1
|
Li M, Gao X, Lin X, Zhang Y, Peng W, Sun T, Shu W, Shi Y, Guan Y, Xia X, Yi X, Li Y, Jia J. Analysis of germline-somatic mutational connections in colorectal cancer reveals differential tumorigenic patterns and a novel predictive marker for germline mutation carriers. Cancer Lett 2025; 620:217637. [PMID: 40118241 DOI: 10.1016/j.canlet.2025.217637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
Colorectal cancer (CRC) genetic testing of regions beyond clinical guidelines has revealed a substantial number of likely pathogenic germline mutations (GMs). It remains largely undetermined whether and how these GMs, typically located in non-mismatch repair (non-MMR) genes, are associated with the tumorigenesis of CRC. This study aimed to identify CRC-predisposing GMs among 93 cancer susceptibility genes and investigate their potential influences on CRC somatic mutational features. We secondarily aimed to investigate whether somatic ERBB2 amplification contributes to identifying GM carriers. This study incorporated a total of 3,240 Chinese CRC patients and 10,588 control individuals. CRC patients were subjected to paired tumor-normal sequencing with a 1,021-gene panel. A case-control analysis was conducted to profile the GM-associated CRC risk. A comprehensive germline-somatic association analysis was performed among 2,405 patients, with key findings subsequently validated in an independent 835-patient cohort and the TCGA CRC cohort. The case-control results supported CRC-predisposing effects of GMs in certain homologous recombination repair (HRR) and DNA damage checkpoint factor (CPF) genes, such as BRCA1/2, RecQ helicase genes, ATM, and CHEK2. HRR GMs were associated with an increased copy number alteration burden, more TP53 clonal mutations, and a higher probability of carrying somatic ERBB2 amplification. CPF GMs were inferred to have synergistic effects with ARID1A and KDM6A somatic mutations in CRC tumorigenesis. Among patients with onset age ≥55 years, stable microsatellites, and no cancer family history, ERBB2 amplification was significantly predictive of GM carriers. Our findings elucidate different germline tumorigenic patterns not driven by deficient MMR. Somatic ERBB2 amplification in CRC can serve as an indicator for germline genetic testing when traditional risk features are absent.
Collapse
Affiliation(s)
- Mintao Li
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xuan Gao
- Geneplus-Shenzhen Clinical Laboratory, Shenzhen, China
| | - Xiangchun Lin
- Department of Gastroenterology, Peking University International Hospital, Beijing, China
| | - Yan Zhang
- Geneplus-Beijing Institute, Beijing, China
| | - Wenying Peng
- The Second Department of Oncology, Yunnan Cancer Hospital & the Third Affiliated Hospital of Kunming Medical University & Yunnan Cancer Center, Kunming, China
| | - Tao Sun
- General Surgery Department, Peking University Third Hospital, Beijing, China
| | - Weiyang Shu
- Department of Gastroenterology, Peking University Third Hospital, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | | | | | - Xin Yi
- Geneplus-Beijing Institute, Beijing, China.
| | - Yuan Li
- Department of Gastroenterology, Peking University International Hospital, Beijing, China; Department of Gastroenterology, Peking University Third Hospital, Beijing, China.
| | - Jinzhu Jia
- Department of Biostatistics, School of Public Health, Peking University, Beijing, China; Center for Statistical Science, Peking University, Beijing, China.
| |
Collapse
|
2
|
Cui X, Hou J, Wang S, Yu J, Cheng S, Yu L, Song FJ, Luo H. Werner helicase mediates the senescence and cell cycle of leukemia cells by regulating DNA repair pathways. Int J Biol Macromol 2024; 255:128305. [PMID: 37992942 DOI: 10.1016/j.ijbiomac.2023.128305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/23/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Leukemia is a type of malignant hematological disease that is generally resistant to chemotherapy and has poor therapeutic outcomes. Werner (WRN) DNA helicase, an important member of the RecQ family of helicases, plays an important role in DNA repair and telomere stability maintenance. WRN gene dysfunction leads to premature aging and predisposes humans to various types of cancers. However, the biological function of WRN in cancer remains unknown. In this study, the expression of this RecQ family helicase was investigated in different types of leukemia cells, and the leukemia cell line K562 with high WRN expression was selected to construct a WRN knockdown cell line. The results showed that WRN knockdown inhibited leukemia occurrence and development by regulating the proliferation, cell cycle, differentiation, and aging of cells and other biological processes. The results of transcriptome sequencing revealed that WRN promoted the sensitivity of leukemia cells to the DNA damage inducer Etoposide by regulating cell cycle-related proteins, such as CDC2, cyclin B1, p16, and p21, as well as key proteins in DNA damage repair pathways, such as p53, RAD50, RAD51, and MER11. Our findings show that WRN helicase is a promising potential target for leukemia treatment, providing new ideas for the development of targeted drugs against leukemia.
Collapse
Affiliation(s)
- Xudong Cui
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China; Department of Infectious Disease, The Fourth Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Jing Hou
- Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China; College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, PR China
| | - Shimei Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China; Department of Infectious Disease, The Fourth Hospital of Harbin Medical University, Harbin 150001, PR China
| | - Jia Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China
| | - Sha Cheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China
| | - Lei Yu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; Department of Infectious Disease, The Fourth Hospital of Harbin Medical University, Harbin 150001, PR China.
| | - Fa-Jun Song
- College of Life Sciences, South-Central University for Nationalities, Wuhan 430074, PR China.
| | - Heng Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, PR China; Natural Products Research Center of Guizhou Province, Guiyang 550014, PR China.
| |
Collapse
|
3
|
Thakkar MK, Lee J, Meyer S, Chang VY. RecQ Helicase Somatic Alterations in Cancer. Front Mol Biosci 2022; 9:887758. [PMID: 35782872 PMCID: PMC9240438 DOI: 10.3389/fmolb.2022.887758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Named the “caretakers” of the genome, RecQ helicases function in several pathways to maintain genomic stability and repair DNA. This highly conserved family of enzymes consist of five different proteins in humans: RECQL1, BLM, WRN, RECQL4, and RECQL5. Biallelic germline mutations in BLM, WRN, and RECQL4 have been linked to rare cancer-predisposing syndromes. Emerging research has also implicated somatic alterations in RecQ helicases in a variety of cancers, including hematological malignancies, breast cancer, osteosarcoma, amongst others. These alterations in RecQ helicases, particularly overexpression, may lead to increased resistance of cancer cells to conventional chemotherapy. Downregulation of these proteins may allow for increased sensitivity to chemotherapy, and, therefore, may be important therapeutic targets. Here we provide a comprehensive review of our current understanding of the role of RecQ DNA helicases in cancer and discuss the potential therapeutic opportunities in targeting these helicases.
