1
|
Wang J, Yang R, Wang F, Zhang J, Dong Y, Wang J, Yu M, Xu Y, Liu L, Cheng Y, Zhang C, Yang Y, Yang W, Wang J, Chen G, Huang Y, Tian Y, Jian R, Ni B, Wu W, Ruan Y. CRISPR-Cas9 screening identifies the role of FER as a tumor suppressor. J Pathol 2025; 265:158-171. [PMID: 39648412 DOI: 10.1002/path.6374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 12/10/2024]
Abstract
It is important to systematically identify tumor suppressor genes (TSGs) to improve our understanding of tumorigenesis and develop strategies for early diagnosis and mitigating disease progression. In the present study, we used an in vivo genome-wide clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) screen and identified FPS/FES-related (FER) as a TSG. Single-cell RNA sequencing (scRNA-seq) revealed that normal cells with low FER expression exhibited elevated malignant transformation potential and stemness properties. FER knockout promoted the tumorigenic transformation, characterized by high colony-forming efficiency and suspension growth ability, acquired tumorigenicity in vivo, increased metabolic activity, dedifferentiation properties, and immune evasion. Moreover, analysis revealed that low FER expression tumors share molecular phenotypes with FER knockout cells, suggesting the consistent role of FER in tumor initiation and progression. Taken together, our findings not only provide insights into the essential role of FER as a tumor suppressor in tumor initiation and progression but also highlight its potential as a target for future clinical diagnosis. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Jiaqi Wang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Ran Yang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- Department of Pathophysiology, College of High Altitude Military Medicine, Chongqing, PR China
| | - Fengsheng Wang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- State Key Laboratory of NBC Protection for Civilian, Beijing, PR China
| | - Junlei Zhang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Yutong Dong
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- Army Health Service Training Base, Chongqing, PR China
| | - Jiangjun Wang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- Clinical Laboratory and Department of Pathology, The 72nd Army Hospital of the People's Liberation Army, Zhejiang, PR China
| | - Meng Yu
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- 927th Hospital of Joint Logistics Support Force, Yunnan, PR China
| | - Yixiao Xu
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- The 83rd Affiliated Hospital of Xinxiang Medical University, Xinxiang, PR China
| | - Lianlian Liu
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Yuda Cheng
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Chen Zhang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Yi Yang
- Army Medical University, Chongqing, PR China
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Chongqing, PR China
| | - Wubin Yang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
- Department of Pathophysiology, College of High Altitude Military Medicine, Chongqing, PR China
| | - Jiali Wang
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Guangxing Chen
- Army Medical University, Chongqing, PR China
- Department of Joint Surgery, The First Affiliated Hospital, Chongqing, PR China
| | - Yi Huang
- Army Medical University, Chongqing, PR China
- Biomedical Analysis Center, Chongqing, PR China
| | - Yanping Tian
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Rui Jian
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| | - Bing Ni
- Army Medical University, Chongqing, PR China
- Department of Pathophysiology, College of High Altitude Military Medicine, Chongqing, PR China
| | - Wei Wu
- Army Medical University, Chongqing, PR China
- Thoracic Surgery Department, Southwest Hospital, The First Affiliated Hospital, Chongqing, PR China
| | - Yan Ruan
- Army Medical University, Chongqing, PR China
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, College of Basic Medical Sciences, Chongqing, PR China
| |
Collapse
|
2
|
Wahi A, Manchanda N, Jain P, Jadhav HR. Targeting the epigenetic reader "BET" as a therapeutic strategy for cancer. Bioorg Chem 2023; 140:106833. [PMID: 37683545 DOI: 10.1016/j.bioorg.2023.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Bromodomain and extraterminal (BET) proteins have the ability to bind to acetylated lysine residues present in both histones and non-histone proteins. This binding is facilitated by the presence of tandem bromodomains. The regulatory role of BET proteins extends to chromatin dynamics, cellular processes, and disease progression. The BET family comprises of BRD 2, 3, 4 and BRDT. The BET proteins are a class of epigenetic readers that regulate the transcriptional activity of a multitude of genes that are involved in the pathogenesis of cancer. Thus, targeting BET proteins has been identified as a potentially efficacious approach for the treatment of cancer. BET inhibitors (BETis) are known to interfere with the binding of BET proteins to acetylated lysine residues of chromatin, thereby leading to the suppression of transcription of several genes, including oncogenic transcription factors. Here in this review, we focus on role of Bromodomain and extra C-terminal (BET) proteins in cancer progression. Furthermore, numerous small-molecule inhibitors with pan-BET activity have been documented, with certain compounds currently undergoing clinical assessment. However, it is apparent that the clinical effectiveness of the present BET inhibitors is restricted, prompting the exploration of novel technologies to enhance their clinical outcomes and mitigate undesired adverse effects. Thus, strategies like development of selective BET-BD1, & BD2 inhibitors, dual and acting BET are also presented in this review and attempts to cover the chemistry needed for proper establishment of designed molecules into BRD have been made. Moreover, the review attempts to summarize the details of research till date and proposes a space for future development of BET inhibitor with diminished side effects. It can be concluded that discovery of isoform selective BET inhibitors can be a way forward in order to develop BET inhibitors with negligible side effects.
