1
|
Yu LCH. Gastrointestinal pathophysiology in long COVID: Exploring roles of microbiota dysbiosis and serotonin dysregulation in post-infectious bowel symptoms. Life Sci 2024; 358:123153. [PMID: 39454992 DOI: 10.1016/j.lfs.2024.123153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024]
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered an unprecedented public health crisis known as the coronavirus disease 2019 (COVID-19) pandemic. Gastrointestinal (GI) symptoms develop in patients during acute infection and persist after recovery from airway distress in a chronic form of the disease (long COVID). A high incidence of irritable bowel syndrome (IBS) manifested by severe abdominal pain and defecation pattern changes is reported in COVID patients. Although COVID is primarily considered a respiratory disease, fecal shedding of SARS-CoV-2 antigens positively correlates with bowel symptoms. Active viral infection in the GI tract was identified by human intestinal organoid studies showing SARS-CoV-2 replication in gut epithelial cells. In this review, we highlight the key findings in post-COVID bowel symptoms and explore possible mechanisms underlying the pathophysiology of the illness. These mechanisms include mucosal inflammation, gut barrier dysfunction, and microbiota dysbiosis during viral infection. Viral shedding through the GI route may be the primary factor causing the alteration of the microbiome ecosystem, particularly the virome. Recent evidence in experimental models suggested that microbiome dysbiosis could be further aggravated by epithelial barrier damage and immune activation. Moreover, altered microbiota composition has been associated with dysregulated serotonin pathways, resulting in intestinal nerve hypersensitivity. These mechanisms may explain the development of post-infectious IBS-like symptoms in long COVID. Understanding how coronavirus infection affects gut pathophysiology, including microbiome changes, would benefit the therapeutic advancement for managing post-infectious bowel symptoms.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
2
|
Kim D, Cooper JA, Helfman DM. Loss of myosin light chain kinase induces the cellular senescence associated secretory phenotype to promote breast epithelial cell migration. Sci Rep 2024; 14:25786. [PMID: 39468273 PMCID: PMC11519378 DOI: 10.1038/s41598-024-76868-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
Overexpression or activation of oncogenes or loss of tumor-suppressor genes can induce cellular senescence as a defense mechanism against tumor development, thereby maintaining cellular homeostasis. However, cancer cells can circumvent this senescent state and continue to spread. Myosin light chain kinase (MLCK) is downregulated in many breast cancers. Here we report that downregulation of MLCK in normal breast epithelial cells induces a senescence-associated secretory phenotype and stimulates migration. The reduction of MLCK results in increased p21Cip1 expression, dependent on p53 and the AKT-mammalian target of rapamycin pathway. Subsequently, p21Cip1 promotes the secretion of soluble ICAM-1, IL-1α, IL-6 and IL-8, thereby enhancing collective cell migration in a non-cell-autonomous manner. These findings provide new mechanistic insights into the role of MLCK in cellular senescence and cancer progression.
Collapse
Affiliation(s)
- Dayoung Kim
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.
| | - Jonathan A Cooper
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - David M Helfman
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
3
|
She MP, Hsieh YT, Lin LY, Tu CH, Wu MS, Hsin LW, Yu LCH. Differential roles of serotonin receptor subtypes in regulation of neurotrophin receptor expression and intestinal hypernociception. Histol Histopathol 2024; 39:903-919. [PMID: 38108436 DOI: 10.14670/hh-18-687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
OBJECTIVES Aberrant serotonin (5-hydroxytryptamine, 5-HT) metabolism and neurite outgrowth were associated with abdominal pain in irritable bowel syndrome (IBS). We previously demonstrated that 5-HT receptor subtype 7 (5-HT₇) was involved in visceral hypersensitivity of IBS-like mouse models. The aim was to compare the analgesic effects of a novel 5-HT₇ antagonist to reference standards in mouse models and investigate the mechanisms of 5-HT₇-dependent neuroplasticity. METHODS Two mouse models, including Giardia post-infection combined with water avoidance stress (GW) and post-resolution of trinitrobenzene sulfonic acid-induced colitis (PT) were used. Mice were orally administered CYY1005 (CYY, a novel 5-HT₇ antagonist), alosetron (ALN, a 5-HT₃ antagonist), and loperamide (LPM, an opioid receptor agonist) prior to measurement of visceromotor responses (VMR). Levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophin receptors (NTRs) were assessed. RESULTS Peroral CYY was more potent than ALN or LPM in reducing VMR values in GW and PT mice. Increased mucosal 5-HT₇-expressing nerve fibers were associated with elevated Gap43 levels in the mouse colon. We observed higher colonic Ntrk2 and Ngfr expression in GW mice, and increased Bdnf expression in PT mice compared with control mice. Human SH-SY5Y cells stimulated with mouse colonic supernatant or exogenous serotonin exhibited longer nerve fibers, which CYY dose-dependently inhibited. Serotonin increased Ntrk1 and Ngfr expression via 5-HT₇ but not 5-HT₃ or 5-HT₄, while Ntrk2 upregulation was dependent on all three 5-HT receptor subtypes. CONCLUSIONS Stronger analgesic effects by peroral CYY were observed compared with reference standards in two IBS-like mouse models. The 5-HT₇-dependent NTR upregulation and neurite elongation may be involved in intestinal hypernociception.
