1
|
Liu Z, Huang YF. Deep multiple-instance learning accurately predicts gene haploinsufficiency and deletion pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555384. [PMID: 37693607 PMCID: PMC10491176 DOI: 10.1101/2023.08.29.555384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Copy number losses (deletions) are a major contributor to the etiology of severe genetic disorders. Although haploinsufficient genes play a critical role in deletion pathogenicity, current methods for deletion pathogenicity prediction fail to integrate multiple lines of evidence for haploinsufficiency at the gene level, limiting their power to pinpoint deleterious deletions associated with genetic disorders. Here we introduce DosaCNV, a deep multiple-instance learning framework that, for the first time, models deletion pathogenicity jointly with gene haploinsufficiency. By integrating over 30 gene-level features potentially predictive of haploinsufficiency, DosaCNV shows unmatched performance in prioritizing pathogenic deletions associated with a broad spectrum of genetic disorders. Furthermore, DosaCNV outperforms existing methods in predicting gene haploinsufficiency even though it is not trained on known haploinsufficient genes. Finally, DosaCNV leverages a state-of-the-art technique to quantify the contributions of individual gene-level features to haploinsufficiency, allowing for human-understandable explanations of model predictions. Altogether, DosaCNV is a powerful computational tool for both fundamental and translational research.
Collapse
Affiliation(s)
- Zhihan Liu
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Molecular, Cellular, and Integrative Biosciences Program, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Yi-Fei Huang
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Transcriptional Dynamics of DNA Damage Responsive Genes in Circulating Leukocytes during Radiotherapy. Cancers (Basel) 2022; 14:cancers14112649. [PMID: 35681629 PMCID: PMC9179543 DOI: 10.3390/cancers14112649] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary In this study, the transcriptional response of a panel of radiation responsive genes was monitored over time in blood samples after radiation exposure in vivo. For this aim, cancer patients treated by radiotherapy were recruited after consent forms were obtained. Following the first fraction of radiotherapy, 2 mL blood samples were collected at different time points during the first 24h hours (before the second fraction was delivered) and at mid and end of treatment. Amongst the 9 genes studied, the gene FDXR stood out as the most sensitive and responsive to the low dose of radiation received from the localised radiation treatment by the circulating white blood cells. The activation of FDXR was found to depend on the volume of the body exposed with a peak of expression around 8–9 hours after irradiation was delivered. Finally results obtained ex vivo confirmed the results obtained in vivo. Abstract External beam radiation therapy leads to cellular activation of the DNA damage response (DDR). DNA double-strand breaks (DSBs) activate the ATM/CHEK2/p53 pathway, inducing the transcription of stress genes. The dynamic nature of this transcriptional response has not been directly observed in vivo in humans. In this study we monitored the messenger RNA transcript abundances of nine DNA damage-responsive genes (CDKN1A, GADD45, CCNG1, FDXR, DDB2, MDM2, PHPT1, SESN1, and PUMA), eight of them regulated by p53 in circulating blood leukocytes at different time points (2, 6–8, 16–18, and 24 h) in cancer patients (lung, neck, brain, and pelvis) undergoing radiotherapy. We discovered that, although the calculated mean physical dose to the blood was very low (0.038–0.169 Gy), an upregulation of Ferredoxin reductase (FDXR) gene transcription was detectable 2 h after exposure and was dose dependent from the lowest irradiated percentage of the body (3.5% whole brain) to the highest, (up to 19.4%, pelvic zone) reaching a peak at 6–8 h. The radiation response of the other genes was not strong enough after such low doses to provide meaningful information. Following multiple fractions, the expression level increased further and was still significantly up-regulated by the end of the treatment. Moreover, we compared FDXR transcriptional responses to ionizing radiation (IR) in vivo with healthy donors’ blood cells exposed ex vivo and found a good correlation in the kinetics of expression from the 8-hours time-point onward, suggesting that a molecular transcriptional regulation mechanism yet to be identified is involved. To conclude, we provided the first in vivo human report of IR-induced gene transcription temporal response of a panel of p53-dependant genes. FDXR was demonstrated to be the most responsive gene, able to reliably inform on the low doses following partial body irradiation of the patients, and providing an expression pattern corresponding to the % of body exposed. An extended study would provide individual biological dosimetry information and may reveal inter-individual variability to predict radiotherapy-associated adverse health outcomes.