Collapse
Affiliation(s)
- Abhishek Wahi
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Namish Manchanda
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India
| | - Priti Jain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, Govt. of NCT of Delhi, Delhi, New Delhi 110017, India.
| | - Hemant R Jadhav
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani-Pilani Campus, Vidya Vihar Pilani, Rajasthan 333031, India
| |
Collapse
|
3
|
Baig MS, Deepanshu, Prakash P, Alam P, Krishnan A. In silico analysis reveals hypoxia-induced miR-210-3p specifically targets SARS-CoV-2 RNA. J Biomol Struct Dyn 2023; 41:12305-12327. [PMID: 36752331 DOI: 10.1080/07391102.2023.2175255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 01/01/2023] [Indexed: 02/09/2023]
Abstract
Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of -1.9, -1.7, and -1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Deepanshu
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Prem Prakash
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Anuja Krishnan
- Department of Molecular Medicine, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Circulating microRNAs as the Potential Diagnostic and Prognostic Biomarkers for Nasopharyngeal Carcinoma. Genes (Basel) 2022; 13:genes13071160. [PMID: 35885944 PMCID: PMC9318750 DOI: 10.3390/genes13071160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
microRNAs are endogenous non-coding miRNAs, 19–25 nucleotides in length, that can be detected in the extracellular environment in stable forms, named circulating miRNAs (CIR-miRNAs). Since the first discovery of CIR-miRNAs, a large number of studies have demonstrated that the abnormal changes in its expression could be used to significantly distinguish nasopharyngeal carcinoma (NPC) from healthy cells. We herein reviewed and highlighted recent advances in the study of CIR-miRNAs in NPC, which pointed out the main components serving as promising and effective biomarkers for NPC diagnosis and prognosis. Furthermore, brief descriptions of its origin and unique characteristics are provided.
Collapse
|
5
|
Nguyen MT, Lee W. MiR-141-3p regulates myogenic differentiation in C2C12 myoblasts via CFL2-YAP-mediated mechanotransduction. BMB Rep 2022. [PMID: 35000671 PMCID: PMC8891624 DOI: 10.5483/bmbrep.2022.55.2.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Skeletal myogenesis is essential to keep muscle mass and integrity, and impaired myogenesis is closely related to the etiology of muscle wasting. Recently, miR-141-3p has been shown to be induced under various conditions associated with muscle wasting, such as aging, oxidative stress, and mitochondrial dysfunction. However, the functional significance and mechanism of miR-141-3p in myogenic differentiation have not been explored to date. In this study, we investigated the roles of miR-141-3p on CFL2 expression, proliferation, and myogenic differentiation in C2C12 myoblasts. MiR-141-3p appeared to target the 3’UTR of CFL2 directly and suppressed the expression of CFL2, an essential factor for actin filament (F-actin) dynamics. Transfection of miR-141-3p mimic in myoblasts increased F-actin formation and augmented nuclear Yes-associated protein (YAP), a key component of mechanotransduction. Furthermore, miR-141-3p mimic increased myoblast proliferation and promoted cell cycle progression throughout the S and G2/M phases. Consequently, miR-141-3p mimic led to significant suppressions of myogenic factors expression, such as MyoD, MyoG, and MyHC, and hindered the myogenic differentiation of myoblasts. Thus, this study reveals the crucial role of miR-141-3p in myogenic differentiation via CFL2-YAP-mediated mechanotransduction and provides implications of miRNA-mediated myogenic regulation in skeletal muscle homeostasis.
Collapse
Affiliation(s)
- Mai Thi Nguyen
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Wan Lee
- Department of Biochemistry, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
6
|
JIANG C, ZHOU X, ZHU Y, MAO Y, WANG L, KUANG Y, SU J, HUANG W, TANG S. MiR-34c-3p targets Notch2 to inhibit cell invasion and epithelial-mesenchymal transition in nasopharyngeal carcinoma. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.67421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | - Xiangqi ZHOU
- Affiliated Nanhua Hospital of University of South China, P.R. China
| | - Yuan ZHU
- People’s Hospital of Changshou Chongqing, China
| | - Yini MAO
- Brain Hospital of Hunan Province, China
| | - Ling WANG
- Yi chang Central People’s Hospital, China
| | - Yuqing KUANG
- Xiangxi Autonomous Prefecture People’s Hospital, China
| | - Ju SU
- Xiangxi Autonomous Prefecture People’s Hospital, China
| | - Weiguo HUANG
- Hengyang Medical College of University of South China, China
| | - Sanyuan TANG
- Brain Hospital of Hunan Province, China; Affiliated Nanhua Hospital of University of South China, P.R. China
| |
Collapse
|
7
|
Current Status and Future Perspectives about Molecular Biomarkers of Nasopharyngeal Carcinoma. Cancers (Basel) 2021; 13:cancers13143490. [PMID: 34298701 PMCID: PMC8305767 DOI: 10.3390/cancers13143490] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is a serious major public health problem in its endemic countries. Up to 80% of NPC patients with locally advanced disease or distant metastasis at diagnosis were associated with poor prognosis and with median survival less than 4 months. The mortality rate of NPC metastasis is up to 91%. To date, there is no available curative treatment or reliable early diagnosis or prognosis for NPC. Discovery and development of reliable early diagnosis and prognosis biomarkers for nasopharyngeal carcinoma are urgent needed. Hence, we have here listed the potential early diagnosis and prognosis biomarker candidates for nasopharyngeal carcinoma. This review will give an insight to readers on the progress of NPC biomarker discovery to date, as well as future prospective biomarker development and their translation to clinical use. Abstract Nasopharyngeal carcinoma (NPC) is an epithelial malignancy that shows a remarkable ethnic and geographical distribution. It is one of the major public health problems in some countries, especially Southern China and Southeast Asia, but rare in most Western countries. Multifactorial interactions such as Epstein–Barr virus infection, individual’s genetic susceptibility, as well as environmental and dietary factors may facilitate the pathogenesis of this malignancy. Late presentation and the complex nature of the disease have led it to become a major cause of mortality. Therefore, an effective, sensitive, and specific molecular biomarker is urgently needed for early disease diagnosis, prognosis, and prediction of metastasis and recurrence after treatment. In this review, we discuss the recent research status of potential biomarker discovery and the problems that need to be explored further for better NPC management. By studying the aberrant pattern of these candidate biomarkers that promote NPC development and progression, we are able to understand the complexity of this malignancy better, hence positing our stands better towards strategies that may provide a way forward to the discovery of more reliable and specific biomarkers for diagnosis and targeted therapeutic development.