Collapse
Affiliation(s)
- Megha K. Thakkar
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jamie Lee
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stefan Meyer
- Division of Cancer Studies, University of Manchester, Manchester, United Kingdom
- Department of Pediatric Hematology Oncology, Royal Manchester Children’s Hospital and Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Vivian Y. Chang
- Department of Pediatrics, Division of Pediatric Hematology-Oncology, University of California, Los Angeles, Los Angeles, CA, United States
- Childrens Discovery and Innovation Institute, UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, United States
- *Correspondence: Vivian Y. Chang,
| |
Collapse
|
4
|
Xu P, Sun D, Gao Y, Jiang Y, Zhong M, Zhao G, Chen J, Wang Z, Liu Q, Hong J, Chen H, Chen YX, Fang JY. Germline mutations in a DNA repair pathway are associated with familial colorectal cancer. JCI Insight 2021; 6:148931. [PMID: 34549727 PMCID: PMC8492347 DOI: 10.1172/jci.insight.148931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/30/2021] [Indexed: 12/18/2022] Open
Abstract
Aiming to identify rare high-penetrance mutations in new genes for the underlying predisposition in familial colorectal cancer (CRC), we performed whole-exome sequencing in 24 familial CRCs. Mutations in genes that regulate DNA repair (RMI1, PALB2, FANCI) were identified that were related to the Fanconi anemia DNA repair pathway. In one pedigree, we found a nonsense mutation in CHEK2. CHEK2 played an essential role in cell cycle and DNA damage repair. Somatic mutation analysis in CHEK2 variant carriers showed mutations in TP53, APC, and FBXW7. Loss of heterozygosity was found in carcinoma of CHEK2 variant carrier, and IHC showed loss of Chk2 expression in cancer tissue. We identified a second variant in CHEK2 in 126 sporadic CRCs. A KO cellular model for CHEK2 (CHEK2KO) was generated by CRISPR/Cas9. Functional experiments demonstrated that CHEK2KO cells showed defective cell cycle arrest and apoptosis, as well as reduced p53 phosphorylation, upon DNA damage. We associated germline mutations in genes that regulate the DNA repair pathway with the development of CRC. We identified CHEK2 as a regulator of DNA damage response and perhaps as a gene involved in CRC germline predisposition. These findings link CRC predisposition to the DNA repair pathway, supporting the connection between genome integrity and cancer risk.
Collapse
Affiliation(s)
- Pingping Xu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease
| | - Danfeng Sun
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease
| | - Yaqi Gao
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease
| | - Yi Jiang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease
| | | | | | | | | | - Qiang Liu
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Hong
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease
| | - Haoyan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease
| | - Ying-Xuan Chen
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology & Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease
| |
Collapse
|
5
|
Ababou M. Bloom syndrome and the underlying causes of genetic instability. Mol Genet Metab 2021; 133:35-48. [PMID: 33736941 DOI: 10.1016/j.ymgme.2021.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 03/06/2021] [Indexed: 11/27/2022]
Abstract
Autosomal hereditary recessive diseases characterized by genetic instability are often associated with cancer predisposition. Bloom syndrome (BS), a rare genetic disorder, with <300 cases reported worldwide, combines both. Indeed, patients with Bloom's syndrome are 150 to 300 times more likely to develop cancers than normal individuals. The wide spectrum of cancers developed by BS patients suggests that early initial events occur in BS cells which may also be involved in the initiation of carcinogenesis in the general population and these may be common to several cancers. BS is caused by mutations of both copies of the BLM gene, encoding the RecQ BLM helicase. This review discusses the different aspects of BS and the different cellular functions of BLM in genome surveillance and maintenance through its major roles during DNA replication, repair, and transcription. BLM's activities are essential for the stabilization of centromeric, telomeric and ribosomal DNA sequences, and the regulation of innate immunity. One of the key objectives of this work is to establish a link between BLM functions and the main clinical phenotypes observed in BS patients, as well as to shed new light on the correlation between the genetic instability and diseases such as immunodeficiency and cancer. The different potential implications of the BLM helicase in the tumorigenic process and the use of BLM as new potential target in the field of cancer treatment are also debated.
Collapse
Affiliation(s)
- Mouna Ababou
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, University Mohammed V, Rabat, Morocco; Genomic Center of Human Pathologies, Faculty of medicine and Pharmacy, University Mohammed V, Rabat, Morocco.
| |
Collapse
|
6
|
Lin Y, Chen H, Wang X, Xiang J, Wang H, Peng J. Mining the role of RECQL5 in gastric cancer and seeking potential regulatory network by bioinformatics analysis. Exp Mol Pathol 2020; 115:104477. [DOI: 10.1016/j.yexmp.2020.104477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 05/21/2020] [Accepted: 05/27/2020] [Indexed: 12/23/2022]
|
7
|
Li X, Liu J, Wang K, Zhou J, Zhang H, Zhang M, Shi Y. Polymorphisms and rare variants identified by next-generation sequencing confer risk for lung cancer in han Chinese population. Pathol Res Pract 2020; 216:152873. [PMID: 32107087 DOI: 10.1016/j.prp.2020.152873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/16/2020] [Accepted: 02/11/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Lung cancer is one of the leading causes of cancer death worldwide, and genetic risk factors account for a large part of its carcinogenesis. The low economic requirements and high efficiency of next-generation sequencing (NGS) make it widely used in detecting genetic alterations in pathogenesis. METHODS We performed targeted panel sequencing in 780 Han Chinese lung cancer patients using a commercial probe, and the correlations between dozens of susceptible sites were verified in 1113 healthy controls. This study used Fisher's exact test and Benjamini-Hochberg FDR correction to analyze the mutual exclusion between mutated genes, and Pearson's p was used to verify the correlations between mutations and lung cancer susceptibility. RESULTS Our results determined the mutation spectrum and showed that each lung cancer patient carried at least one DNA mutation. The most frequently mutated gene was BRCA2 (mutation rate,10.6 %.). The co-occurrence and mutual exclusion analysis of DNA damage related genes showed that gene ATM was mutually exclusive from MSH6. We conducted a further case-control study in different subtypes of lung cancer and the results described 14 mutations associated with adenocarcinoma, 9 with squamous cell carcinoma, and 4 with small cell lung cancer. These variants were novel de-novo germline mutations in lung cancer. Particularly, rs3864017 in FANCD2 showed a protective effect of lung adenocarcinoma for carriers (OR = 0.146, 95 % CI = 0.052∼0.405, Padjusted = 3.37 × 10-4). CONCLUSIONS 18 candidate mutations might alter the risk of lung cancer in the Han Chinese population, including polymorphisms rs3864017(FANCD2), rs55740729(MSH6) and 16 rare variants. The underlying mechanisms of candidate genes in lung cancer remain unclear and we suggest more functional studies on exploring how these genes affect the risk of lung cancer.