Collapse
|
3
|
Kaur H, Salles DC, Murali S, Hicks JL, Nguyen M, Pritchard CC, De Marzo AM, Lanchbury JS, Trock BJ, Isaacs WB, Timms KM, Antonarakis ES, Lotan TL. Genomic and Clinicopathologic Characterization of ATM-deficient Prostate Cancer. Clin Cancer Res 2020; 26:4869-4881. [PMID: 32694154 PMCID: PMC7501149 DOI: 10.1158/1078-0432.ccr-20-0764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/28/2020] [Accepted: 07/15/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE The ATM (ataxia telangiectasia mutated) gene is mutated in a subset of prostate cancers, and ATM mutation may confer specific therapeutic vulnerabilities, although ATM-deficient prostate cancers have not been well-characterized. EXPERIMENTAL DESIGN We genetically validated a clinical grade IHC assay to detect ATM protein loss and examined the frequency of ATM loss among tumors with pathogenic germline ATM mutations and genetically unselected primary prostate carcinomas using tissue microarrays (TMAs). Immunostaining results were correlated with targeted somatic genomic sequencing and clinical outcomes. RESULTS ATM protein loss was found in 13% (7/52) of primary Gleason pattern 5 cancers with available sequencing data and was 100% sensitive for biallelic ATM inactivation. In a separate cohort with pathogenic germline ATM mutations, 74% (14/19) had ATM protein loss of which 70% (7/10) of evaluable cases had genomic evidence of biallelic inactivation, compared with zero of four of cases with intact ATM expression. By TMA screening, ATM loss was identified in 3% (25/831) of evaluable primary tumors, more commonly in grade group 5 (17/181; 9%) compared with all other grades (8/650; 1%; P < 0.0001). Of those with available sequencing, 80% (4/5) with homogeneous ATM protein loss and 50% (6/12) with heterogeneous ATM protein loss had detectable pathogenic ATM alterations. In surgically treated patients, ATM loss was not significantly associated with clinical outcomes in random-effects Cox models after adjusting for clinicopathologic variables. CONCLUSIONS ATM loss is enriched among high-grade prostate cancers. Optimal evaluation of ATM status requires both genomic and IHC studies and will guide development of molecularly targeted therapies.
Collapse
Affiliation(s)
- Harsimar Kaur
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniela C Salles
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sanjana Murali
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Jessica L Hicks
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Colin C Pritchard
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
| | - Angelo M De Marzo
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | | | - Bruce J Trock
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William B Isaacs
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Emmanuel S Antonarakis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland.
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Chugh NA, Bansal MP, Koul A. The effect of Azadirachta indica Leaf Extract on Early Stages of Chemically Induced Skin Cancer in Mice. ACTA ACUST UNITED AC 2018. [DOI: 10.1080/10496475.2018.1463932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
| | | | - Ashwani Koul
- Department of Biophysics, Panjab University, Chandigarh, India
| |
Collapse
|
5
|
Russell R, Perkhofer L, Liebau S, Lin Q, Lechel A, Feld FM, Hessmann E, Gaedcke J, Güthle M, Zenke M, Hartmann D, von Figura G, Weissinger SE, Rudolph KL, Möller P, Lennerz JK, Seufferlein T, Wagner M, Kleger A. Loss of ATM accelerates pancreatic cancer formation and epithelial-mesenchymal transition. Nat Commun 2015; 6:7677. [PMID: 26220524 PMCID: PMC4532798 DOI: 10.1038/ncomms8677] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 05/30/2015] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is associated with accumulation of particular oncogenic mutations and recent genetic sequencing studies have identified ataxia telangiectasia-mutated (ATM) mutations in PDAC cohorts. Here we report that conditional deletion of ATM in a mouse model of PDAC induces a greater number of proliferative precursor lesions coupled with a pronounced fibrotic reaction. ATM-targeted mice display altered TGFβ-superfamily signalling and enhanced epithelial-to-mesenchymal transition (EMT) coupled with shortened survival. Notably, our mouse model recapitulates many features of more aggressive human PDAC subtypes. Particularly, we report that low expression of ATM predicts EMT, a gene signature specific for Bmp4 signalling and poor prognosis in human PDAC. Our data suggest an intimate link between ATM expression and pancreatic cancer progression in mice and men.