Collapse
|
8
|
Wan N, Zheng J. MicroRNA-891a-5p is a novel biomarker for non-small cell lung cancer and targets HOXA5 to regulate tumor cell biological function. Oncol Lett 2021; 22:507. [PMID: 33986868 PMCID: PMC8114465 DOI: 10.3892/ol.2021.12768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/23/2021] [Indexed: 12/25/2022] Open
Abstract
Numerous studies have shown that the dysregulation of microRNA (miRNA/miR) is an important factor in the pathogenesis of lung cancer. However, the role of miR-891a-5p in non-small cell lung cancer (NSCLC) remains unclear. Therefore, the present study aimed to examine the clinical value and biological function of miR-891a-5p in NSCLC. The mRNA expression level of miR-891a-5p in NSCLC was determined using reverse transcription-quantitative PCR and was used to determine the diagnostic value of miR-891a-5p, by creating a receiver operating characteristic curve. Kaplan-Meier and Cox regression analyses were used to evaluate its prognostic value in patients with NSCLC. Furthermore, cell experiments were performed to investigate the underlying mechanisms and functional role of miR-891a-5p in NSCLC progression. The results indicated that miR-891a-5p expression level was significantly higher in serum and tissues from patients with NSCLC and NSCLC cell lines. In addition, serum miR-891a-5p was found to have a diagnostic value in patients with NSCLC, and the increase in the expression level of miR-891a-5p in tumor tissues was associated with differentiation, and the tumor, node and metastases stages of cancer, which could be used for NSCLC prognosis. In addition, the experiments revealed that NSCLC cell proliferation, invasion and migration were significantly increased by the overexpression of miR-891a-5p and were significantly reduced by its downregulation. Furthermore, a luciferase reporter assay and the protein expression levels of HOXA5 showed that HOXA5 might be a miR-891a-5p target gene. In summary, the results indicated that high miR-891a-5p expression level could be a novel biomarker in patients with NSCLC and that it promoted tumor cell proliferation, invasion and migration. HOXA5 may be a target of miR-891a-5p, which may mediate miR-891a-5p function in NSCLC.
Collapse
Affiliation(s)
- Nianqing Wan
- Department of Integrated Traditional Chinese and Western Medicine, Yueqing People's Hospital, Yueqing, Zhejiang 325600, P.R. China
| | - Jianxiao Zheng
- Department of Integrated Traditional Chinese and Western Medicine, Yueqing People's Hospital, Yueqing, Zhejiang 325600, P.R. China
| |
Collapse
|
9
|
Fu JY, Jiang CX, Wu MY, Mei RY, Yang AF, Tao HP, Chen XJ, Zhang J, Huang L, Zhao XF. Theabrownin Induces Cell Apoptosis and Cell Cycle Arrest of Oligodendroglioma and Astrocytoma in Different Pathways. Front Pharmacol 2021; 12:664003. [PMID: 33995088 PMCID: PMC8119995 DOI: 10.3389/fphar.2021.664003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/12/2021] [Indexed: 12/09/2022] Open
Abstract
Theabrownin (TB), a natural compound present in the fresh leaves of green tea, is a potential antitumor agent. However, so far whether and how TB affects glioma is unclear. In this study, we investigated the effect of TB on astroglioma and oligodendroglioma cells. Surprisingly, TB significantly reduced the viabilities of HOG and U251 cells in a dose-dependent manner, which was accompanied by the upregulation of active-Casp-3, Bax, and PTEN; meanwhile, the antiapoptotic gene Bcl-2 was downregulated. In addition, TB treatment induced cell cycle arrest at the G1 and G2/M phases in HOG and U251 cells, respectively. TB treatment caused the downregulating of c-myc, cyclin D, CDK2, and CDK4 and upregulating of p21 and p27 in the HOG cell, while TB increased P53, p21, and p27 levels and decreased the levels of cell cycle regulator proteins such as CDK and cyclin A/B in the U251 cells. Therefore, the c-myc- and P53-related mechanisms were proposed for cell cycle arrest in these two glioma cell lines, respectively. Overall, our findings indicated that TB could be a novel candidate drug for the treatment of gliomas.