Collapse
Affiliation(s)
- Xiaoqi Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinsheng Liu
- Shanghai Jiao Tong University Hospital, Shanghai 200030, China
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Hang Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mancang Zhang
- DYnastyGene Biotech Co. Ltd., Building 25, No.10688 Bei Qing Road, Qingpu District, Shanghai 201700, PR China
| | - Yongyong Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
8
|
Matsuoka T, Yashiro M. Precision medicine for gastrointestinal cancer: Recent progress and future perspective. World J Gastrointest Oncol 2020; 12:1-20. [PMID: 31966910 PMCID: PMC6960076 DOI: 10.4251/wjgo.v12.i1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/12/2019] [Accepted: 11/04/2019] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal (GI) cancer has a high tumor incidence and mortality rate worldwide. Despite significant improvements in radiotherapy, chemotherapy, and targeted therapy for GI cancer over the last decade, GI cancer is characterized by high recurrence rates and a dismal prognosis. There is an urgent need for new diagnostic and therapeutic approaches. Recent technological advances and the accumulation of clinical data are moving toward the use of precision medicine in GI cancer. Here we review the application and status of precision medicine in GI cancer. Analyses of liquid biopsy specimens provide comprehensive real-time data of the tumor-associated changes in an individual GI cancer patient with malignancy. With the introduction of gene panels including next-generation sequencing, it has become possible to identify a variety of mutations and genetic biomarkers in GI cancer. Although the genomic aberration of GI cancer is apparently less actionable compared to other solid tumors, novel informative analyses derived from comprehensive gene profiling may lead to the discovery of precise molecular targeted drugs. These progressions will make it feasible to incorporate clinical, genome-based, and phenotype-based diagnostic and therapeutic approaches and apply them to individual GI cancer patients for precision medicine.
Collapse
Affiliation(s)
- Tasuku Matsuoka
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
| | - Masakazu Yashiro
- Department of Gastroenterological Surgery, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
- Oncology Institute of Geriatrics and Medical Science, Osaka City University Graduate School of Medicine, Osaka 5458585, Japan
| |
Collapse
|
9
|
Lin Y, Wang H, Wang X, Li M, Chen H, Peng J. Low expression of RecQ-like helicase 5 is associated with poor prognosis in patients with gastric cancer. Oncol Lett 2020; 19:985-991. [PMID: 31897211 PMCID: PMC6924161 DOI: 10.3892/ol.2019.11137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 10/25/2019] [Indexed: 11/06/2022] Open
Abstract
The role of RecQ-like helicase 5 (RECQL5) in gastric cancer (GC) is unclear. This study investigated the expression, clinicopathological association and prognosis of RECQL5 protein in human GC. Firstly, the Oncomine database was used to determine the mRNA expression levels of RECQL5 in GC samples. GC samples and adjacent normal gastric tissue samples were subsequently assessed to determine RECQL5 protein expression levels using immunohistochemistry. The clinicopathological association with RECQL5 expression was analyzed. Multivariate Cox analysis was performed to determine the relationship between RECQL5 expression and survival outcomes. Data from the Oncomine database revealed that RECQL5 mRNA was significantly downregulated in GC tissues compared with that in normal gastric tissues (P<0.05). These results were then validated at the protein level as RECQL5 protein expression was found to be significantly downregulated in GC samples compared with that in normal gastric tissues (P<0.05). Low expression of RECQL5 was significantly associated with depth of tumor invasion, histological differentiation and TNM stage (all P<0.05) and indicated poor prognosis in patients with GC. Multivariate analysis revealed that low RECQL5 expression and depth of invasion were independent prognostic factors for GC (P<0.05). These results suggest that low expression of RECQL5 is associated with carcinogenesis and invasion in GC and with poor overall survival in patients with GC. RECQL5 may be a novel prognostic marker for patients with GC.
Collapse
Affiliation(s)
- Yijia Lin
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Huashe Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xinyou Wang
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Miao Li
- Department of Digestion, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Honglei Chen
- Gastrointestinal Endoscopy Center, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, P.R. China
| | - Junsheng Peng
- Department of Gastrointestinal Surgery, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
10
|
Wu H, Li S, Hu X, Qin W, Wang Y, Sun T, Wu Z, Wang X, Lu S, Xu D, Li Y, Guan S, Zhao H, Yao W, Liu M, Wei M. Associations of mRNA expression of DNA repair genes and genetic polymorphisms with cancer risk: a bioinformatics analysis and meta-analysis. J Cancer 2019; 10:3593-3607. [PMID: 31333776 PMCID: PMC6636297 DOI: 10.7150/jca.30975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
A systematical bioinformatics and meta-analysis were carried out to establish our understanding of possible relationships between DNA repair genes and the development of cancer. The bioinformatics analysis confirmed that lower XPA and XPC levels and higher XPD, XPF, and WRN levels were observed in 19 types of cancer, and subsequently results indicated that elevated XPA and XPC had a better impact on overall survival, however, higher XPD, XPF, and WRN showed worse influence on cancer prognosis. The meta-analysis included 58 eligible studies demonstrated that harboring XPA rs10817938, XPD rs238406 increased overall cancer risk, however, XPA rs2808668 SNP in overall cancer analysis and XPF rs3136038 in the digestive system remarkably reduced the cancer risk. Moreover, no correlation was investigated for XPC rs1870134, WRN rs1346044 and rs1801195. These suggest that the DNA repair gene was associated with carcinogenesis, and contribute to the prognosis, and the critical SNPs further involved in affecting cancer risk.
Collapse
Affiliation(s)
- Huizhe Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Shanqiong Li
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Wenyan Qin
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Yilin Wang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Tong Sun
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China.,Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang, 110001, P. R. China.,Department of Breast Surgery, First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Zhikun Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Xiufang Wang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Senxu Lu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Dongping Xu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Yalun Li
- Department of Anorectal Surgery, First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Shu Guan
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang, 110001, P. R. China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Mingyan Liu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang, 110122, P. R. China
| |
Collapse
|
11
|
Hu X, Qin W, Li S, He M, Wang Y, Guan S, Zhao H, Yao W, Wei M, Liu M, Wu H. Polymorphisms in DNA repair pathway genes and ABCG2 gene in advanced colorectal cancer: correlation with tumor characteristics and clinical outcome in oxaliplatin-based chemotherapy. Cancer Manag Res 2018; 11:285-297. [PMID: 30643454 PMCID: PMC6312053 DOI: 10.2147/cmar.s181922] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective Multiple factors are involved in oxaliplatin-resistant process in colorectal cancer (CRC) patients including decreased drug accumulation and enhanced capacity to repair and tolerate DNA damage. In the present study, we aimed to assess the impact of six single-nucleotide polymorphisms (SNPs) in DNA repair genes and ABCG2 gene on prognosis in advanced CRC patients treated with oxaliplatin-based chemotherapy. Methods In this study, 580 advanced CRC patients were recruited. Six SNPs of DNA repair genes (XPA rs10817938, XPA rs2808668, XPC rs2607775, and WRN rs1346044) and ABCG2 gene (rs2231142 and rs2622621) were genotyped by using the TaqMan assay. Results Regarding interaction with environmental factors, ABCG2 rs2231142 and the first-degree family history of cancer and XPC rs2607775 or ABCG2 rs2622621 and lymph node metastases status demonstrated significant interactions. Of these six SNPs, XPA rs10817938 CT/ TT genotypes retained its significant association with longer overall survival (OS) (P=0.008) in CRC patients receiving oxaliplatin-based chemotherapy (n=580). Furthermore, a significantly better impact on the disease-free survival (DFS) (P=0.001) and OS (P<0.0001) was found in ABCG2 rs2231142CA/AA carriers. Furthermore, ABCG2 rs2622621 CG/GG genotype was verified to be an independent poor prognostic factor in DFS (P=0.010) and OS (P=0.030). In the stratification analysis, XPA rs10817938 CT/CC, rs2231142 CA/AA, and rs2622621 CC genotypes of ABCG2 were predictive of significantly better prognosis in the patients with tumor differentiation grade 3 (n=523), clinical stage IV (n=73), or lymph node-positive status (n=557). Additionally, multivariate logistic regression and multiple dimension reduction analysis consistently revealed that the combination of selected SNPs and five known risk factors showed a better prediction prognosis and represented the best model to predict CRC prognosis. Conclusion The current data indicated that the XPA gene and ABCG2 gene had significant interaction with environmental factors and prognosis, which could provide a comprehensive understanding of the implications of those SNPs in the prediction of prognosis in advanced CRC patients receiving oxaliplatin-based chemotherapy.
