1
|
Charnley M, Allam AH, Newton LM, Humbert PO, Russell SM. E-cadherin in developing murine T cells controls spindle alignment and progression through β-selection. SCIENCE ADVANCES 2023; 9:eade5348. [PMID: 36652509 PMCID: PMC11811980 DOI: 10.1126/sciadv.ade5348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
A critical stage of T cell development is β-selection; at this stage, the T cell receptor β (TCRβ) chain is generated, and the developing T cell starts to acquire antigenic specificity. Progression through β-selection is assisted by low-affinity interactions between the nascent TCRβ chain and peptide presented on stromal major histocompatibility complex and cues provided by the niche. In this study, we identify a cue within the developing T cell niche that is critical for T cell development. E-cadherin mediates cell-cell interactions and influences cell fate in many developmental systems. In developing T cells, E-cadherin contributed to the formation of an immunological synapse and the alignment of the mitotic spindle with the polarity axis during division, which facilitated subsequent T cell development. Collectively, these data suggest that E-cadherin facilitates interactions with the thymic niche to coordinate the β-selection stage of T cell development.
Collapse
Affiliation(s)
- Mirren Charnley
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Amr H. Allam
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
| | - Lucas M. Newton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O. Humbert
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
- Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M. Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
2
|
Fonseca ICCFE, da Luz FAC, Uehara IA, Silva MJB. Cell-adhesion molecules and their soluble forms: Promising predictors of "tumor progression" and relapse in leukemia. Tumour Biol 2018; 40:1010428318811525. [PMID: 30486756 DOI: 10.1177/1010428318811525] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Some surface markers are used to discriminate certain leukemic subpopulations that retain a greater oncogenic potential than others, and, for this reason, they were termed as leukemic stem cells, similar to the concept of cancer stem cells in carcinoma. Among these surface markers are proteins involved in cell-cell adhesion or cell-matrix adhesion, and they may play a role in the relapse of leukemia, similar to metastasis in carcinomas. The most important are epithelial cadherin, neural cadherin, epithelial cell-adhesion molecule, and CD44, which can be cleaved and released, and their soluble forms were found increased in serum levels of cancer patients, being implicated, in some cases, with progression, metastases, and relapse. In this review, we highlighted the role of these four adhesion molecules in carcinomas and hematological malignancies, mainly leukemia, and discuss if the serum levels of soluble forms can be correlated with the surface protein status on the leukemic cells. Accession of the soluble forms looks attractive, but their use as markers in cancer must be studied in association with other parameters, as there are significant changes in levels in other pathological conditions besides cancer. Studies correlating the levels of the forms with the status of the membrane-bound proteins in leukemic (stem) cells and correlating those parameters with relapse in leukemia may afford important knowledge and applicability of those serum markers in clinical practice. For instance, the expression of the membrane-bound forms of these adhesion proteins may have promising clinical use in leukemia and other hematological malignancies.
Collapse
Affiliation(s)
| | - Felipe Andrés Cordero da Luz
- 1 Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
- 2 Nucleus of Cancer Prevention and Research, Cancer Hospital, Federal University of Uberlândia, Uberlândia, Brazil
| | - Isadora Akemi Uehara
- 1 Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Marcelo José Barbosa Silva
- 1 Laboratory of Tumor Biomarkers and Osteoimmunology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| |
Collapse
|
3
|
Liu YA, Liang BY, Guan Y, You J, Zhu L, Chen XP, Huang ZY. Loss of N-cadherin is associated with loss of E-cadherin expression and poor outcomes of liver resection in hepatocellular carcinoma. J Surg Res 2014; 194:167-76. [PMID: 25438959 DOI: 10.1016/j.jss.2014.09.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/08/2014] [Accepted: 09/24/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Our previous study suggested that N-cadherin was downregulated in hepatocellular carcinoma (HCC). Our aim in this study was to investigate the correlation between N- and E-cadherin expression in HCC and its clinical significance. METHODS Eighty-six patients with HCC undergoing liver resection were retrospectively studied. N- and E-cadherin expression in HCC and adjacent liver tissue were investigated using immunohistochemistry and immunofluorescence. The correlation between the expression status of both cadherins and surgical outcomes was analyzed. RESULTS In 23 patients negative for E-cadherin expression, 19 of them (82.6%) were also negative for N-cadherin expression. In 30 patients with heterogeneous expression of E-cadherin, 20 of them (66.7%) also had heterogeneous expression of N-cadherin. In 33 patients with uniformly positive expression of E-cadherin, 19 of them (57.6%) also had uniformly positive expression of N-cadherin. Therefore, there was a positive correlation between expression patterns of N- and E-cadherins. Concurrent loss of both N- and E-cadherin expressions was significantly associated with absence of the tumor capsule, vascular invasion, and poor differentiation. The 1- and 3-y disease-free survival rates were 27% and 9%, respectively, and the 1- and 3-y overall survival rates were 64.3% and 14.3%, respectively, in patients with concurrent loss of both cadherins, which were significantly worse than those with concurrent uniformly positive expression or heterogeneous expression of both cadherins. CONCLUSIONS Loss of N-cadherin was positively correlated with loss of E-cadherin in HCC. Concurrent loss of both N- and E-cadherin expressions was associated with poor surgical outcomes of HCC patients undergoing liver resection.