Collapse
Affiliation(s)
- J Y Fu
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - C X Jiang
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - M Y Wu
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - R Y Mei
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - A F Yang
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - H P Tao
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - X J Chen
- Department of Physiology, Research Center of Neuroscience, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - J Zhang
- Theabio Co., Ltd., Hangzhou, China
| | - L Huang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - X F Zhao
- Institute of Developmental and Regenerative Biology, Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
10
|
BRD4/8/9 are prognostic biomarkers and associated with immune infiltrates in hepatocellular carcinoma. Aging (Albany NY) 2020; 12:17541-17567. [PMID: 32927435 PMCID: PMC7521508 DOI: 10.18632/aging.103768] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/29/2020] [Indexed: 01/24/2023]
Abstract
Bromodomain (BRD)-containing proteins are a class of epigenetic readers with unique recognition for N-acetyl-lysine in histones and functions of gene transcription and chromatin modification, known to be critical in various cancers. However, little is known about the roles of distinct BRD-containing protein genes in hepatocellular carcinoma (HCC). Most recently, we investigated the transcriptional and survival data of BRD1, BRD2, BRD3, BRD4, BRD7, BRD8, BRD9 in HCC patients through ONCOMINE, UALCAN, Human Protein Atlas, GEPIA, cBioPortal, STRING, TIMER databases. BRD1/2/3/4/7/8/9 were over-expressed in HCC and were significantly associated with clinical cancer stages and pathological tumor grades. High mRNA expressions of BRD4/8/9 were promising candidate biomarkers in HCC patients. The rate of sequence alternations in BRD1/2/3/4/7/8/9 was relatively high (52%) in HCC patients, and the genetic alternations were correlated with shorter overall survival and disease-free survival in HCC patients. Additionally, the mRNA expression levels of individual BRD genes were significantly positively associated with the immune infiltrating levels of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. And the associations between BRD1/2/3/4/7/8/9 and diverse immune marker sets showed a significance. Overall, these results indicated that BRD4/8/9 could be potential prognostic markers and druggable epigenetic targets in HCC patients.
Collapse
|
11
|
Li M, Huang H, Cheng F, Hu X, Liu J. miR-141-3p promotes proliferation and metastasis of nasopharyngeal carcinoma by targeting NME1. Adv Med Sci 2020; 65:252-258. [PMID: 32299022 DOI: 10.1016/j.advms.2020.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/19/2019] [Accepted: 03/29/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE This study aimed to investigate the expression and biological function of miR-141-3p in nasopharyngeal carcinoma (NPC) via targeting neoplasm metastasis 1 (NME1). MATERIALS AND METHODS The expression of miR-141-3p and NME1 in 5-8F, C666-1, CNE-1, CNE-2, 6-10B and NP69 nasopharyngeal epithelial cells were detected using real-time Polymerase Chain Reaction (real-time PCR) and western blot, respectively. Cell proliferation was detected using Cell Counting Kit-8 (CCK-8), and the metastasis was detected using Transwell. The binding of miR-141-3p to NME1 was detected by dual luciferase reporter gene detection system. The effects of miR-141-3p on tumor growth were also determined in vivo. RESULTS The results showed that the expression of miR-141-3p significantly increased in various tumor cell lines and the expression of NME1 was higher in NP69 cells and lower in 5-8F cells, which had significant negative correlation. Furthermore, the expression of NME1 was significantly reduced after transfection of miR-141-3p and miR-141-3p promoted cell proliferation and metastasis. The double luciferase reporter gene detection system confirmed that NME1 was the target gene of miR-141-3p. Knockout of NME1 promoted the proliferation and metastasis of NP69 or 6-10B cells and the activation of p-Akt, which were abrogated by miR-141-3p. In vivo, the tumor volumes and weights in the miR-141-3p group significantly increased followed by down-regulation of NME1 and activation of p-Akt. CONCLUSIONS We confirmed that miR-141-3p promotes the proliferation and metastasis of NPC by targeting NME1.
Collapse
|
12
|
E. A. R. ENS, Irekeola AA, Yean Yean C. Diagnostic and Prognostic Indications of Nasopharyngeal Carcinoma. Diagnostics (Basel) 2020; 10:E611. [PMID: 32825179 PMCID: PMC7554987 DOI: 10.3390/diagnostics10090611] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a disease that is highly associated with the latent infection of Epstein-Barr virus. The absence of obvious clinical signs at the early stage of the disease has made early diagnosis practically impossible, thereby promoting the establishment and progression of the disease. To enhance the stride for a reliable and less invasive tool for the diagnosis and prognosis of NPC, we synopsize biomarkers belonging to the two most implicated biological domains (oncogenes and tumor suppressors) in NPC disease. Since no single biomarker is sufficient for diagnosis and prognosis, coupled with the fact that the known established methods such as methylation-specific polymerase chain reaction (PCR), multiplex methylation-specific PCR, microarray assays, etc., can only accommodate a few biomarkers, we propose a 10-biomarker panel (KIT, LMP1, PIKC3A, miR-141, and miR-18a/b (oncogenic) and p16, RASSF1A, DAP-kinase, miR-9, and miR-26a (tumor suppressors)) based on their diagnostic and prognostic values. This marker set could be explored in a multilevel or single unified assay for the diagnosis and prognosis of NPC. If carefully harnessed and standardized, it is hoped that the proposed marker set would help transform the diagnostic and prognostic realm of NPC, and ultimately, help prevent the life-threatening late-stage NPC disease.
Collapse
Affiliation(s)
- Engku Nur Syafirah E. A. R.
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
| | - Ahmad Adebayo Irekeola
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Department of Biological Sciences, Microbiology Unit, College of Natural and Applied Sciences, Summit University Offa, Offa PMB 4412, Kwara State, Nigeria
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia; (E.N.S.E.A.R.); (A.A.I.)
- Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
13
|
Mao Z, Li T, Zhao H, Qin Y, Wang X, Kang Y. Identification of epigenetic interactions between microRNA and DNA methylation associated with polycystic ovarian syndrome. J Hum Genet 2020; 66:123-137. [PMID: 32759991 DOI: 10.1038/s10038-020-0819-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
Aberration in microRNA expression or DNA methylation is a causal factor for polycystic ovarian syndrome. However, the epigenetic interactions between miRNA and DNA methylation remain unexplored in PCOS. We conducted a novel integrated analysis of RNA-seq, miRNA-seq, and methylated DNA-binding domain sequencing on ovarian granulosa cells to reveal the epigenetic interactions involved in the pathogenesis of PCOS. We identified 830 genes and 30 miRNAs that were expressed differently in PCOS, and seven miRNAs negatively regulated target mRNA expression. 130 miRNAs' promoters were significantly differently methylated, while 13 were associated with miRNA expression. Furthermore, the hypermethylation of miR-429, miR-141-3p, and miR-126-3p' promoter was found related to miRNA expression suppression and therefore their corresponding genes upregulation, including XIAP, BRD3, MAPK14, and SLC7A5. Our findings provide a novel insight in PCOS. The consequential reversal of genes silencing may participate in PCOS pathogenesis and served as potential molecular targets for PCOS.
Collapse
Affiliation(s)
- Zhanrui Mao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ting Li
- Department of Obstetrics and Gynecology, Yuncheng Central Hospital, Yuncheng, 044000, Shanxi Province, China
| | - Hui Zhao
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yulan Qin
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuesong Wang
- Department of Obstetrics and Gynecology, Yuncheng Central Hospital, Yuncheng, 044000, Shanxi Province, China
| | - Yani Kang
- School of Biomedical Engineering, Bio-ID Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
14
|
Lv B, Li F, Liu X, Lin L. The tumor-suppressive role of microRNA-873 in nasopharyngeal carcinoma correlates with downregulation of ZIC2 and inhibition of AKT signaling pathway. Cancer Gene Ther 2020; 28:74-88. [PMID: 32555352 DOI: 10.1038/s41417-020-0185-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are responsible for tumor initiation, relapse, and metastasis. Thus, residual CSCs after chemotherapy may result in poor prognosis for nasopharyngeal carcinoma (NPC). Emerging evidence suggests that differentially expressed microRNAs (miRNAs) regulate genes that carry out important functions in CSCs. Here we investigate the interaction of microRNA-873 (miR-873) with the Zic family member 2 (ZIC2) and the effects on downstream serine-threonine protein kinase (AKT) signaling pathway in CSCs in the context of NPC. Initially, microarray-based gene expression profiling identified ZIC2 as a key differentially expressed gene in NPC, which was subsequently confirmed to be upregulated in clinical NPC tissue samples. NPC cells were subjected to sphere-formation conditions in low-attachment plates, followed by sorting of CD133+ cells, which were selected as NPC stem cells after further characterization of stem cell biomarkers. ZIC2 was then shown to be enriched in NPC stem cells at both mRNA and protein levels. However, loss of ZIC2 was associated with the self-renewal, proliferative and tumorigenic properties of NPC stem cells. Next, miRNAs potentially able to target ZIC2 were predicted by the intersection of mirDIP and TargetScan database results, and miRNA miR-873 was found to be downregulated in NPC tissues in general but especially in NPC stem cells. Upregulation of miR-873 inhibited the stem-like properties and tumorigenicity of NPC stem cells, which was found to take place through downregulation of ZIC2 and disruption of the AKT signaling pathway. Collectively, the results obtained suggest that overexpression of miR-873 could aid NPC tumor suppression through reduction of the malignant potential of CSCs.
Collapse
Affiliation(s)
- Baotao Lv
- Department of Radiology, Linyi People's Hospital, 276000, Linyi, P.R. China
| | - Fuzhou Li
- Department of Radiology, Linyi People's Hospital, 276000, Linyi, P.R. China
| | - Xiaoli Liu
- Department of Psychology, Linyi Rongjun Hospital, 276003, Linyi, P.R. China
| | - Liqiang Lin
- Department of E.N.T., Linyi People's Hospital, 276000, Linyi, P.R. China.
| |
Collapse
|
15
|
Zhang JH, Xia HB. Lentiviral-Mediated Overexpression of MicroRNA-141 Promotes Cell Proliferation and Inhibits Apoptosis in Human Esophageal Squamous Cell Carcinoma. Recent Pat Anticancer Drug Discov 2020; 14:170-176. [PMID: 30599110 DOI: 10.2174/1574892814666181231142136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Esophageal Carcinoma (EC) is the eighth most common cancer worldwide. Numerous studies have highlighted a vital role of microRNAs (miRNAs) in the development of EC. However, the mechanism of microRNA (miRNA)-141 in Esophageal Squamous Cell Carcinoma (ESCC) remains unknown. OBJECTIVE In this study, we explored the effects of miRNA-141 on EC cell proliferation, apoptosis, xenograft tumour growth and their possible mechanisms. METHODS A lentivirus-vector-expressing miRNA-141 was constructed, and a TE-1 cell line of ESCC with a stable expression of miRNA-141 was transfected and screened. The miRNA-141 expression level was detected using qRT-PCR. Effects of miRNA-141 overexpression on cell proliferation and apoptosis were detected using MTT and flow cytometry, respectively. Using a dual-luciferase reporter assay, a direct interaction between miRNA-141 and the 3'-Untranslated Region (UTR) of YAP1 and SOX17 was confirmed. Tumour xenograft experiment in nude mice was used to detect the tumour growth, and the effects of miRNA-141 overexpression on YAP1 and SOX17 were analysed using Western blot. RESULTS We found that miRNA-141 was highly expressed in TE-1 cells, and miRNA-141 overexpression promoted cell proliferation and inhibited apoptosis. Moreover, the miRNA-141 group showed significantly increased tumour growth ability, luciferase activities and expression levels of YAP1 and SOX17 in the miRNA-141group were significantly down-regulated. CONCLUSION miRNA-141 promotes cell proliferation and inhibits apoptosis in ESCC by downregulating the expression level of YAP1 and SOX17, indicating that miRNA-141 may be a potential molecular target for the treatment of ESCC.