Collapse
Affiliation(s)
- Xiaoyun Hu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China, ;
| | - Wenyan Qin
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China, ;
| | - Shanqiong Li
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China, ;
| | - Miao He
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China, ;
| | - Yilin Wang
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China, ;
| | - Shu Guan
- Department of Breast Surgery, First Hospital of China Medical University, Shenyang 110001, China
| | - Haishan Zhao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China, ;
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China, ;
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China, ;
| | - Mingyan Liu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China, ;
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China, ;
| |
Collapse
|
12
|
Yang M, Zhang J, Su S, Qin B, Kang L, Zhu R, Guan H. Allelic interaction effects of DNA damage and repair genes on the predisposition to age-related cataract. PLoS One 2018; 13:e0184478. [PMID: 29689049 PMCID: PMC5915686 DOI: 10.1371/journal.pone.0184478] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/24/2017] [Indexed: 11/30/2022] Open
Abstract
Purpose Age-related cataract (ARC) is a leading cause of visual impairment and blindness worldwide. DNA damage and malfunction of DNA repair are believed to contribute to the pathogenesis of ARC. Aside from increasing age, the risk factors for ARC appear to be rather complex, and one or more gene variations could play critical roles in the diverse processes of ARC progression. This study aimed to investigate the combined effects of different genetic variants on ARC risk. Methods A cohort of 789 ARC patients and 531 normal controls from the Jiangsu Eye Study was included in this study. Genotyping of 18 single-nucleotide polymorphisms (SNPs) in 4 DNA damage/repair genes was performed using TaqMan SNP assays. SNP-SNP interactions were analyzed via multifactor dimensionality reduction (MDR), classification and regression tree (CART) and genetic risk score (GRS) analyses. Results Based on single-locus analyses of the 18 SNPs examined, WRN-rs11574311 (T>C) was associated with ARC risk. However, in MDR, the gene-gene interaction among the five SNPs (WRN-rs4733220 (G>A), WRN-rs1801195 (T>G), OGG1-rs2072668 (G>C) and OGG1-rs2304277 (A>G)) on ARC risk was significant (OR = 5.03, 95% CI: 3.54~7.13). CART analyses also revealed that the combination of five SNPs above was the best polymorphic signature for discriminating between the cases and the controls. The overall odds ratio for CART ranged from 4.56 to 7.90 showing an incremental risk for ARC. This result indicated that these critical SNPs participate in complex interactions. The GRS results showed an increased risk for ARC among individuals with the SNPs in this polymorphic signature. Conclusion The use of multifactorial analysis (or an integrated approach) rather than a single methodology could be an improved strategy for identifying complex gene interactions. The multifactorial approach used in this study has the potential to identify complex biological relationships among ARC-related genes and processes. This approach will lead to the discovery of novel biological information, ultimately improving ARC risk management.
Collapse
Affiliation(s)
- Mei Yang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Junfang Zhang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Shu Su
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Bai Qin
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Lihua Kang
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Rongrong Zhu
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Huaijin Guan
- Eye Institute, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
- * E-mail:
| |
Collapse
|
13
|
Abstract
Aging, the universal phenomenon, affects human health and is the primary risk factor for major disease pathologies. Progeroid diseases, which mimic aging at an accelerated rate, have provided cues in understanding the hallmarks of aging. Mutations in DNA repair genes as well as in telomerase subunits are known to cause progeroid syndromes. Werner syndrome (WS), which is characterized by accelerated aging, is an autosomal-recessive genetic disorder. Hallmarks that define the aging process include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulation of nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and altered intercellular communication. WS recapitulates these hallmarks of aging and shows increased incidence and early onset of specific cancers. Genome integrity and stability ensure the normal functioning of the cell and are mainly guarded by the DNA repair machinery and telomeres. WRN, being a RecQ helicase, protects genome stability by regulating DNA repair pathways and telomeres. Recent advances in WS research have elucidated WRN’s role in DNA repair pathway choice regulation, telomere maintenance, resolution of complex DNA structures, epigenetic regulation, and stem cell maintenance.
Collapse
Affiliation(s)
- Raghavendra A Shamanna
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Jong-Hyuk Lee
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Lu Y, Zhou X, Zeng Q, Liu D, Yue C. Differential expression profile analysis of DNA damage repair genes in CD133 +/CD133 - colorectal cancer cells. Oncol Lett 2017; 14:2359-2368. [PMID: 28789452 DOI: 10.3892/ol.2017.6415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/06/2017] [Indexed: 11/06/2022] Open
Abstract
The present study examined differential expression levels of DNA damage repair genes in COLO 205 colorectal cancer cells, with the aim of identifying novel biomarkers for the molecular diagnosis and treatment of colorectal cancer. COLO 205-derived cell spheres were cultured in serum-free medium supplemented with cell factors, and CD133+/CD133- cells were subsequently sorted using an indirect CD133 microbead kit. In vitro differentiation and tumorigenicity assays in BABA/c nude mice were performed to determine whether the CD133+ cells also possessed stem cell characteristics, in addition to the COLO 205 and CD133- cells. RNA sequencing was employed for the analysis of differential gene expression levels at the mRNA level, which was determined using reverse transcription-quantitative polymerase chain reaction. The mRNA expression levels of 43 genes varied in all three types of colon cancer cells (false discovery rate ≤0.05; fold change ≥2). Of these 43 genes, 30 were differentially expressed (8 upregulated and 22 downregulated) in the COLO 205 cells, as compared with the CD133- cells, and 6 genes (all downregulated) were differentially expressed in the COLO 205 cells, as compared with CD133+ cells. A total of 18 genes (10 upregulated and 8 downregulated) were differentially expressed in the CD133- cells, as compared with the CD133+ cells. By contrast, 6 genes were downregulated and none were upregulated in the CD133+ cells compared with the COLO 205 cells. These findings suggest that CD133+ cells may possess the same DNA repair capacity as COLO 205 cells. Heterogeneity in the expression profile of DNA damage repair genes was observed in COLO 205 cells, and COLO 205-derived CD133- cells and CD133+ cells may therefore provide a reference for molecular diagnosis, therapeutic target selection and determination of the treatment and prognosis for colorectal cancer.