Collapse
Affiliation(s)
- Ronan Russell
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Lukas Perkhofer
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tuebingen, Oesterbergstr. 3, Tuebingen 72074, Germany
| | - Qiong Lin
- Department of Cell Biology, Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Pauwelstr. 30, Aachen 52074, Germany
| | - André Lechel
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Fenja M Feld
- Institute of Pathology, Ulm University, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology II, University Medical Center Goettingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
| | - Jochen Gaedcke
- Department of Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, Goettingen 37075, Germany
| | - Melanie Güthle
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, Pauwelstr. 30, Aachen 52074, Germany
| | - Daniel Hartmann
- Department of Surgery, Technische Universität München, Ismaninger Str. 22, Munich 81675, Germany
| | - Guido von Figura
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, Munich 81675, Germany
| | | | - Karl-Lenhard Rudolph
- Leibniz Institute for Age Research - Fritz Lipmann Institute e.V., Beutenbergstr. 11, Jena 07745, Germany
| | - Peter Möller
- Institute of Pathology, Ulm University, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Jochen K Lennerz
- Institute of Pathology, Ulm University, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Martin Wagner
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, Ulm 89081, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University, Albert-Einstein-Allee 23, Ulm 89081, Germany
| |
Collapse
|
6
|
Yadav DS, Chattopadhyay I, Verma A, Devi TR, Singh LC, Sharma JD, Kataki AC, Saxena S, Kapur S. A pilot study evaluating genetic alterations that drive tobacco- and betel quid-associated oral cancer in Northeast India. Tumour Biol 2014; 35:9317-30. [PMID: 24943687 DOI: 10.1007/s13277-014-2222-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 06/10/2014] [Indexed: 12/19/2022] Open
Abstract
The susceptibility of an individual to oral cancer is mediated by genetic factors and carcinogen-exposure behaviors such as betel quid chewing, tobacco use, and alcohol consumption. This pilot study was aimed to identify the genetic alteration in 100 bp upstream and downstream flanking regions in addition to the exonic regions of 169 cancer-associated genes by using Next Generation sequencing with aim to elucidate the molecular pathogenesis of tobacco- and betel quid-associated oral cancer of Northeast India. To understand the role of chemical compounds present in tobacco and betel quid associated with the progression of oral cancer, single nucleotide polymorphisms (SNPs) and insertion and deletion (Indels) found in this study were analyzed for their association with chemical compounds found in tobacco and betel quid using Comparative Toxogenomic Database. Genes (AR, BRCA1, IL8, and TP53) with novel SNP were found to be associated with arecoline which is the major component of areca nut. Genes (BARD1, BRCA2, CCND2, IGF1R, MSH6, and RASSF1) with novel deletion and genes (APC, BRMS1, CDK2AP1, CDKN2B, GAS1, IGF1R, and RB1) with novel insertion were found to be associated with aflatoxin B1 which is produced by fermented areca nut. Genes (ADH6, APC, AR, BARD1, BRMS1, CDKN1A, E2F1, FGFR4, FLNC, HRAS, IGF1R, IL12B, IL8, NBL1, STAT5B, and TP53) with novel SNP were found to be associated with aflatoxin B1. Genes (ATM, BRCA1, CDKN1A, EGFR, IL8, and TP53) with novel SNP were found to be associated with tobacco specific nitrosamines.
Collapse
Affiliation(s)
- Dhirendra Singh Yadav
- National Institute of Pathology, Indian Council of Medical Research, Room No 206, Safdarjung Hospital Campus, New Delhi, 110029, India,
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kim YJ, Ahn KS, Kim M, Kim MJ, Park SM, Ryu J, Ahn JS, Heo SY, Kang JH, Choi YJ, Choi SJ, Shim H. Targeted disruption of Ataxia-telangiectasia mutated gene in miniature pigs by somatic cell nuclear transfer. Biochem Biophys Res Commun 2014; 452:901-5. [PMID: 25193705 DOI: 10.1016/j.bbrc.2014.08.125] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/25/2014] [Indexed: 01/01/2023]
Abstract
Ataxia telangiectasia (A-T) is a recessive autosomal disorder associated with pleiotropic phenotypes, including progressive cerebellar degeneration, gonad atrophy, and growth retardation. Even though A-T is known to be caused by the mutations in the Ataxia telangiectasia mutated (ATM) gene, the correlation between abnormal cellular physiology caused by ATM mutations and the multiple symptoms of A-T disease has not been clearly determined. None of the existing ATM mouse models properly reflects the extent to which neurological degeneration occurs in human. In an attempt to provide a large animal model for A-T, we produced gene-targeted pigs with mutations in the ATM gene by somatic cell nuclear transfer. The disrupted allele in the ATM gene of cloned piglets was confirmed via PCR and Southern blot analysis. The ATM gene-targeted pigs generated in the present study may provide an alternative to the current mouse model for the study of mechanisms underlying A-T disorder and for the development of new therapies.
Collapse
Affiliation(s)
- Young June Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Kwang Sung Ahn
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Minjeong Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Min Ju Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Sang-Min Park
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Junghyun Ryu
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jin Seop Ahn
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Soon Young Heo
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jee Hyun Kang
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - You Jung Choi
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Seong-Jun Choi
- Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea
| | - Hosup Shim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea; Institute of Tissue Regeneration Engineering, Dankook University, Cheonan, Republic of Korea; Department of Physiology, Dankook University School of Medicine, Cheonan, Republic of Korea.
