 MPa), with the best muscle elasticity showing in the group in which we used 3D NGC + ASC (1.147 MPa). At failure, TA muscle samples from the 3D NGC + ASC group demonstrated better compliance and a higher degree of elasticity compared to the other two groups (p = 0.002 and p = 0.008). CONCLUSIONS Our study demonstrates that the combination of 3D NGC and ASC increases the process of nerve regeneration and significantly improves the compliance and mechanical characteristics of muscle tissue distal to the injury site in a PNI murine model.
Collapse
Affiliation(s)
- Cristian Trâmbițaș
- Department of Plastic Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Plastic Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Bogdan Andrei Cordoș
- Veterinary Experimental Base, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Dorin Constantin Dorobanțu
- Department of Plastic Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Plastic Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Cristian Vintilă
- Department of Plastic Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Plastic Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Alexandru Petru Ion
- George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Timea Pap
- Department of Plastic Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Plastic Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - David Camelia
- Department of Plastic Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
- Clinic of Plastic Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Claudiu Puiac
- Clinic of Anesthesiology and Intensive Care, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Emil Marian Arbănași
- Regenerative Medicine Laboratory, Centre for Advanced Medical and Pharmaceutical Research (CCAMF), George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Claudiu Constantin Ciucanu
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Adrian Vasile Mureșan
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| | - Eliza Mihaela Arbănași
- Doctoral School of Medicine and Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Eliza Russu
- Department of Vascular Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Clinic of Vascular Surgery, Mures County Emergency Hospital, 540136 Targu Mures, Romania
| |
Collapse
|
12
|
Wu S, Shen W, Ge X, Ao F, Zheng Y, Wang Y, Jia X, Mao Y, Luo Y. Advances in Large Gap Peripheral Nerve Injury Repair and Regeneration with Bridging Nerve Guidance Conduits. Macromol Biosci 2023; 23:e2300078. [PMID: 37235853 DOI: 10.1002/mabi.202300078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Peripheral nerve injury is a common complication of accidents and diseases. The traditional autologous nerve graft approach remains the gold standard for the treatment of nerve injuries. While sources of autologous nerve grafts are very limited and difficult to obtain. Nerve guidance conduits are widely used in the treatment of peripheral nerve injuries as an alternative to nerve autografts and allografts. However, the development of nerve conduits does not meet the needs of large gap peripheral nerve injury. Functional nerve conduits can provide a good microenvironment for axon elongation and myelin regeneration. Herein, the manufacturing methods and different design types of functional bridging nerve conduits for nerve conduits combined with electrical or magnetic stimulation and loaded with Schwann cells, etc., are summarized. It summarizes the literature and finds that the technical solutions of functional nerve conduits with electrical stimulation, magnetic stimulation and nerve conduits combined with Schwann cells can be used as effective strategies for bridging large gap nerve injury and provide an effective way for the study of large gap nerve injury repair. In addition, functional nerve conduits provide a new way to construct delivery systems for drugs and growth factors in vivo.
Collapse
Affiliation(s)
- Shang Wu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Wen Shen
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yan Zheng
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yigang Wang
- Department of Pharmacy, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, P. R. China
| | - Xiaoni Jia
- Central Laboratory, Xi'an Mental Health Center, Xi'an, 710061, P. R. China
| | - Yueyang Mao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yali Luo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
13
|
Wu W, Dong Y, Liu H, Jiang X, Yang L, Luo J, Hu Y, Gou M. 3D printed elastic hydrogel conduits with 7,8-dihydroxyflavone release for peripheral nerve repair. Mater Today Bio 2023; 20:100652. [PMID: 37214548 PMCID: PMC10199216 DOI: 10.1016/j.mtbio.2023.100652] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/17/2023] [Accepted: 04/29/2023] [Indexed: 05/24/2023] Open
Abstract
Nerve guide conduit is a promising treatment for long gap peripheral nerve injuries, yet its efficacy is limited. Drug-releasable scaffolds may provide reliable platforms to build a regenerative microenvironment for nerve recovery. In this study, an elastic hydrogel conduit encapsulating with prodrug nanoassemblies is fabricated by a continuous 3D printing technique for promoting nerve regeneration. The bioactive hydrogel is comprised of gelatin methacryloyl (GelMA) and silk fibroin glycidyl methacrylate (SF-MA), exhibiting positive effects on adhesion, proliferation, and migration of Schwann cells. Meanwhile, 7,8-dihydroxyflavone (7,8-DHF) prodrug nanoassemblies with high drug-loading capacities are developed through self-assembly of the lipophilic prodrug and loaded into the GelMA/SF-MA hydrogel. The drug loading conduit could sustainedly release 7,8-DHF to facilitate neurite elongation. A 12 mm nerve defect model is established for therapeutic efficiency evaluation by implanting the conduit through surgical suturing with rat sciatic nerve. The electrophysiological, morphological, and histological assessments indicate that this conduit can promote axon regeneration, remyelination, and function recovery by providing a favorable microenvironment. These findings implicate that the GelMA/SF-MA conduit with 7,8-DHF release has potentials in the treatment of long-gap peripheral nerve injury.