Collapse
Affiliation(s)
- Yuhong Lu
- College of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Xin Zhou
- Deparment of Gastroenterological Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Qingliang Zeng
- Deparment of Gastroenterological Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
| | - Daishun Liu
- Zunyi Key Laboratory of Genetic Diagnosis and Targeted Drug Therapy, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| | - Changwu Yue
- Zunyi Key Laboratory of Genetic Diagnosis and Targeted Drug Therapy, The First People's Hospital of Zunyi, Zunyi, Guizhou 563003, P.R. China
| |
Collapse
|
15
|
Genetic variation in WRN and ischemic stroke: General population studies and meta-analyses. Exp Gerontol 2017; 89:69-77. [PMID: 28063943 DOI: 10.1016/j.exger.2017.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/07/2016] [Accepted: 01/03/2017] [Indexed: 11/24/2022]
Abstract
BACKGROUND Werner syndrome, a premature genetic aging syndrome, shares many clinical features reminiscent of normal physiological aging, and ischemic vascular disease is a frequent cause of death. We tested the hypothesis that genetic variation in the WRN gene was associated with risk of ischemic vascular disease in the general population. METHODS We included 58,284 participants from two general population cohorts, the Copenhagen City Heart Study (CCHS) and the Copenhagen General Population Study (CGPS). Of these, 6,312 developed ischemic vascular disease during follow-up. In the CCHS (n=10,250), we genotyped all non-synonymous variants in WRN with reported minor allele frequencies ≥0.5% in Caucasians. Second, variants which were associated with ischemic vascular disease in the CCHS or in previous studies, were genotyped in the CGPS (n=48,034). RESULTS A total of 11 non-synonymous variants were identified in the CCHS. In C1367R (rs1346044) TT homozygotes versus CC/CT, hazard ratios for ischemic stroke were 1.09 (95% confidence interval: 0.95-1.24; P=0.22) in the CCHS, 1.16 (1.00-1.33; P=0.04) in the CGPS, and 1.12 (1.01-1.23; P=0.02) in studies combined (CCHS+CGPS), with similar trends for ischemic cerebrovascular disease (P=0.06). In meta-analyses including 59,190 individuals in 5 studies, the hazard ratio for ischemic stroke for C1367R TT homozygotes versus CC/CT was 1.14 (1.04-1.25; P=0.008). CONCLUSIONS This study suggests that common genetic variation in WRN is associated with increased risk of ischemic stroke in the general population.
Collapse
|
16
|
Mcilhatton MA, Boivin GP, Groden J. Manipulation of DNA Repair Proficiency in Mouse Models of Colorectal Cancer. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1414383. [PMID: 27413734 PMCID: PMC4931062 DOI: 10.1155/2016/1414383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
Technical and biological innovations have enabled the development of more sophisticated and focused murine models that increasingly recapitulate the complex pathologies of human diseases, in particular cancer. Mouse models provide excellent in vivo systems for deciphering the intricacies of cancer biology within the context of precise experimental settings. They present biologically relevant, adaptable platforms that are amenable to continual improvement and refinement. We discuss how recent advances in our understanding of tumorigenesis and the underlying deficiencies of DNA repair mechanisms that drive it have been informed by using genetically engineered mice to create defined, well-characterized models of human colorectal cancer. In particular, we focus on how mechanisms of DNA repair can be manipulated precisely to create in vivo models whereby the underlying processes of tumorigenesis are accelerated or attenuated, dependent on the composite alleles carried by the mouse model. Such models have evolved to the stage where they now reflect the initiation and progression of sporadic cancers. The review is focused on mouse models of colorectal cancer and how insights from these models have been instrumental in shaping our understanding of the processes and potential therapies for this disease.
Collapse
Affiliation(s)
- Michael A. Mcilhatton
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Gregory P. Boivin
- Department of Pathology, Boonshoft School of Medicine, Wright State University, Health Sciences Building 053, 3640 Colonel Glenn Highway, Dayton, OH 45435, USA
| | - Joanna Groden
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
17
|
The risk for developing cancer in Israeli ATM, BLM, and FANCC heterozygous mutation carriers. Cancer Genet 2015; 209:70-4. [PMID: 26778106 DOI: 10.1016/j.cancergen.2015.12.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/15/2022]
Abstract
Cancer risks in heterozygous mutation carriers of the ATM, BLM, and FANCC genes are controversial. To shed light on this issue, cancer rates were evaluated by cross referencing asymptomatic Israeli heterozygous mutation carriers in the ATM, BLM, and FANCC genes with cancer diagnoses registered at the Israeli National Cancer Registry (INCR). Comparison of observed to expected Standardized Incidence Rates (SIR) was performed. Overall, 474 individuals participated in the study: 378 females; 25 Arab and 31 Jewish ATM carriers, 152 BLM carriers, and 170 FANCC carriers (all Ashkenazim). Age range at genotyping was 19-53 years (mean + SD 30.6 + 5 years). In addition, 96 males were included; 5, 34, and 57 ATM, BLM, and FANCC mutation carriers, respectively. Over 5-16 years from genotyping (4721 person/years), 15 new cancers were diagnosed in mutation carriers: 5 breast, 4 cervical, 3 melanomas, and one each bone sarcoma, pancreatic, and colorectal cancer. No single cancer diagnosis was more prevalent then expected in all groups combined or per gene analyzed. Specifically breast cancer SIR was 0.02-0.77. We conclude that Israeli ATM, BLM, and FANCC heterozygous mutation carriers are not at an increased risk for developing cancer.
Collapse
|
18
|
Nicolas E, Arora S, Zhou Y, Serebriiskii IG, Andrake MD, Handorf ED, Bodian DL, Vockley JG, Dunbrack RL, Ross EA, Egleston BL, Hall MJ, Golemis EA, Giri VN, Daly MB. Systematic evaluation of underlying defects in DNA repair as an approach to case-only assessment of familial prostate cancer. Oncotarget 2015; 6:39614-33. [PMID: 26485759 PMCID: PMC4741850 DOI: 10.18632/oncotarget.5554] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/02/2015] [Indexed: 01/03/2023] Open
Abstract
Risk assessment for prostate cancer is challenging due to its genetic heterogeneity. In this study, our goal was to develop an operational framework to select and evaluate gene variants that may contribute to familial prostate cancer risk. Drawing on orthogonal sources, we developed a candidate list of genes relevant to prostate cancer, then analyzed germline exomes from 12 case-only prostate cancer patients from high-risk families to identify patterns of protein-damaging gene variants. We described an average of 5 potentially disruptive variants in each individual and annotated them in the context of public databases representing human variation. Novel damaging variants were found in several genes of relevance to prostate cancer. Almost all patients had variants associated with defects in DNA damage response. Many also had variants linked to androgen signaling. Treatment of primary T-lymphocytes from these prostate cancer patients versus controls with DNA damaging agents showed elevated levels of the DNA double strand break (DSB) marker γH2AX (p < 0.05), supporting the idea of an underlying defect in DNA repair. This work suggests the value of focusing on underlying defects in DNA damage in familial prostate cancer risk assessment and demonstrates an operational framework for exome sequencing in case-only prostate cancer genetic evaluation.