Collapse
Affiliation(s)
- Jun-He Zhang
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.,Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Hai-Bin Xia
- Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China
| |
Collapse
|
16
|
Bao J, Li X, Li Y, Huang C, Meng X, Li J. MicroRNA-141-5p Acts as a Tumor Suppressor via Targeting RAB32 in Chronic Myeloid Leukemia. Front Pharmacol 2020; 10:1545. [PMID: 32038235 PMCID: PMC6987442 DOI: 10.3389/fphar.2019.01545] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNA-141-5p (miR-141-5p), an important member of the miR-200 family, has been reported to be involved in cellular proliferation, migration, invasion, and drug resistance in different kinds of human malignant tumors. However, the role and function of miR-141-5p in chronic myeloid leukemia (CML) are unclear. In this current study, we found that the level of miR-141-5p was significantly decreased in peripheral blood cells from CML patients compared with normal blood cells and human leukemic cell line (K562 cells) compared with normal CD34+ cells, but was remarkably elevated in patients after treatment with nilotinib or imatinib. Suppression of miR-141-5p promoted K562 cell proliferation and migration in vitro. As expected, overexpression of miR-141-5p weakened K562 cell proliferation, migration, and promoted cell apoptosis. A xenograft model in nude mice showed that overexpression of miR-141-5p markedly suppressed tumor growth in vivo. Mechanistic studies suggested that RAB32 was the potential target of miR-141-5p, and silencing of RAB32 suppressed the proliferation and migration of K562 cells and promoted cell apoptosis. Taken together, our study demonstrates that miR-141-5p plays an important role in the activation of K562 cells in vitro and may act as a tumor suppressor via targeting RAB32 in the development of CML.
Collapse
Affiliation(s)
- Jing Bao
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China.,Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaofeng Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Yuhuan Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Cheng Huang
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xiaoming Meng
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
17
|
Brînzan C, Aşchie M, Matei E, Mitroi A, Cozaru G. Molecular expression profiles of selected microRNAs in colorectal adenocarcinoma in patients from south-eastern part of Romania. Medicine (Baltimore) 2019; 98:e18122. [PMID: 31764853 PMCID: PMC6882641 DOI: 10.1097/md.0000000000018122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 10/09/2019] [Accepted: 10/28/2019] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding class of RNAs with functions in the regulation of genes expressions. Dysregulated expressions of miRNAs play important roles in carcinogenesis and cancer progression by targeting various oncogenes and tumor-suppressor genes. miRNAs represent a new field for molecular diagnosis and prognosis of colorectal cancer (CRC) due to their high tissue specificity, their stability, and their dysregulated expression in tumor development.This study aimed to investigate using the qRT-PCR method the expression profile and prognostic value of 11 mature miRNAs in a cohort of 82 Romanian patients diagnosed with CRC. The relationship between the expression levels of selected miRNAs and clinicopathologic features were evaluated using ANOVA and Pearson test. In addition, the receiver operating characteristic (ROC) and area under the curve (AUC) were used to assess the diagnostic values of the miRNAs to discriminate cancerous from non-cancerous states of the samples.The expression levels of miR-30c, miR-144, miR-375, miR-214, and miR-195 in CRC tissue were significantly downregulated (all P < .05; Paired T-Test) than that in normal adjacent tissue sample (NATS), while the expression of miR-141, miR-182, miR-183, miR-21, and miR-370 in CRC tissue were significantly upregulated (all P < .001) than that in NATS. Moreover, the expression levels of miR-182, miR-183, miR-141, and miR-21 were demonstrated to be associated with a gradual increase in fold change expression with depth of tumor invasion (all P < .05), lymph node invasion (all P < .001), and maximal increase with distant metastasis (all P < .001). Moreover, the analysis of ROC curves revealed that AUC (95% CI) of miR-182, miR-183, miR-141, and miR-21 in diagnosis of CRC was 0.76 (0.66-0.87), 0.85 (0.78-0.94), 0.77 (0.62-0.92), 0.83 (0.73-0.90), respectively. The univariate and multivariate Cox-proportional hazard regression for all variables revealed that the nodal status, distant metastasis, miR-21, miR-141, miR-182, and miR-183 were independent prognostic markers of CRC.In conclusion, altered expressions of miR-21, miR-141, miR-182, and miR-183 in CRC varies at different stages of CRC development and may serve as potential diagnosis molecular biomarkers in Romanian patients with CRC. Further investigations are needed to confirm our findings.