| |
Collapse
|
8
|
Role of DNA damage response pathways in preventing carcinogenesis caused by intrinsic replication stress. Oncogene 2013; 33:3688-95. [PMID: 23975433 PMCID: PMC3936004 DOI: 10.1038/onc.2013.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 12/11/2022]
Abstract
Defective DNA replication can result in genomic instability, cancer, and developmental defects. To understand the roles of DNA damage response (DDR) genes on carcinogenesis in mutants defective for core DNA replication components, we utilized the Mcm4Chaos3/Chaos3 (“Chaos3”) mouse model which, by virtue of an amino acid alteration in MCM4 that destabilizes the MCM2-7 DNA replicative helicase, has fewer dormant replication origins and an increased number of stalled replication forks. This leads to genomic instability and cancer in most Chaos3 mice. We found that animals doubly mutant for Chaos3 and components of the ATM double strand break response pathway (Atm, p21/Cdkn1a, Chk2/Chek2) had decreased tumor latency and/or increased tumor susceptibility. Tumor latency and susceptibility differed between genetic backgrounds and genders, with females demonstrating an overall greater cancer susceptibility to Atm and p21 deficiency than males. ATM deficiency was semilethal in the Chaos3 background and impaired embryonic fibroblast proliferation, suggesting that ATM drug inhibitors might be useful against tumors with DNA replication defects. Hypomorphism for the 9-1-1 component Hus1 did not affect tumor latency or susceptibility in Chaos3 animals, and tumors in these mice did not exhibit impaired ATR pathway signaling. These and other data indicate that under conditions of systemic replication stress, the ATM pathway is particularly important both for cancer suppression and viability during development.
Collapse
|
9
|
Takagi M, Sato M, Piao J, Miyamoto S, Isoda T, Kitagawa M, Honda H, Mizutani S. ATM-dependent DNA damage-response pathway as a determinant in chronic myelogenous leukemia. DNA Repair (Amst) 2013; 12:500-7. [PMID: 23694754 DOI: 10.1016/j.dnarep.2013.04.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 12/23/2022]
Abstract
Chronic myelogenous leukemia (CML) begins with an indolent chronic phase, and subsequently progresses to an accelerated or blastic phase. Although several genes are known to be involved in the progression to blastic phase, molecular mechanisms for the evolution toward blast crisis have not been fully identified. Oncogenic stimuli enforce cell proliferation, which requires DNA replication. Unscheduled DNA replication enforced by oncogenic stimuli leads to double strand breaks on DNA. We found the DNA damage-response pathway is activated in bone marrow of chronic-phase CML patients possibly due to an enforced proliferation signal by BCR-ABL expression. Since ataxia telangiectasia mutated (ATM) is a central player of the DNA damage-response pathway, we studied whether loss of this pathway accelerates blast crisis. We crossed Atm-knockout mice with BCR-ABL transgenic mice to test this hypothesis. Interestingly, the loss of one of the Atm alleles was shown to be enough for the acceleration of the blast crisis, which is supported by the finding of increased genomic instability as assayed by breakage-fusion-bridge (BFB) cycle formation. In light of these findings, the DNA damage-response pathway plays a vital role for determination of susceptibility to blast crisis in CML.
Collapse
Affiliation(s)
- Masatoshi Takagi
- Tokyo Medical and Dental University, Department of the Pediatrics and Developmental Biology, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Tumor suppressor p53 is critical for suppressing all types of human cancers, including breast cancer. The p53 gene is somatically mutated in over half of all human cancers. The majority of the p53 mutations are missense mutations, leading to the expression of the full-length p53 mutants. Several hotspot mutations, including R175H, are frequently detected in human breast cancer. P53 cancer mutants not only lose tumor suppression activity but, more problematically, also gain new oncogenic activities. Despite correlation of the expression of p53 cancer mutants and the poor prognosis of human breast cancer patients, the roles of p53 cancer mutants in promoting breast cancer remain unclear. We used the humanized p53 cancer mutant knock-in (R175H) mice and mouse mammary tumor virus (MMTV)-Wnt-1 transgenic (mWnt-1) mice to specifically address the gain of function of R175H in promoting breast cancer. Although both R175H/R175HmWnt-1(R175HmWnt-1) and p53(-/-)mWnt-1 mice died from mammary tumor at the same kinetics, which was much earlier than mWnt-1 mice, most of the R175HmWnt-1 mice developed multiple mammary tumors per mouse, whereas p53(-/-)mWnt-1 and mWnt-1 mice mostly developed one tumor per mouse. The multiple mammary tumors arose in the same R175HmWnt-1 mouse exhibited different histological characters. Moreover, R175H gain-of-function mutant expands the mammary epithelial stem cells (MESCs) that give rise to the mammary tumors. As ATM suppresses the expansion of MESCs, the inactivation of ATM by R175H in mammary epithelial cells (MECs) could contribute to the expansion of MESCs in R175HmWnt-1 mice. These findings provide the basis for R175H to promote the initiation of breast cancer by expanding MESCs.