Collapse
Affiliation(s)
| | - Sanjeevani Arora
- Programs in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- Programs in Biostatistics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ilya G. Serebriiskii
- Programs in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA, USA
- Kazan Federal University, Kazan, Russia
| | - Mark D. Andrake
- Programs in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | - Dale L. Bodian
- Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
| | - Joseph G. Vockley
- Inova Translational Medicine Institute, Inova Health System, Falls Church, VA, USA
| | - Roland L. Dunbrack
- Programs in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Eric A. Ross
- Programs in Biostatistics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Brian L. Egleston
- Programs in Biostatistics, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Michael J. Hall
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Erica A. Golemis
- Programs in Molecular Therapeutics Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Veda N. Giri
- Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, USA
| | - Mary B. Daly
- Cancer Prevention and Control, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
19
|
Wang B, Li G, Sun F, Dong N, Sun Z, Jiang D. Association Between WRN Cys1367Arg (T>C) and Cancer Risk. Technol Cancer Res Treat 2014; 15:20-7. [PMID: 25468760 DOI: 10.1177/1533034614561359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/25/2014] [Indexed: 02/04/2023] Open
Abstract
Growing evidence suggests that aberration of the DNA repair pathway significantly contributes to tumorigenesis. Single-nucleotide polymorphisms in DNA repair-related genes such as WRN have been implicated in cancer risk. However, the results of published studies remain inconclusive. Therefore, we performed a meta-analysis of all available and relevant published studies to clarify the role of this polymorphism in cancer. We performed a computerized search of PubMed for publications on WRN Cys1367Arg (T>C) polymorphism and cancer risk and analyzed the genotype data. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association. Sensitivity analysis, heterogeneity test, cumulative meta-analysis, and bias assessment were performed using STATA software 11.0. No association was found between WRN Cys1367Arg (T>C) polymorphism and cancer risk in all genetic models. When stratified by cancer type, results showed that this polymorphism increased the risk of breast cancer (2CC+CT vs 2TT+CT: perallele OR = 1.14, 95% CI = 1.03-1.26, Ptrend = .012; CC vs TT: OR = 1.43, 95% CI = 1.04-1.95, Pvalue = .026; CC+CT vs TT: OR = 1.14, 95% CI = 1.02-1.28, Pvalue = .027). In another analysis stratified by ethnicity, WRN Cys1367Arg (T>C) polymorphism was significantly associated with cancer susceptibility in Europeans (2CC+CT vs 2TT+CT: perallele OR = 1.09, 95% CI = 1.00-1.19, Ptrend = .042; CT vs TT: OR = 1.13, 95% CI = 1.01-1.27, Pvalue = .032; and CC+CT vs TT: OR = 1.13, 95% CI = 1.02-1.26, Pvalue = .025). Our study suggests that WRN Cys1367Arg (T>C) polymorphism is not associated with overall cancer risk, although subgroup analyses suggested an association with breast cancer and overall cancer specifically in European populations.
Collapse
Affiliation(s)
- Bo Wang
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, China
| | - Guifang Li
- Department of Hematology of Anhui Provincial Hospital, Anhui Medical University, Hefei, China
| | - Fei Sun
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, China
| | - Nan Dong
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, China
| | - Zhenguo Sun
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, China
| | - Dehua Jiang
- Department of Neurosurgery, Xuzhou Central Hospital, Xuzhou, China
| |
Collapse
|
20
|
Wang K, Wang L, Feng J, Hao S, Tian K, Wu Z, Zhang L, Jia G, Wan H, Zhang J. WRN Cys1367Arg polymorphism is not associated with skull base chordoma. Biomed Rep 2014; 2:521-524. [PMID: 24944800 DOI: 10.3892/br.2014.275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/04/2014] [Indexed: 11/06/2022] Open
Abstract
Skull base chordoma is a rare tumor with unknown risk factors. Werner syndrome, which is caused by a mutation in the WRN gene, is a disease of progeria, resembling the pathological process of aging. The present study aimed to provide data on the possible association between skull base chordoma and the single-nucleotide polymorphism (SNP) rs1346044 of the WRN gene. Between July, 2010 and September, 2012, a total of 65 patients with pathologically confirmed skull base chordoma and 65 control subjects were enrolled in this case-control study. The clinical data of the skull base chordoma patients were documented and the rs1346044 site in all the enrolled subjects was analyzed by sequencing and statistically compared using SPSS software. The A allele was the dominant allele of the rs1346044. The comparisons of genotype distributions and allele frequencies did not reveal any significant difference between the groups [P=0.383, 95% confidence interval (CI): 0.346-1.505]. The clinicopathological factors were assessed and no statistically significant difference was observed. In conclusion, the present study suggested that there is no association between rs1346044 SNP and skull base chordomas, at least in the population analyzed.
Collapse
Affiliation(s)
- Ke Wang
- Skull Base and Brainstem Tumor Division, Department of Neurosurgery, Beijing Tian Tan Hospital, Beijing 100050, P.R. China
| | - Liang Wang
- Skull Base and Brainstem Tumor Division, Department of Neurosurgery, Beijing Tian Tan Hospital, Beijing 100050, P.R. China
| | - Jie Feng
- Beijing Neurosurgery Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Shuyu Hao
- Skull Base and Brainstem Tumor Division, Department of Neurosurgery, Beijing Tian Tan Hospital, Beijing 100050, P.R. China
| | - Kaibing Tian
- Skull Base and Brainstem Tumor Division, Department of Neurosurgery, Beijing Tian Tan Hospital, Beijing 100050, P.R. China
| | - Zhen Wu
- Skull Base and Brainstem Tumor Division, Department of Neurosurgery, Beijing Tian Tan Hospital, Beijing 100050, P.R. China
| | - Liwei Zhang
- Skull Base and Brainstem Tumor Division, Department of Neurosurgery, Beijing Tian Tan Hospital, Beijing 100050, P.R. China
| | - Guijun Jia
- Skull Base and Brainstem Tumor Division, Department of Neurosurgery, Beijing Tian Tan Hospital, Beijing 100050, P.R. China
| | - Hong Wan
- Beijing Neurosurgery Institute, Capital Medical University, Beijing 100050, P.R. China
| | - Junting Zhang
- Skull Base and Brainstem Tumor Division, Department of Neurosurgery, Beijing Tian Tan Hospital, Beijing 100050, P.R. China
| |
Collapse
|
21
|
Tadokoro T, Rybanska-Spaeder I, Kulikowicz T, Dawut L, Oshima J, Croteau DL, Bohr VA. Functional deficit associated with a missense Werner syndrome mutation. DNA Repair (Amst) 2013; 12:414-21. [PMID: 23583337 DOI: 10.1016/j.dnarep.2013.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 03/15/2013] [Accepted: 03/19/2013] [Indexed: 12/23/2022]
Abstract
Werner syndrome (WS) is a rare autosomal recessive disorder caused by mutations in the WRN gene. WRN helicase, a member of the RecQ helicase family, is involved in various DNA metabolic pathways including DNA replication, recombination, DNA repair and telomere maintenance. In this study, we have characterized the G574R missense mutation, which was recently identified in a WS patient. Our biochemical experiments with purified mutant recombinant WRN protein showed that the G574R mutation inhibits ATP binding, and thereby leads to significant decrease in helicase activity. Exonuclease activity of the mutant protein was not significantly affected, whereas its single strand DNA annealing activity was higher than that of wild type. Deficiency in the helicase activity of the mutant may cause defects in replication and other DNA metabolic processes, which in turn could be responsible for the Werner syndrome phenotype in the patient. In contrast to the usual appearance of WS, the G574R patient has normal stature. Thus the short stature normally associated with WS may not be due to helicase deficiency.