Collapse
Affiliation(s)
- Costel Brînzan
- Pathology Department, Sf. Apostol Andrei Clinical Emergency County Hospital Constanta
- CEDMOG Center, Ovidius University, Constanta, Romania
| | - Mariana Aşchie
- Pathology Department, Sf. Apostol Andrei Clinical Emergency County Hospital Constanta
- CEDMOG Center, Ovidius University, Constanta, Romania
| | - Elena Matei
- CEDMOG Center, Ovidius University, Constanta, Romania
| | - Anca Mitroi
- Pathology Department, Sf. Apostol Andrei Clinical Emergency County Hospital Constanta
- CEDMOG Center, Ovidius University, Constanta, Romania
| | - Georgeta Cozaru
- Pathology Department, Sf. Apostol Andrei Clinical Emergency County Hospital Constanta
- CEDMOG Center, Ovidius University, Constanta, Romania
| |
Collapse
|
18
|
Scarano WR, Bedrat A, Alonso-Costa LG, Aquino AM, Fantinatti B, Justulin LA, Barbisan LF, Freire PP, Flaws JA, Bernardo L. Exposure to an environmentally relevant phthalate mixture during prostate development induces microRNA upregulation and transcriptome modulation in rats. Toxicol Sci 2019; 171:84-97. [PMID: 31199487 PMCID: PMC6736208 DOI: 10.1093/toxsci/kfz141] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/14/2019] [Accepted: 06/02/2019] [Indexed: 12/14/2022] Open
Abstract
Environmental exposure to phthalates during intrauterine development might increase susceptibility to neoplasms in reproductive organs such as the prostate. Although studies have suggested an increase in prostatic lesions in adult animals submitted to perinatal exposure to phthalates, the molecular pathways underlying these alterations remain unclear. Genome-wide levels of mRNAs and miRNAs were monitored with RNA-seq to determine if perinatal exposure to a phthalate mixture in pregnant rats is capable of modifying gene expression expression during prostate development of the filial generation. The mixture contains diethyl-phthalate, di-(2-ethylhexyl)-phthalate, dibutyl-phthalate, di-isononyl-phthalate, di-isobutyl-phthalate, and benzylbutyl-phthalate. Pregnant females were divided into 4 groups and orally dosed daily from GD10 to PND21 with corn oil (Control:C) or the phthalate mixture at three doses (20 μg/kg/d:T1; 200 μg/kg/d:T2; 200 mg/kg/d:T3). The phthalate mixture decreased anogenital distance, prostate weight and decreased testosterone level at the lowest exposure dose at PND22. The mixture also increased inflammatory foci and focal hyperplasia incidence at PND120. miR-184 was upregulated in all treated groups in relation to control and miR-141-3p was only upregulated at the lowest dose. In addition, 120 genes were deregulated at the lowest dose with several of these genes related to developmental, differentiation and oncogenesis. The data indicate that phthalate exposure at lower doses can cause greater gene expression modulation as well as other downstream phenotypes than exposure at higher doses. A significant fraction of the downregulated genes were predicted to be targets of miR-141-3p and miR-184, both of which were induced at the lower exposure doses.
Collapse
Affiliation(s)
- Wellerson R Scarano
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil.,Harvard T. H. Chan School of Public Health, Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Boston, MA, USA
| | - Amina Bedrat
- Harvard T. H. Chan School of Public Health, Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Boston, MA, USA
| | - Luiz G Alonso-Costa
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil
| | - Ariana M Aquino
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil
| | - Bruno Fantinatti
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil
| | - Luis A Justulin
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil
| | - Luis F Barbisan
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil
| | - Paula P Freire
- São Paulo State University (UNESP), Institute of Biosciences, Department of Morphology, Botucatu, SP, Brazil
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, IL
| | - Lemos Bernardo
- Harvard T. H. Chan School of Public Health, Department of Environmental Health & Molecular and Integrative Physiological Sciences Program, Boston, MA, USA
| |
Collapse
|
19
|
MiR-141–3p inhibits cell proliferation, migration and invasion by targeting TRAF5 in colorectal cancer. Biochem Biophys Res Commun 2019; 514:699-705. [DOI: 10.1016/j.bbrc.2019.05.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Accepted: 05/01/2019] [Indexed: 11/23/2022]
|
20
|
Orang AV, Petersen J, McKinnon RA, Michael MZ. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab 2019; 23:98-126. [PMID: 30837197 PMCID: PMC6479761 DOI: 10.1016/j.molmet.2019.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways. SCOPE OF REVIEW This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments. MAJOR CONCLUSIONS Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ayla V Orang
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
21
|
Wang H, Wei X, Wu B, Su J, Tan W, Yang K. Tumor-educated platelet miR-34c-3p and miR-18a-5p as potential liquid biopsy biomarkers for nasopharyngeal carcinoma diagnosis. Cancer Manag Res 2019; 11:3351-3360. [PMID: 31114371 PMCID: PMC6489554 DOI: 10.2147/cmar.s195654] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/27/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is the common malignant tumor of nasopharynx in southern China and other southeastern Asian countries. MicroRNAs (miRNAs) have been shown to play important roles in carcinogenesis. Recently, miR-34c-3p and miR-18a-5p have been found to be involved in carcinogenesis of NPC. Furthermore, platelets in NPC patients may acquire RNAs from NPC cells and turn into “tumor-educated platelet (TEP)”, which may serve as potential biomarkers for a diagnosis of NPC. However, the expression profiles of TEP miR-34c-3p and miR-18a-5p in NPC patients and their diagnostic values are yet to be determined. Aims: To investigate expression levels of TEP miR-34c-3p and miR-18a-5p and determine their diagnostic values for NPC. Materials and methods: Relative quantitative real-time PCR was used to determine the expression levels of TEP miR-34c-3p and miR-18a-5p in NPC patients (n=54) as compared to normal subjects (n=36). The receiver operating characteristic (ROC) curve analysis was performed to assess the diagnostic values of TEP miR-34c-3p and miR-18a-5p for NPC. Results: The expression levels of TEP miR-34c-3p and miR-18a-5p were significantly higher in NPC patients as compared to healthy subjects. The ROC analysis showed that the area under the ROC curve (AUC), sensitivity, specificity and accuracy for TEP miR-34c-3p, miR-18a-5p, or a combination of both miRNAs for NPC diagnostic tests were 0.952, 94.44%, 86.11%, 91.11%, or 0.884, 85.19%, 86.11%, 85.55%, or 0.954, 92.59%, 86.11%, 90.00%, respectively. No correlation was found between expression levels of TEP miR-34c-3p or miR-18a-5p and patients’ demographic variables and their NPC tumor/node/metastasis stages. The positive rates of TEP miR-34c-3p and miR-18a-5p for NPC diagnosis were 93.8% and 87.5%, respectively, which were significantly higher than Epstein-Barr virus DNA with a positive rate of 66.7%. Conclusion: The expression levels of TEP miR-34c-3p and miR-18a-5p are upregulated in NPC, rendering a significant clinical value for NPC diagnosis. The TEP miRNAs might serve as a novel type of liquid biopsies for NPC diagnosis.