Collapse
Affiliation(s)
- Wenbi Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yinchu Dong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Haofan Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuebing Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ling Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yu Hu
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan province, China
| | - Maling Gou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
14
|
Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol 2023; 232:123450. [PMID: 36709808 DOI: 10.1016/j.ijbiomac.2023.123450] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/26/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Sodium alginate (SA) is an inexpensive and biocompatible biomaterial with fast and gentle crosslinking that has been widely used in biological soft tissue repair/regeneration. Especially with the advent of 3D bioprinting technology, SA hydrogels have been applied more deeply in tissue engineering due to their excellent printability. Currently, the research on material modification, molding process and application of SA-based composite hydrogels has become a hot topic in tissue engineering, and a lot of fruitful results have been achieved. To better help readers have a comprehensive understanding of the development status of SA based hydrogels and their molding process in tissue engineering, in this review, we summarized SA modification methods, and provided a comparative analysis of the characteristics of various SA based hydrogels. Secondly, various molding methods of SA based hydrogels were introduced, the processing characteristics and the applications of different molding methods were analyzed and compared. Finally, the applications of SA based hydrogels in tissue engineering were reviewed, the challenges in their applications were also analyzed, and the future research directions were prospected. We believe this review is of great helpful for the researchers working in biomedical and tissue engineering.
Collapse
|
15
|
Lei C, Song JH, Li S, Zhu YN, Liu MY, Wan MC, Mu Z, Tay FR, Niu LN. Advances in materials-based therapeutic strategies against osteoporosis. Biomaterials 2023; 296:122066. [PMID: 36842238 DOI: 10.1016/j.biomaterials.2023.122066] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023]
Abstract
Osteoporosis is caused by the disruption in homeostasis between bone formation and bone resorption. Conventional management of osteoporosis involves systematic drug administration and hormonal therapy. These treatment strategies have limited curative efficacy and multiple adverse effects. Biomaterials-based therapeutic strategies have recently emerged as promising alternatives for the treatment of osteoporosis. The present review summarizes the current status of biomaterials designed for managing osteoporosis. The advantages of biomaterials-based strategies over conventional systematic drug treatment are presented. Different anti-osteoporotic delivery systems are concisely addressed. These materials include injectable hydrogels and nanoparticles, as well as anti-osteoporotic bone tissue engineering materials. Fabrication techniques such as 3D printing, electrostatic spinning and artificial intelligence are appraised in the context of how the use of these adjunctive techniques may improve treatment efficacy. The limitations of existing biomaterials are critically analyzed, together with deliberation of the future directions in biomaterials-based therapies. The latter include discussion on the use of combination strategies to enhance therapeutic efficacy in the osteoporosis niche.
Collapse
Affiliation(s)
- Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jing-Han Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Song Li
- School of Stomatology, Xinjiang Medical University. Urumqi 830011, China
| | - Yi-Na Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Ming-Yi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Mei-Chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Zhao Mu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| | - Franklin R Tay
- The Dental College of Georgia, Augusta University, Augusta, GA, 30912, USA.
| | - Li-Na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
16
|
Patient-specific 3D bioprinting for in situ tissue engineering and regenerative medicine. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00003-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
17
|
Khati V, Turkki JA, Ramachandraiah H, Pati F, Gaudenzi G, Russom A. Indirect 3D Bioprinting of a Robust Trilobular Hepatic Construct with Decellularized Liver Matrix Hydrogel. Bioengineering (Basel) 2022; 9:603. [PMID: 36354514 PMCID: PMC9687301 DOI: 10.3390/bioengineering9110603] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 10/27/2023] Open
Abstract
The liver exhibits complex geometrical morphologies of hepatic cells arranged in a hexagonal lobule with an extracellular matrix (ECM) organized in a specific pattern on a multi-scale level. Previous studies have utilized 3D bioprinting and microfluidic perfusion systems with various biomaterials to develop lobule-like constructs. However, they all lack anatomical relevance with weak control over the size and shape of the fabricated structures. Moreover, most biomaterials lack liver-specific ECM components partially or entirely, which might limit their biomimetic mechanical properties and biological functions. Here, we report 3D bioprinting of a sacrificial PVA framework to impart its trilobular hepatic structure to the decellularized liver extracellular matrix (dLM) hydrogel with polyethylene glycol-based crosslinker and tyrosinase to fabricate a robust multi-scale 3D liver construct. The 3D trilobular construct exhibits higher crosslinking, viscosity (182.7 ± 1.6 Pa·s), and storage modulus (2554 ± 82.1 Pa) than non-crosslinked dLM. The co-culture of HepG2 liver cells and NIH 3T3 fibroblast cells exhibited the influence of fibroblasts on liver-specific activity over time (7 days) to show higher viability (90-91.5%), albumin secretion, and increasing activity of four liver-specific genes as compared to the HepG2 monoculture. This technique offers high lumen patency for the perfusion of media to fabricate a densely populated scaled-up liver model, which can also be extended to other tissue types with different biomaterials and multiple cells to support the creation of a large functional complex tissue.