Collapse
Affiliation(s)
- Yang-an Liu
- Research Laboratory and Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Hepatobiliary and Pancreatic Surgery, Wuhan Central Hospital, Wuhan, China
| | - Bin-yong Liang
- Research Laboratory and Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Guan
- Research Laboratory and Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian You
- Department of General Surgery, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Wuhan Central Hospital, Wuhan, China
| | - Xiao-ping Chen
- Research Laboratory and Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-yong Huang
- Research Laboratory and Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
López-Nieva P, Vaquero C, Fernández-Navarro P, González-Sánchez L, Villa-Morales M, Santos J, Esteller M, Fernández-Piqueras J. EPHA7, a new target gene for 6q deletion in T-cell lymphoblastic lymphomas. Carcinogenesis 2012; 33:452-8. [PMID: 22114070 DOI: 10.1093/carcin/bgr271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cryptic deletions at chromosome 6q are common cytogenetic abnormalities in T-cell lymphoblastic leukemia/lymphoma (T-LBL), but the target genes have not been formally identified. Our results build on detection of specific chromosomal losses in a mouse model of γ-radiation-induced T-LBLs and provide interesting clues for new putative susceptibility genes in a region orthologous to human 6q15-6q16.3. Among these, Epha7 emerges as a bona fide candidate tumor suppressor gene because it is inactivated in practically all the T-LBLs analyzed (100% in mouse and 95.23% in human). We provide evidence showing that Epha7 downregulation may occur, at least in part, by loss of heterozygosity (19.35% in mouse and 12.5% in human) or promoter hypermethylation (51.61% in mouse and 43.75% in human) or a combination of both mechanisms (12.90% in mouse and 6.25% in human). These results indicate that EPHA7 might be considered a new tumor suppressor gene for 6q deletions in T-LBLs. Notably, this gene is located in 6q16.1 proximal to GRIK2 and CASP8AP2, other candidate genes identified in this region. Thus, del6q seems to be a complex region where inactivation of multiple genes may cooperatively contribute to the onset of T-cell lymphomas.
Collapse
MESH Headings
- Animals
- Calcium-Binding Proteins/genetics
- Cell Line, Tumor
- Chromosome Deletion
- Chromosomes, Human, Pair 4
- Chromosomes, Human, Pair 6/genetics
- DNA Methylation
- Down-Regulation
- Female
- Genes, Tumor Suppressor
- Humans
- Jurkat Cells
- Leukemia, T-Cell/genetics
- Leukemia-Lymphoma, Adult T-Cell/genetics
- Loss of Heterozygosity
- Lymphoma, T-Cell/genetics
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Promoter Regions, Genetic
- Receptor, EphA7/genetics
- Receptors, Kainic Acid/genetics
- Sequence Deletion
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Pilar López-Nieva
- Departmento Biología Celular e Inmunología, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kovtun IV, Harris KJ, Jatoi A, Jevremovic D. Increased incidence of endometrioid tumors caused by aberrations in E-cadherin promoter of mismatch repair-deficient mice. Carcinogenesis 2011; 32:1085-92. [PMID: 21551128 PMCID: PMC3128562 DOI: 10.1093/carcin/bgr080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 04/15/2011] [Accepted: 04/19/2011] [Indexed: 01/05/2023] Open
Abstract
Loss of E-cadherin expression is a critical step in the development and progression of gynecological tumors. Study of the precise role of E-cadherin has been hampered by the lack of satisfactory mouse model for E-cadherin deficiency. Likewise, DNA mismatch repair (MMR) is implicated in gynecological tumorigenesis, but knockout of MMR in mice predominantly causes hematologic neoplasms. Here, we show that combined disruption of E-cadherin and DNA MMR pathways increases incidence of endometrioid tumors in mice. Twenty percent of mice knockout for Msh2 enzyme and hemizygous for E-cadherin [Msh2(-/-)/Cdh1(+/-)] developed endometrioid-like tumors in the ovary, uterus and genital area. Characteristic of these tumors was a complete loss of E-cadherin expression. Sequence analysis of E-cadherin promoter region demonstrated that the loss of E-cadherin expression is caused by inactivating mutations, implying that E-cadherin is a mutational target in Msh2-deficient mice. In addition, Msh2(-/-)/Cdh1(+/-) mice showed a reduction in overall survival as compared with their Msh2(-/-) counterparts due to the development of more aggressive lymphomas, suggesting a specific role of E-cadherin in lymphomagenesis. In conclusion, Msh2(-/-)/Cdh1(+/-) mice provide a good model of gynecological tumorigenesis and may be useful for testing molecular target-specific therapies.