Collapse
|
11
|
Wang J, Su F, Smilenov LB, Zhou L, Hu W, Ding N, Zhou G. Mechanisms of increased risk of tumorigenesis in Atm and Brca1 double heterozygosity. Radiat Oncol 2011; 6:96. [PMID: 21849032 PMCID: PMC3169458 DOI: 10.1186/1748-717x-6-96] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 08/17/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Both epidemiological and experimental studies suggest that heterozygosity for a single gene is linked with tumorigenesis and heterozygosity for two genes increases the risk of tumor incidence. Our previous work has demonstrated that Atm/Brca1 double heterozygosity leads to higher cell transformation rate than single heterozygosity. However, the underlying mechanisms have not been fully understood yet. In the present study, a series of pathways were investigated to clarify the possible mechanisms of increased risk of tumorigenesis in Atm and Brca1 heterozygosity. METHODS Wild type cells, Atm or Brca1 single heterozygous cells, and Atm/Brca1 double heterozygous cells were used to investigate DNA damage and repair, cell cycle, micronuclei, and cell transformation after photon irradiation. RESULTS Remarkable high transformation frequency was confirmed in Atm/Brca1 double heterozygous cells compared to wild type cells. It was observed that delayed DNA damage recognition, disturbed cell cycle checkpoint, incomplete DNA repair, and increased genomic instability were involved in the biological networks. Haploinsufficiency of either ATM or BRCA1 negatively impacts these pathways. CONCLUSIONS The quantity of critical proteins such as ATM and BRCA1 plays an important role in determination of the fate of cells exposed to ionizing radiation and double heterozygosity increases the risk of tumorigenesis. These findings also benefit understanding of the individual susceptibility to tumor initiation.
Collapse
Affiliation(s)
- Jufang Wang
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, P R China
| | | | | | | | | | | | | |
Collapse
|
12
|
Yamamoto ML, Hafer K, Reliene R, Fleming S, Kelly O, Hacke K, Schiestl RH. Effects of 1 GeV/nucleon56Fe Particles on Longevity, Carcinogenesis and Neuromotor Ability inAtm-Deficient Mice. Radiat Res 2011; 175:231-9. [DOI: 10.1667/rr2312.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Gridley DS, Pecaut MJ. Genetic background and lymphocyte populations after total-body exposure to iron ion radiation. Int J Radiat Biol 2010; 87:8-23. [PMID: 21067301 DOI: 10.3109/09553002.2010.518203] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE Particle radiations could significantly impact astronaut health during space missions. This study quantified the effects of iron ion radiation on lymphocytes in two strains of mice differing in susceptibility to radiation-induced acute myeloid leukemia (AML) and thymic lymphoma (TL): C57BL/6 (AML resistant, TL sensitive) and CBA/Ca (AML sensitive, TL resistant). MATERIALS AND METHODS The animals (n = 60/strain) were irradiated with ⁵⁶Fe(26+) (1 GeV) to total doses of 0, 0.5, 2 and 3 Gray (Gy) at an average dose rate of 1 Gy/min and euthanised on days 4 and 30 thereafter; blood, spleen, and bone marrow were collected for flow cytometry analyses. Cells expressing the following molecules were quantified: Cluster of differentiation (CD) 4, CD8, CD25, CD34, CD71, B220 (isoform of CD45 on B cells), NK1.1 (marker on natural killer or NK cells, C57B mice), panNK (marker on NK cells, CBA mice), and Sca1 (stem cell antigen 1). RESULTS Exposure to radiation resulted in different distribution patterns in lymphocyte populations and leukocytes expressing activation and progenitor markers in the two mouse strains. Significant main effects were dependent upon strain, as well as radiation dose, body compartment, and time of assessment. Especially striking differences were noted on day 4 after 3 Gy irradiation, including in the CD4:CD8 ratio [blood, C57 (2.83 ± 0.25) vs. CBA (6.19 ± 0.24); spleen, C57 (2.29 ± 0.12) vs. CBA (4.98 ± 0.22)], %CD25(+) mononuclear cells in bone marrow [C57 (5.62 ± 1.19) vs. CBA (12.45 ± 0.93)] and %CD34(+)Sca1(+) cells in bone marrow [CD45¹° gate, C57 (2.72 ± 0.74) vs. CBA (21.44 ± 0.73)]. CONCLUSION The results show that genetic background, as well as radiation dose and time post-exposure, had a profound impact on lymphocyte populations, as well as other leukocytes, after exposure to iron ion radiation.