Collapse
Affiliation(s)
- Vamakshi Khati
- Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, 17165 Solna, Sweden
| | | | | | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India
| | - Giulia Gaudenzi
- Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, 17165 Solna, Sweden
- Department of Global Public Health, Karolinska Institute, 17165 Solna, Sweden
| | - Aman Russom
- Science for Life Laboratory, Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, 17165 Solna, Sweden
- AIMES—Center for the Advancement of Integrated Medical and Engineering Sciences, Karolinska Institute and KTH Royal Institute of Technology, 11428 Stockholm, Sweden
| |
Collapse
|
18
|
Osouli-Bostanabad K, Masalehdan T, Kapsa RMI, Quigley A, Lalatsa A, Bruggeman KF, Franks SJ, Williams RJ, Nisbet DR. Traction of 3D and 4D Printing in the Healthcare Industry: From Drug Delivery and Analysis to Regenerative Medicine. ACS Biomater Sci Eng 2022; 8:2764-2797. [PMID: 35696306 DOI: 10.1021/acsbiomaterials.2c00094] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Three-dimensional (3D) printing and 3D bioprinting are promising technologies for a broad range of healthcare applications from frontier regenerative medicine and tissue engineering therapies to pharmaceutical advancements yet must overcome the challenges of biocompatibility and resolution. Through comparison of traditional biofabrication methods with 3D (bio)printing, this review highlights the promise of 3D printing for the production of on-demand, personalized, and complex products that enhance the accessibility, effectiveness, and safety of drug therapies and delivery systems. In addition, this review describes the capacity of 3D bioprinting to fabricate patient-specific tissues and living cell systems (e.g., vascular networks, organs, muscles, and skeletal systems) as well as its applications in the delivery of cells and genes, microfluidics, and organ-on-chip constructs. This review summarizes how tailoring selected parameters (i.e., accurately selecting the appropriate printing method, materials, and printing parameters based on the desired application and behavior) can better facilitate the development of optimized 3D-printed products and how dynamic 4D-printed strategies (printing materials designed to change with time or stimulus) may be deployed to overcome many of the inherent limitations of conventional 3D-printed technologies. Comprehensive insights into a critical perspective of the future of 4D bioprinting, crucial requirements for 4D printing including the programmability of a material, multimaterial printing methods, and precise designs for meticulous transformations or even clinical applications are also given.
Collapse
Affiliation(s)
- Karim Osouli-Bostanabad
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Tahereh Masalehdan
- Department of Materials Engineering, Institute of Mechanical Engineering, University of Tabriz, Tabriz 51666-16444, Iran
| | - Robert M I Kapsa
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Anita Quigley
- Biomedical and Electrical Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.,Department of Medicine, St Vincent's Hospital Melbourne, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Aikaterini Lalatsa
- Biomaterials, Bio-engineering and Nanomedicine (BioN) Lab, Institute of Biomedical and Biomolecular, Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth PO1 2DT, United Kingdom
| | - Kiara F Bruggeman
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Stephanie J Franks
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Richard J Williams
- Institute of Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,The Graeme Clark Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
19
|
Zhang J, Tao J, Cheng H, Liu H, Wu W, Dong Y, Liu X, Gou M, Yang S, Xu J. Nerve transfer with 3D-printed branch nerve conduits. BURNS & TRAUMA 2022; 10:tkac010. [PMID: 35441080 PMCID: PMC9012979 DOI: 10.1093/burnst/tkac010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/15/2022] [Accepted: 02/27/2022] [Indexed: 02/05/2023]
Abstract
Background Nerve transfer is an important clinical surgical procedure for nerve repair by the coaptation of a healthy donor nerve to an injured nerve. Usually, nerve transfer is performed in an end-to-end manner, which will lead to functional loss of the donor nerve. In this study, we aimed to evaluate the efficacy of 3D-printed branch nerve conduits in nerve transfer. Methods Customized branch conduits were constructed using gelatine-methacryloyl by 3D printing. The nerve conduits were characterized both in vitro and in vivo. The efficacy of 3D-printed branch nerve conduits in nerve transfer was evaluated in rats through electrophysiology testing and histological evaluation. Results The results obtained showed that a single nerve stump could form a complex nerve network in the 3D-printed multibranch conduit. A two-branch conduit was 3D printed for transferring the tibial nerve to the peroneal nerve in rats. In this process, the two branches were connected to the distal tibial nerve and peroneal nerve. It was found that the two nerves were successfully repaired with functional recovery. Conclusions It is implied that the two-branch conduit could not only repair the peroneal nerve but also preserve partial function of the donor tibial nerve. This work demonstrated that 3D-printed branch nerve conduits provide a potential method for nerve transfer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Jie Tao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Hao Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Haofan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Wenbi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Yinchu Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Xuesong Liu