Collapse
Affiliation(s)
- Irina V Kovtun
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic and Foundation, 200 First Street SW, Rochester, MN 55905, USA.
| | | | | | | |
Collapse
|
6
|
Kober P, Bujko M, Olędzki J, Tysarowski A, Siedlecki JA. Methyl-CpG binding column-based identification of nine genes hypermethylated in colorectal cancer. Mol Carcinog 2011; 50:846-56. [PMID: 21438024 DOI: 10.1002/mc.20763] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 01/20/2011] [Accepted: 02/04/2011] [Indexed: 12/19/2022]
Abstract
DNA methylation is an epigenetic event that plays a role in gene expression regulation. Alterations in DNA methylation contribute to cancer development and progression. The aim of this study was to identify gene promoters aberrantly methylated in colorectal tumor tissue in comparison to normal colonic mucosa. Analyses were performed on two pooled DNA samples: from normal and cancerous tissue obtained from CRC patients. DNA was fractionated according to methylation degree with the use of affinity column containing methyl-CpG binding domain. To identify novel hypermethylated gene promoters, methylated DNA from normal and from cancerous tissues were analyzed with the use of promoter microarrays. We identified nine novel genes hypermethylated in colorectal cancer. The frequency of their promoter methylation was assessed in the larger group of patients (n = 77): KCNK12 (methylated in 41% of CRC patients), GPR101 (40%), CDH2 (45%), BARX1 (56%), CNTFR (22%), SYT6 (64%), SMO (21%), EPHA5 (43%), and GSPT2 (21%). The results of gene expression level analysis suggest the role of promoter methylation in downregulation of six out of nine genes examined. We did not find correlation between gene methylation and age, gender, tumor grade or stage. Importantly, in stage IV CRC methylation of GPR101 correlated with longer time to progression (P = 0.0042; HR = 2.5468; 95% CI 1.5391-10.0708).
Collapse
Affiliation(s)
- Paulina Kober
- Department of Molecular Biology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Warsaw, Poland
| | | | | | | | | |
Collapse
|
7
|
Santos J, González-Sánchez L, Matabuena-deYzaguirre M, Villa-Morales M, Cozar P, López-Nieva P, Fernández-Navarro P, Fresno M, Díaz-Muñoz MD, Guenet JL, Montagutelli X, Fernández-Piqueras J. A Role for Stroma-Derived Annexin A1 as Mediator in the Control of Genetic Susceptibility to T-Cell Lymphoblastic Malignancies through Prostaglandin E2 Secretion. Cancer Res 2009; 69:2577-87. [DOI: 10.1158/0008-5472.can-08-1821] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Abstract
Genetically modified animals represent a resource of immense potential for cancer research. Classically, genetic modifications in mice were obtained through selected breeding experiments or treatments with powerful carcinogens capable of inducing random mutagenesis. A new era began in the early 1980s when genetic modifications by inserting foreign DNA genes into the cells of an animal allowed for the development of transgenic mice. Since that moment, genetic modifications have been able to be made in a predetermined way. Gene targeting emerged later as a method of in vivo mutagenesis whereby the sequence of a predetermined gene is selectively modified within an intact cell. In this review we focus on how genetically modified mice can be created to study tumour development, and how these models have contributed to an understanding of the genetic alterations involved in human cancer. We also discuss the strengths and weaknesses of the different mouse models for identifying cancer genes, and understanding the consequences of their alterations in order to obtain the maximum benefit for cancer patients.
Collapse
|
9
|
Gieni RS, Hendzel MJ. Mechanotransduction from the ECM to the genome: Are the pieces now in place? J Cell Biochem 2007; 104:1964-87. [PMID: 17546585 DOI: 10.1002/jcb.21364] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A multitude of biochemical signaling processes have been characterized that affect gene expression and cellular activity. However, living cells often need to integrate biochemical signals with mechanical information from their microenvironment as they respond. In fact, the signals received by shape alone can dictate cell fate. This mechanotrasduction of information is powerful, eliciting proliferation, differentiation, or apoptosis in a manner dependent upon the extent of physical deformation. The cells internal "prestressed" structure and its "hardwired" interaction with the extra-cellular matrix (ECM) appear to confer this ability to filter biochemical signals and decide between divergent cell functions influenced by the nature of signals from the mechanical environment. In some instances mechanical signaling through the tissue microenvironment has been shown to be dominant over genomic defects, imparting a normal phenotype on cells that otherwise have transforming genetic lesions. This mechanical control of phenotype is postulated to have a central role in embryogenesis, tissue physiology as well as the pathology of a wide variety of diseases, including cancer. We will briefly review studies showing physical continuity between the external cellular microenvironment and the interior of the cell nucleus. Newly characterized structures, termed nuclear envelope lamina spanning complexes (NELSC), and their interactions will be described as part of a model for mechanical transduction of extracellular cues from the ECM to the genome.
Collapse
Affiliation(s)
- Randall S Gieni
- Cross Cancer Institute and Department of Oncology, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|