Collapse
Affiliation(s)
- Daila S Gridley
- Department of Radiation Medicine, Radiation Research Laboratories, Divisions of Microbiology & Biochemistry, Loma Linda University and Medical Center, Loma Linda, California 92354, USA.
| | | |
Collapse
|
14
|
Ljungman M. The DNA damage response--repair or despair? ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:879-889. [PMID: 20818630 DOI: 10.1002/em.20597] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The term "the DNA damage response" (DDR) encompasses a sophisticated array of cellular initiatives set in motion as cells are exposed to DNA-damaging events. It has been known for over half a century that all organisms have the ability to restore genomic integrity through DNA repair. More recent discoveries of signal transduction pathways linking DNA damage to cell cycle arrest and apoptosis have greatly expanded our views of how cells and tissues limit mutagenesis and tumorigenesis. DNA repair not only plays a pivotal role in suppressing mutagenesis but also in the reversal of signals inducing the stress response. If repair is faulty or the cell is overwhelmed by damage, chances are that the cell will despair and be removed by apoptosis. This final fate is determined by intricate cellular dosimeters that are yet to be fully understood. Here, key findings leading to our current view of DDR are discussed as well as potential areas of importance for future studies.
Collapse
Affiliation(s)
- Mats Ljungman
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 48109, USA.
| |
Collapse
|
15
|
Poehlmann A, Roessner A. Importance of DNA damage checkpoints in the pathogenesis of human cancers. Pathol Res Pract 2010; 206:591-601. [PMID: 20674189 DOI: 10.1016/j.prp.2010.06.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
All forms of life on earth must cope with constant exposure to DNA-damaging agents that may promote cancer development. As a biological barrier, known as DNA damage response (DDR), cells are provided with both DNA repair mechanisms and highly conserved cell cycle checkpoints. The latter are responsible for the control of cell cycle phase progression with ATM, ATR, Chk1, and Chk2 as the main signaling molecules, thus dealing with both endogenous and exogenous sources of DNA damage. As cell cycle checkpoint and also DNA repair genes, such as BRCA1 and BRCA2, are frequently mutated, we here discuss their fundamental roles in the pathogenesis of human cancers. Importantly, as current evidence also suggests a role of MAPK's (mitogen activated protein kinases) in cell cycle checkpoint control, we describe in this review both the ATR/ATM-Chk1/Chk2 signaling pathways as well as the regulation of cell cycle checkpoints by MAPK's as molecular mechanisms in DDR, and how their dysfunction is related to cancer development. Moreover, since damage to DNA might be the common underlying mechanism for the positive outcome of chemotherapy, we also discuss targeting anticancer treatments on cell cycle checkpoints as an important issue emerging in drug discovery.
Collapse
Affiliation(s)
- Angela Poehlmann
- Department of Pathology, Otto-von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | | |
Collapse
|
16
|
Abstract
Geneticists estimate that 5% to 10% of all cancers diagnosed in the pediatric age range occur in children born with a genetic mutation that directly increases their lifetime risk for neoplasia. However, despite the fact that only a fraction of cancers in children occur as a result of an identified inherited predisposition, characterizing genetic mutations responsible for increased cancer risk in such syndromes has resulted in a profound understanding of relevant molecular pathways involved in carcinogenesis and/or resistance to neoplasia. Importantly, because most cancer predisposition syndromes result in an increased risk of a small number of defined malignancies, personalized prophylactic surveillance and preventive measures can be implemented in affected patients. Lastly, many of the same genetic targets identified from cancer-prone families are mechanistically involved in the majority of sporadic cancers in adults and children, thereby underscoring the clinical relevance of knowledge gained from these defined syndromes and introducing novel therapeutic opportunities to the broader oncologic community. This review highlights the clinical and genetic features of many of the known constitutional genetic syndromes that predispose to malignancy in children and young adults.
Collapse
|
17
|
Defining the ATM-mediated barrier to tumorigenesis in somatic mammary cells following ErbB2 activation. Proc Natl Acad Sci U S A 2010; 107:3728-33. [PMID: 20133707 DOI: 10.1073/pnas.0910665107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
p53, apoptosis, and senescence are frequently activated in preneoplastic lesions and are barriers to progression to malignancy. These barriers have been suggested to result from an ATM-mediated DNA damage response (DDR), which may follow oncogene-induced hyperproliferation and ensuing DNA replication stress. To elucidate the currently untested role of DDR in breast cancer initiation, we examined the effect of oncogene expression in several murine models of breast cancer. We did not observe a detectable DDR in early hyperplastic lesions arising in transgenic mice expressing several different oncogenes. However, DDR signaling was strongly induced in preneoplastic lesions arising from individual mammary cells transduced in vivo by retroviruses expressing either PyMT or ErbB2. Thus, activation of an oncogene after normal tissue development causes a DDR. Furthermore, in this somatic ErbB2 tumor model, ATM, and thus DDR, is required for p53 stabilization, apoptosis, and senescence. In palpable tumors in this model, p53 stabilization and apoptosis are lost, but unexpectedly senescence remains in many tumor cells. Thus, this murine model fully recapitulates early DDR signaling; the eventual suppression of its endpoints in tumorigenesis provides compelling evidence that ErbB2-induced aberrant mammary cell proliferation leads to an ATM-mediated DDR that activates apoptosis and senescence, and at least the former must be overcome to progress to malignancy. This in vivo study also uncovers an unexpected effect of ErbB2 activation previously known for its prosurvival roles, and suggests that protection of the ATM-mediated DDR-p53 signaling pathway may be important in breast cancer prevention.