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| | - Siming Yang
- Key Laboratory of Wound Repair and Regeneration of PLA, Chinese PLA General Hospital, Medical College of PLA, Beijing 100853, P.R. China
| | - Jianguo Xu
- Department of Neurosurgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
20
|
Muldoon K, Song Y, Ahmad Z, Chen X, Chang MW. High Precision 3D Printing for Micro to Nano Scale Biomedical and Electronic Devices. MICROMACHINES 2022; 13:642. [PMID: 35457946 PMCID: PMC9033068 DOI: 10.3390/mi13040642] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 12/12/2022]
Abstract
Three dimensional printing (3DP), or additive manufacturing, is an exponentially growing process in the fabrication of various technologies with applications in sectors such as electronics, biomedical, pharmaceutical and tissue engineering. Micro and nano scale printing is encouraging the innovation of the aforementioned sectors, due to the ability to control design, material and chemical properties at a highly precise level, which is advantageous in creating a high surface area to volume ratio and altering the overall products' mechanical and physical properties. In this review, micro/-nano printing technology, mainly related to lithography, inkjet and electrohydrodynamic (EHD) printing and their biomedical and electronic applications will be discussed. The current limitations to micro/-nano printing methods will be examined, covering the difficulty in achieving controlled structures at the miniscule micro and nano scale required for specific applications.
Collapse
Affiliation(s)
- Kirsty Muldoon
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| | - Yanhua Song
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Zeeshan Ahmad
- School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK;
| | - Xing Chen
- Key Laboratory for Biomedical Engineering of Education Ministry of China, Zhejiang University, Hangzhou 310027, China;
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medical Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Ming-Wei Chang
- Nanotechnology and Integrated Bioengineering Centre, University of Ulster, Jordanstown Campus, Newtownabbey BT37 0QB, UK;
| |
Collapse
|
21
|
Ze Y, Li Y, Huang L, Shi Y, Li P, Gong P, Lin J, Yao Y. Biodegradable Inks in Indirect Three-Dimensional Bioprinting for Tissue Vascularization. Front Bioeng Biotechnol 2022; 10:856398. [PMID: 35402417 PMCID: PMC8990266 DOI: 10.3389/fbioe.2022.856398] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/09/2022] [Indexed: 02/05/2023] Open
Abstract
Mature vasculature is important for the survival of bioengineered tissue constructs, both in vivo and in vitro; however, the fabrication of fully vascularized tissue constructs remains a great challenge in tissue engineering. Indirect three-dimensional (3D) bioprinting refers to a 3D printing technique that can rapidly fabricate scaffolds with controllable internal pores, cavities, and channels through the use of sacrificial molds. It has attracted much attention in recent years owing to its ability to create complex vascular network-like channels through thick tissue constructs while maintaining endothelial cell activity. Biodegradable materials play a crucial role in tissue engineering. Scaffolds made of biodegradable materials act as temporary templates, interact with cells, integrate with native tissues, and affect the results of tissue remodeling. Biodegradable ink selection, especially the choice of scaffold and sacrificial materials in indirect 3D bioprinting, has been the focus of several recent studies. The major objective of this review is to summarize the basic characteristics of biodegradable materials commonly used in indirect 3D bioprinting for vascularization, and to address recent advances in applying this technique to the vascularization of different tissues. Furthermore, the review describes how indirect 3D bioprinting creates blood vessels and vascularized tissue constructs by introducing the methodology and biodegradable ink selection. With the continuous improvement of biodegradable materials in the future, indirect 3D bioprinting will make further contributions to the development of this field.
Collapse
Affiliation(s)
- Yiting Ze
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxi Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyang Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yixin Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Gong
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|