Collapse
Affiliation(s)
- Meng-Ping She
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Yu-Ting Hsieh
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Li-Yu Lin
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Chia-Hung Tu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan ROC
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan ROC
| | - Ling-Wei Hsin
- School of Pharmacy, National Taiwan University, Taipei, Taiwan ROC
- Center for Innovative Therapeutics Discovery, National Taiwan University, Taipei, Taiwan ROC
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC.
| |
Collapse
|
4
|
Pai YC, Li YH, Turner JR, Yu LCH. Transepithelial Barrier Dysfunction Drives Microbiota Dysbiosis to Initiate Epithelial Clock-driven Inflammation. J Crohns Colitis 2023; 17:1471-1488. [PMID: 37004200 PMCID: PMC10588795 DOI: 10.1093/ecco-jcc/jjad064] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Indexed: 04/03/2023]
Abstract
BACKGROUND Factors that contribute to inflammatory bowel disease [IBD] pathogenesis include genetic polymorphisms, barrier loss, and microbial dysbiosis. A major knowledge gap exists in the origins of the colitogenic microbiome and its relationship with barrier impairment. Epithelial myosin light chain kinase [MLCK] is a critical regulator of the paracellular barrier, but the effects of MLCK activation on the intraepithelial bacteria [IEB] and dysbiosis are incompletely understood. We hypothesise that MLCK-dependent bacterial endocytosis promotes pathobiont conversion and shapes a colitogenic microbiome. METHODS To explore this, transgenic [Tg] mice with barrier loss induced by intestinal epithelium-specific expression of a constitutively active MLCK were compared with wild-type [WT] mice. RESULTS When progeny of homozygous MLCK-Tg mice were separated after weaning by genotype [Tg/Tg, Tg/WT, WT/WT], increased IEB numbers associated with dysbiosis and more severe colitis were present in Tg/Tg and Tg/WT mice, relative to WT/WT mice. Cohousing with MLCK-Tg mice induced dysbiosis, increased IEB abundance, and exacerbated colitis in WT mice. Conversely, MLCK-Tg mice colonised with WT microbiota at birth displayed increased Escherichia abundance and greater colitis severity by 6 weeks of age. Microarray analysis revealed circadian rhythm disruption in WT mice co-housed with MLCK-Tg mice relative to WT mice housed only with WT mice. This circadian disruption required Rac1/STAT3-dependent microbial invasion but not MLCK activity, and resulted in increased proinflammatory cytokines and glucocorticoid downregulation. CONCLUSIONS The data demonstrate that barrier dysfunction induces dysbiosis and expansion of invasive microbes that lead to circadian disruption and mucosal inflammation. These results suggest that barrier-protective or bacterium-targeted precision medicine approaches may be of benefit to IBD patients.
Collapse
Affiliation(s)
- Yu-Chen Pai
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Yi-Hsuan Li
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Jerrold R Turner
- Brigham's Women Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| |
Collapse
|
5
|
Chang WY, Yang YT, She MP, Tu CH, Lee TC, Wu MS, Sun CH, Hsin LW, Yu LCH. 5-HT 7 receptor-dependent intestinal neurite outgrowth contributes to visceral hypersensitivity in irritable bowel syndrome. J Transl Med 2022; 102:1023-1037. [PMID: 36775417 PMCID: PMC9420680 DOI: 10.1038/s41374-022-00800-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 04/22/2022] [Accepted: 04/22/2022] [Indexed: 12/19/2022] Open
Abstract
Irritable bowel syndrome (IBS) is characterized by visceral hypersensitivity (VH) associated with abnormal serotonin/5-hydroxytryptamine (5-HT) metabolism and neurotrophin-dependent mucosal neurite outgrowth. The underlying mechanisms of VH remain poorly understood. We investigated the role of 5-HT7 receptor in mucosal innervation and intestinal hyperalgesia. A high density of mucosal nerve fibres stained for 5-HT7 was observed in colonoscopic biopsy specimens from IBS patients compared with those from healthy controls. Staining of 5-HT3 and 5-HT4 receptors was observed mainly in colonic epithelia with comparable levels between IBS and controls. Visceromotor responses to colorectal distension were evaluated in two mouse models, one postinfectious with Giardia and subjected to water avoidance stress (GW) and the other postinflammatory with trinitrobenzene sulfonic acid-induced colitis (PT). Increased VH was associated with higher mucosal density of 5-HT7-expressing nerve fibres and elevated neurotrophin and neurotrophin receptor levels in the GW and PT mice. The increased VH was inhibited by intraperitoneal injection of SB-269970 (a selective 5-HT7 antagonist). Peroral multiple doses of CYY1005 (a novel 5-HT7 ligand) decreased VH and reduced mucosal density of 5-HT7-expressing nerve fibres in mouse colon. Human neuroblastoma SH-SY5Y cells incubated with bacteria-free mouse colonic supernatant, 5-HT, nerve growth factor, or brain-derived neurotrophic factor exhibited nerve fibre elongation, which was inhibited by 5-HT7 antagonists. Gene silencing of HTR7 also reduced the nerve fibre length. Activation of 5-HT7 upregulated NGF and BDNF gene expression, while stimulation with neurotrophins increased the levels of tryptophan hydroxylase 2 and 5-HT7 in neurons. A positive-feedback loop was observed between serotonin and neurotrophin pathways via 5-HT7 activation to aggravate fibre elongation, whereby 5-HT3 and 5-HT4 had no roles. In conclusion, 5-HT7-dependent mucosal neurite outgrowth contributed to VH. A novel 5-HT7 antagonist could be used as peroral analgesics for IBS-related pain.