Collapse
Affiliation(s)
- Takashi Tadokoro
- Laboratory of Molecular Gerontology, National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Non-Bloom syndrome-associated partial and total loss-of-function variants of BLM helicase. Proc Natl Acad Sci U S A 2012; 109:19357-62. [PMID: 23129629 DOI: 10.1073/pnas.1210304109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Bloom syndrome (BS) is an autosomal recessive disorder caused by mutations in the RecQ-like DNA helicase BLM, which functions in the maintenance of genome stability. Using a humanized model of Saccharomyces cerevisiae that expresses a chimera of the N terminus of yeast Sgs1 and the C terminus of human BLM from the chromosomal SGS1 locus, we have functionally evaluated 27 BLM alleles that are not currently known to be associated with BS. We identified nine alleles with impaired function when assessed for hypersensitivity to the DNA-damaging agent hydroxyurea (HU). Six of these alleles (P690L, R717T, W803R, Y811C, F857L, G972V) caused sensitivity to HU that was comparable to known BS-associated or helicase-dead alleles, suggesting that they may cause BS and, in the heterozygous state, act as risk factors for cancerogenesis. We also identified three alleles (R791C, P868L, G1120R) that caused intermediate sensitivity to HU; although unlikely to cause BS, these partial loss-of-function alleles may increase risk for cancers or other BS-associated complications if a person is homozygous or compound heterozygous for these alleles or if they carry a known BS-associated allele.
Collapse
|
23
|
Nelson LD, Bender C, Mannsperger H, Buergy D, Kambakamba P, Mudduluru G, Korf U, Hughes D, Van Dyke MW, Allgayer H. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer. Mol Cancer 2012; 11:38. [PMID: 22682314 PMCID: PMC3537547 DOI: 10.1186/1476-4598-11-38] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/26/2012] [Indexed: 11/25/2022] Open
Abstract
Background Tri- and tetra-nucleotide repeats in mammalian genomes can induce formation of alternative non-B DNA structures such as triplexes and guanine (G)-quadruplexes. These structures can induce mutagenesis, chromosomal translocations and genomic instability. We wanted to determine if proteins that bind triplex DNA structures are quantitatively or qualitatively different between colorectal tumor and adjacent normal tissue and if this binding activity correlates with patient clinical characteristics. Methods Extracts from 63 human colorectal tumor and adjacent normal tissues were examined by gel shifts (EMSA) for triplex DNA-binding proteins, which were correlated with clinicopathological tumor characteristics using the Mann-Whitney U, Spearman’s rho, Kaplan-Meier and Mantel-Cox log-rank tests. Biotinylated triplex DNA and streptavidin agarose affinity binding were used to purify triplex-binding proteins in RKO cells. Western blotting and reverse-phase protein array were used to measure protein expression in tissue extracts. Results Increased triplex DNA-binding activity in tumor extracts correlated significantly with lymphatic disease, metastasis, and reduced overall survival. We identified three multifunctional splicing factors with biotinylated triplex DNA affinity: U2AF65 in cytoplasmic extracts, and PSF and p54nrb in nuclear extracts. Super-shift EMSA with anti-U2AF65 antibodies produced a shifted band of the major EMSA H3 complex, identifying U2AF65 as the protein present in the major EMSA band. U2AF65 expression correlated significantly with EMSA H3 values in all extracts and was higher in extracts from Stage III/IV vs. Stage I/II colon tumors (p = 0.024). EMSA H3 values and U2AF65 expression also correlated significantly with GSK3 beta, beta-catenin, and NF- B p65 expression, whereas p54nrb and PSF expression correlated with c-Myc, cyclin D1, and CDK4. EMSA values and expression of all three splicing factors correlated with ErbB1, mTOR, PTEN, and Stat5. Western blots confirmed that full-length and truncated beta-catenin expression correlated with U2AF65 expression in tumor extracts. Conclusions Increased triplex DNA-binding activity in vitro correlates with lymph node disease, metastasis, and reduced overall survival in colorectal cancer, and increased U2AF65 expression is associated with total and truncated beta-catenin expression in high-stage colorectal tumors.
Collapse
Affiliation(s)
- Laura D Nelson
- Dept. of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Esophageal cancer risk is associated with polymorphisms of DNA repair genes MSH2 and WRN in Chinese population. J Thorac Oncol 2012; 7:448-52. [PMID: 22173703 DOI: 10.1097/jto.0b013e31823c487a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Normal function of DNA repair system is essential for the removal of damage induced by many kinds of internal and environmental agents. Genetic polymorphisms in DNA repair genes associated with modified repair capacity may be related to the risk of developing esophageal cancer (EC). This article dealt whether single-nucleotide polymorphisms of DNA repair genes MSH2, WRN, and Ku70 potentially contributed to EC susceptibility. METHODS A hospital-based case-control study with 117 EC cases and 132 controls in a Chinese population was conducted. We genotyped three single-nucleotide polymorphisms MSH2 c.2063T>G, WRN c.4330T>C, and Ku70 c.-1310 C>G using polymerase chain reaction-based restriction fragment length polymorphism and then performed statistical analysis by calculating the adjusted odds ratios (OR) and 95% confidence intervals (95% CI). RESULTS Carriers of the MSH2 c.2063 G allele were at a higher risk of developing EC with the TT genotype as reference (OR = 4.53, 95% CI = 1.92-10.64, 33p = 0.001). Also for WRN c.4330T>C, individuals with at least one C allele (T/C or C/C) had a 2.21-fold increased risk for EC development compared with those who bore the T/T wild-type genotype (OR = 2.21, 95% CI = 1.06-4.59, 33p = 0.035). Moreover, statistically significant variant genotypic interaction was suggested between MSH2 and WRN as a result of a much increased predisposition to EC (33p = 0.016). No obvious correlation was observed between Ku70 c.-1310 CG and esophageal carcinogenesis (33p > 0.05). CONCLUSIONS Our findings indicated that genetic variants in DNA repair pathways may be involved in esophageal tumorigenesis. MSH2 c.2063 G allele and WRN c.4330 C allele, not Ku70 c.-1310 CG, conferred risk for the process of developing EC.