Collapse
|
18
|
Wang H, Wang S, Shen L, Chen Y, Zhang X, Zhou J, Wang Z, Hu C, Yue W, Wang H. Chk2 down-regulation by promoter hypermethylation in human bulk gliomas. Life Sci 2009; 86:185-91. [PMID: 19969004 DOI: 10.1016/j.lfs.2009.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/29/2009] [Accepted: 11/30/2009] [Indexed: 12/11/2022]
Abstract
AIMS Gliomas account for 80% of malignant brain tumors. DNA damage response and subsequent checkpoint control pathways could maintain the integrity of the genome and thus defend tumorigenesis. Four kinases, ATM, ATR, ChK1 and Chk2 are the damage sensors and the early effectors in DNA damage responses. Given their importance, we investigated the transcriptional regulation of these four genes. MAIN METHODS Tissues from ten normal brains and thirty human gliomas were utilized for mRNA analysis via real-time PCR. Another twelve normal brain tissues and forty gliomas were used for confirmation. Methylation-specific PCR (MSP) was used to determine the methylation status of the Chk2 promoter. Quantitative chromatin immunoprecipitation (ChIP) was used to measure the influence of methylation on Sp1 binding. KEY FINDINGS We found that the expression of ATR, ChK1 and Chk2 in gliomas was significantly down-regulated relative to the normal brain tissues. The most significant reduction of expression was of the Chk2 gene, whose expression was approximately 10-fold decreased in gliomas (P<0.0001). Down-regulation of Chk2 was validated in the second real-time PCR analysis. This reduction in expression was partially due to promoter methylation. The Chk2 proximal promoter recruited Sp1 for transcriptional activation. We found that hypermethylation of the Chk2 promoter undermined the binding of the transcriptional factor Sp1. SIGNIFICANCE Our results indicate that Chk2 methylation could be involved in glioma carcinogenesis and Chk2 expression may potentially be used for the diagnosis of glioma.
Collapse
Affiliation(s)
- Hongwei Wang
- Harbin Medical University, Harbin 150001, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Efeyan A, Murga M, Martinez-Pastor B, Ortega-Molina A, Soria R, Collado M, Fernandez-Capetillo O, Serrano M. Limited role of murine ATM in oncogene-induced senescence and p53-dependent tumor suppression. PLoS One 2009; 4:e5475. [PMID: 19421407 PMCID: PMC2675057 DOI: 10.1371/journal.pone.0005475] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 03/27/2009] [Indexed: 01/03/2023] Open
Abstract
Recent studies in human fibroblasts have provided a new general paradigm of tumor suppression according to which oncogenic signaling produces DNA damage and this, in turn, results in ATM/p53-dependent cellular senescence. Here, we have tested this model in a variety of murine experimental systems. Overexpression of oncogenic Ras in murine fibroblasts efficiently induced senescence but this occurred in the absence of detectable DNA damage signaling, thus suggesting a fundamental difference between human and murine cells. Moreover, lung adenomas initiated by endogenous levels of oncogenic K-Ras presented abundant senescent cells, but undetectable DNA damage signaling. Accordingly, K-Ras-driven adenomas were also senescent in Atm-null mice, and the tumorigenic progression of these lesions was only modestly accelerated by Atm-deficiency. Finally, we have examined chemically-induced fibrosarcomas, which possess a persistently activated DNA damage response and are highly sensitive to the activity of p53. We found that the absence of Atm favored genomic instability in the resulting tumors, but did not affect the persistent DNA damage response and did not impair p53-dependent tumor suppression. All together, we conclude that oncogene-induced senescence in mice may occur in the absence of a detectable DNA damage response. Regarding murine Atm, our data suggest that it plays a minor role in oncogene-induced senescence or in p53-dependent tumor suppression, being its tumor suppressive activity probably limited to the maintenance of genomic stability.