Collapse
Affiliation(s)
- Wen-Ying Chang
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Yi-Ting Yang
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Meng-Ping She
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Chia-Hung Tu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan ROC
| | - Tsung-Chun Lee
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan ROC
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan ROC
| | - Chin-Hung Sun
- Department of Tropical Medicine and Parasitology, National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Ling-Wei Hsin
- Graduate Institute of Pharmacy, National Taiwan University School of Pharmacy, Taipei, Taiwan ROC.
- Center for Innovative Therapeutics Discovery, National Taiwan University, Taipei, Taiwan ROC.
| | - Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan ROC.
| |
Collapse
|
6
|
Yu LCH, Wei SC, Li YH, Lin PY, Chang XY, Weng JP, Shue YW, Lai LC, Wang JT, Jeng YM, Ni YH. Invasive Pathobionts Contribute to Colon Cancer Initiation by Counterbalancing Epithelial Antimicrobial Responses. Cell Mol Gastroenterol Hepatol 2021; 13:57-79. [PMID: 34418587 PMCID: PMC8600093 DOI: 10.1016/j.jcmgh.2021.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Microbiota dysbiosis and mucosa-associated bacteria are involved in colorectal cancer progression. We hypothesize that an interaction between virulent pathobionts and epithelial defense promotes tumorigenesis. METHODS Chemical-induced CRC mouse model was treated with antibiotics at various phases. Colonic tissues and fecal samples were collected in a time-serial mode and analyzed by gene microarray and 16S rRNA sequencing. Intraepithelial bacteria were isolated using a gentamicin resistance assay, and challenged in epithelial cultures. RESULTS Our study showed that antibiotic treatment at midphase but not early or late phase reduced mouse tumor burden, suggesting a time-specific host-microbe interplay. A unique antimicrobial transcriptome profile showing an inverse relationship between autophagy and oxidative stress genes was correlated with a transient surge in microbial diversity and virulence emergence in mouse stool during cancer initiation. Gavage with fimA/fimH/htrA-expressing invasive Escherichia coli isolated from colonocytes increased tumor burden in recipient mice, whereas inoculation of bacteria deleted of htrA or triple genes did not. The invasive E.coli suppressed epithelial autophagy activity through reduction of microtubule-associated protein 1 light-chain 3 transcripts and caused dual oxidase 2-dependent free radical overproduction and tumor cell hyperproliferation. A novel alternating spheroid culture model was developed for sequential bacterial challenge to address the long-term changes in host-microbe interaction for chronic tumor growth. Epithelial cells with single bacterial encounter showed a reduction in transcript levels of autophagy genes while those sequentially challenged with invasive E.coli showed heightened autophagy gene expression to eliminate intracellular microbes, implicating that bacteria-dependent cell hyperproliferation could be terminated at late phases. Finally, the presence of bacterial htrA and altered antimicrobial gene expression were observed in human colorectal cancer specimens. CONCLUSIONS Invasive pathobionts contribute to cancer initiation during a key time frame by counterbalancing autophagy and oxidative stress in the colonic epithelium. Monitoring gut microbiota and antimicrobial patterns may help identify the window of opportunity for intervention with bacterium-targeted precision medicine.
Collapse
Affiliation(s)
| | - Shu-Chen Wei
- Department of Internal Medicine, Taipei, Taiwan, Republic of China
| | - Yi-Hsuan Li
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China
| | - Po-Yu Lin
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China
| | - Xin-Yu Chang
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China
| | - Jui-Ping Weng
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China
| | - Yin-Wen Shue
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China,Department of Internal Medicine, Taipei, Taiwan, Republic of China
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, Taipei, Taiwan, Republic of China,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Jin-Town Wang
- Department of Internal Medicine, Taipei, Taiwan, Republic of China,Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan, Republic of China
| | - Yung-Ming Jeng
- Department of Pathology, Taipei, Taiwan, Republic of China
| | - Yen-Hsuan Ni
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan, Republic of China,Correspondence Address correspondence to: Yen-Hsuan Ni, MD, PhD, Department of Pediatrics, National Taiwan University College of Medicine and Hospital, 7 Chung-Shan South Road, Taipei, Taiwan, Republic of China. fax: (886) 2-23938871.
| |
Collapse
|