Collapse
|
25
|
Pal J, Bertheau R, Buon L, Qazi A, Batchu RB, Bandyopadhyay S, Ali-Fehmi R, Beer DG, Weaver DW, Reis RJS, Goyal RK, Huang Q, Munshi NC, Shammas MA. Genomic evolution in Barrett's adenocarcinoma cells: critical roles of elevated hsRAD51, homologous recombination and Alu sequences in the genome. Oncogene 2011; 30:3585-98. [PMID: 21423218 PMCID: PMC3406293 DOI: 10.1038/onc.2011.83] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 02/11/2011] [Accepted: 02/16/2011] [Indexed: 12/15/2022]
Abstract
A prominent feature of most cancers including Barrett's adenocarcinoma (BAC) is genetic instability, which is associated with development and progression of disease. In this study, we investigated the role of recombinase (hsRAD51), a key component of homologous recombination (HR)/repair, in evolving genomic changes and growth of BAC cells. We show that the expression of RAD51 is elevated in BAC cell lines and tissue specimens, relative to normal cells. HR activity is also elevated and significantly correlates with RAD51 expression in BAC cells. The suppression of RAD51 expression, by short hairpin RNA (shRNA) specifically targeting this gene, significantly prevented BAC cells from acquiring genomic changes to either copy number or heterozygosity (P<0.02) in several independent experiments employing single-nucleotide polymorphism arrays. The reduction in copy-number changes, following shRNA treatment, was confirmed by Comparative Genome Hybridization analyses of the same DNA samples. Moreover, the chromosomal distributions of mutations correlated strongly with frequencies and locations of Alu interspersed repetitive elements on individual chromosomes. We conclude that the hsRAD51 protein level is systematically elevated in BAC, contributes significantly to genomic evolution during serial propagation of these cells and correlates with disease progression. Alu sequences may serve as substrates for elevated HR during cell proliferation in vitro, as they have been reported to do during the evolution of species, and thus may provide additional targets for prevention or treatment of this disease.
Collapse
Affiliation(s)
- J Pal
- Department of Adult Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Medicine or Pathology, VA Health Care System, Boston, MA, USA
| | - R Bertheau
- Department of Adult Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Medicine or Pathology, VA Health Care System, Boston, MA, USA
| | - L Buon
- Department of Adult Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - A Qazi
- Department of Surgery or Pathology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - RB Batchu
- Department of Surgery or Pathology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - S Bandyopadhyay
- Department of Surgery or Pathology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - R Ali-Fehmi
- Department of Surgery or Pathology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - DG Beer
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - DW Weaver
- Department of Surgery or Pathology, Wayne State University and Karmanos Cancer Institute, Detroit, MI, USA
| | - RJ Shmookler Reis
- Department of Geriatrics, and Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, and Central Arkansas Veterans Healthcare System, Little Rock, AR, USA
| | - RK Goyal
- Department of Medicine or Pathology, VA Health Care System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Q Huang
- Department of Medicine or Pathology, VA Health Care System, Boston, MA, USA
| | - NC Munshi
- Department of Adult Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Medicine or Pathology, VA Health Care System, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - MA Shammas
- Department of Adult Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Medicine or Pathology, VA Health Care System, Boston, MA, USA
| |
Collapse
|
26
|
Frank B, Hoeft B, Hoffmeister M, Linseisen J, Breitling LP, Chang-Claude J, Brenner H, Nieters A. Association of hydroxyprostaglandin dehydrogenase 15-(NAD) (HPGD) variants and colorectal cancer risk. Carcinogenesis 2010; 32:190-6. [PMID: 21047993 DOI: 10.1093/carcin/bgq231] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A recent study examined associations of tagging single nucleotide polymorphisms (tagSNPs) in 43 fatty acid metabolism-related genes and risk of colorectal cancer (CRC), showing rs8752, rs2612656 and a haplotype [comprising both of the single nucleotide polymorphisms (SNPs)] in the hydroxyprostaglandin dehydrogenase 15-(NAD) (HPGD) gene to be positively associated with CRC risk. In the present study, we attempted to replicate these single marker and haplotype associations, using 1795 CRC cases and 1805 controls from the German Darmkrebs: Chancen der Verhütung durch Screening study (DACHS). In addition to rs8752 and rs2612656, HPGD tagSNPs rs9312555, rs17360144 and rs7349744 were genotyped for haplotype analyses. Except for a marginally significant inverse association of HPGD rs8752 with CRC risk [odds ratio (OR) = 0.85; 95% confidence interval (CI) = 0.74, 0.98; P = 0.03], none of the analyzed tagSNPs showed any association with CRC. Subset analyses for colon and rectal cancers yielded similar, yet non-significant risk estimates at all five loci. Also, none of the haplotypes was found to be associated with CRC, colon or rectal cancers. However, rs8752 was significantly associated with a decreased risk of CRC among individuals with a body mass index < 30 (OR = 0.82, 95% CI = 0.70, 0.95, P = 0.01) as well as among smokers (OR = 0.74, 95% CI = 0.61, 0.90, P = 0.003). Yet, our data do not support the previously reported associations of HPGD tagSNPs and risk of CRC.
Collapse
Affiliation(s)
- Bernd Frank
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Frank B, Hoffmeister M, Klopp N, Illig T, Chang-Claude J, Brenner H. Single nucleotide polymorphisms in Wnt signaling and cell death pathway genes and susceptibility to colorectal cancer. Carcinogenesis 2010; 31:1381-6. [PMID: 20403915 DOI: 10.1093/carcin/bgq082] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It is well known that approximately 90% of colorectal cancer (CRC) cases originate from the constitutive activation of the canonical Wnt signaling pathway. There is increasing evidence that genetic variation both in Wnt and apoptotic pathway genes affects CRC susceptibility and progression. This population-based case-control study, including 1795 CRC cases and 1805 controls, investigates the association between common, putative functional polymorphisms in DNFA5, HIF1A, NDRG1, PYGO1, SFRP2, SFRP4, WISP1 and WISP3 genes and CRC risk. We found no evidence for an association between the selected allelic variants and risk of CRC. Subsite analyses, however, revealed a significant association of HIF1A c.*191T>C with rectal cancer risk [odds ratio (OR) = 1.25, 95% confidence interval (CI), 1.03-1.51, P = 0.03] comparing minor allele carriers with major allele homozygotes. In addition, homozygosity for the minor allele of SFRP4 P320T was significantly associated with rectal cancer risk (OR = 1.37, 95% CI, 1.06-1.79, P = 0.02) and early-stage CRC (OR = 1.33, 95% CI, 1.05-1.69, P = 0.02). This study does not support the hypothesis that Wnt signaling- and apoptosis-related polymorphisms contribute to CRC risk. However, our results provide evidence that CRC subsets may be affected. If confirmed, this knowledge may be used to assess individual susceptibility and to target potential measures of cancer prevention.
Collapse
Affiliation(s)
- Bernd Frank
- German Cancer Research Center, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|