Collapse
Affiliation(s)
- Alejo Efeyan
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Matilde Murga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Ana Ortega-Molina
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Rebeca Soria
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Manuel Collado
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
20
|
Flanagan JM, Munoz-Alegre M, Henderson S, Tang T, Sun P, Johnson N, Fletcher O, Dos Santos Silva I, Peto J, Boshoff C, Narod S, Petronis A. Gene-body hypermethylation of ATM in peripheral blood DNA of bilateral breast cancer patients. Hum Mol Genet 2009; 18:1332-42. [PMID: 19153073 PMCID: PMC2655767 DOI: 10.1093/hmg/ddp033] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Bilaterality of breast cancer is an indicator of constitutional cancer susceptibility; however, the molecular causes underlying this predisposition in the majority of cases is not known. We hypothesize that epigenetic misregulation of cancer-related genes could partially account for this predisposition. We have performed methylation microarray analysis of peripheral blood DNA from 14 women with bilateral breast cancer compared with 14 unaffected matched controls throughout 17 candidate breast cancer susceptibility genes including BRCA1, BRCA2, CHEK2, ATM, ESR1, SFN, CDKN2A, TP53, GSTP1, CDH1, CDH13, HIC1, PGR, SFRP1, MLH1, RARB and HSD17B4. We show that the majority of methylation variability is associated with intragenic repetitive elements. Detailed validation of the tiled region around ATM was performed by bisulphite modification and pyrosequencing of the same samples and in a second set of peripheral blood DNA from 190 bilateral breast cancer patients compared with 190 controls. We show significant hypermethylation of one intragenic repetitive element in breast cancer cases compared with controls (P = 0.0017), with the highest quartile of methylation associated with a 3-fold increased risk of breast cancer (OR 3.20, 95% CI 1.78–5.86, P = 0.000083). Increased methylation of this locus is associated with lower steady-state ATM mRNA level and correlates with age of cancer patients but not controls, suggesting a combined age–phenotype-related association. This research demonstrates the potential for gene-body epigenetic misregulation of ATM and other cancer-related genes in peripheral blood DNA that may be useful as a novel marker to estimate breast cancer risk. Accession numbers: The microarray data and associated .BED and .WIG files can be accessed through Gene Expression Omnibus accession number: GSE14603.
Collapse
|
21
|
|
22
|
Atm heterozygosity does not increase tumor susceptibility to ionizing radiation alone or in a p53 heterozygous background. Oncogene 2008; 27:6596-600. [PMID: 18679420 DOI: 10.1038/onc.2008.280] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ataxia-Telangiectasia (A-T) is an autosomal recessive human disease characterized by genetic instability, radiosensitivity, immunodeficiency and cancer predisposition, because of mutation in both alleles of the ATM (ataxia-telangiectasia mutated) gene. The role of Atm heterozygosity in cancer susceptibility is controversial, in both human and mouse. Earlier studies identified deletions near the Atm gene on mouse chromosome 9 in radiation-induced lymphomas from p53 heterozygous mice. To determine whether Atm was the target of these deletions, Atm heterozygous as well as Atm/P53 double heterozygous mice were treated with ionizing radiation. There were no significant differences in tumor latency, progression and lifespan after gamma-radiation in Atm heterozygous mice compared with their wild-type control counterparts. Deletions were found on chromosome 9 near the Atm locus in radiation-induced tumors, but in 50% of the cases the deletion included the knockout allele, and the expression of Atm was maintained in the tumors indicating that loss of heterozygosity on chromosome 9 is not driven by Atm, but by an alternative tumor suppressor gene located near Atm on this chromosome. We conclude that Atm heterozygosity does not confer an increase in tumor susceptibility in this context.
Collapse
|
23
|
Brunet J, Gutiérrez-Enríquez S, Torres A, Bérez V, Sanjosé S, Galceran J, Izquierdo À, Menéndez JA, Gumà J, Borràs J. ATM germline mutations in Spanish early-onset breast cancer patients negative for BRCA1/BRCA2 mutations. Clin Genet 2008; 73:465-73. [DOI: 10.1111/j.1399-0004.2008.00987.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Abstract
Genomic instability is the driving force behind cancer development. Human syndromes with DNA repair deficiencies comprise unique opportunities to study the clinical consequences of faulty genome maintenance leading to premature aging and premature cancer development. These syndromes include chromosomal breakage syndromes with defects in DNA damage signal transduction and double-strand break repair, mismatch repair defective syndromes as well as nucleotide excision repair defective syndromes. The same genes that are severely affected in these model diseases may harbour more subtle variations in the 'healthy' normal population leading to genomic instability, cancer development, and accelerated aging at later stages of life. Thus, studying those syndromes and the molecular mechanisms behind can significantly contribute to our understanding of (skin) cancerogenesis as well as to the development of novel individualized preventive and therapeutic anticancer strategies. The establishment of centers of excellence for studying rare genetic model diseases may be helpful in this direction.
Collapse
Affiliation(s)
- Kai-Martin Thoms
- Department of Dermatology and Venerology, Georg-August-University Goettingen, Germany
| | | | | |
Collapse
|