Collapse
Affiliation(s)
- Hui Wang
- Department of Laboratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Xiuqi Wei
- Department of Laboratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, People's Republic of China
| | - Jingyu Su
- Department of Laboratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China
| | - Wenbin Tan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, People's Republic of China
| |
Collapse
|
22
|
Li M, Liu Y, Wei Y, Wu C, Meng H, Niu W, Zhou Y, Wang H, Wen Q, Fan S, Li Z, Li X, Zhou J, Cao K, Xiong W, Zeng Z, Li X, Qiu Y, Li G, Zhou M. Zinc-finger protein YY1 suppresses tumor growth of human nasopharyngeal carcinoma by inactivating c-Myc-mediated microRNA-141 transcription. J Biol Chem 2019; 294:6172-6187. [PMID: 30718276 DOI: 10.1074/jbc.ra118.006281] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
Yin Yang 1 (YY1) is a zinc-finger protein that plays critical roles in various biological processes by interacting with DNA and numerous protein partners. YY1 has been reported to play dual biological functions as either an oncogene or tumor suppressor in the development and progression of multiple cancers, but its role in human nasopharyngeal carcinoma (NPC) has not yet been revealed. In this study, we found that YY1 overexpression significantly inhibits cell proliferation and cell-cycle progression from G1 to S and promotes apoptosis in NPC cells. Moreover, we identified YY1 as a component of the c-Myc complex and observed that ectopic expression of YY1 inhibits c-Myc transcriptional activity, as well as the promoter activity and expression of the c-Myc target gene microRNA-141 (miR-141). Furthermore, restoring miR-141 expression could at least partially reverse the inhibitory effect of YY1 on cell proliferation and tumor growth and on the expression of some critical c-Myc targets, such as PTEN/AKT pathway components both in vitro and in vivo We also found that YY1 expression is reduced in NPC tissues, negatively correlates with miR-141 expression and clinical stages in NPC patients, and positively correlates with survival prognosis. Our results reveal a previously unappreciated mechanism in which the YY1/c-Myc/miR-141 axis plays a critical role in NPC progression and may provide some potential and valuable targets for the diagnosis and treatment of NPC.
Collapse
Affiliation(s)
- Mengna Li
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yukun Liu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yanmei Wei
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Chunchun Wu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Hanbing Meng
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Weihong Niu
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yao Zhou
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Heran Wang
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013
| | - Qiuyuan Wen
- the Second XiangYa Hospital, Central South University, Changsha, Hunan 410011
| | - Songqing Fan
- the Second XiangYa Hospital, Central South University, Changsha, Hunan 410011
| | - Zheng Li
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078; the High Resolution Mass Spectrometry Laboratory of Advanced Research Center, Central South University, Changsha, Hunan 410013
| | - Xiayu Li
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jianda Zhou
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ke Cao
- the Third XiangYa Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wei Xiong
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Zhaoyang Zeng
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Xiaoling Li
- the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Yuanzheng Qiu
- the Department of Otolaryngology Head and Neck Surgery, the Xiangya Hospital, Central South University, Changsha, Hunan 410008
| | - Guiyuan Li
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078
| | - Ming Zhou
- From the Hunan Cancer Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013; the Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, and Cancer Research Institute, Central South University, Changsha, Hunan 410078.
| |
Collapse
|
23
|
Desrochers G, Kazan JM, Pause A. Structure and functions of His domain protein tyrosine phosphatase in receptor trafficking and cancer. Biochem Cell Biol 2019; 97:68-72. [DOI: 10.1139/bcb-2017-0322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cell surface receptors trigger the activation of signaling pathways to regulate key cellular processes, including cell survival and proliferation. Internalization, sorting, and trafficking of activated receptors, therefore, play a major role in the regulation and attenuation of cell signaling. Efficient sorting of endocytosed receptors is performed by the ESCRT machinery, which targets receptors for degradation by the sequential establishment of protein complexes. These events are tightly regulated and malfunction of ESCRT components can lead to abnormal trafficking and sustained signaling and promote tumor formation or progression. In this review, we analyze the modular domain organization of the alternative ESCRT protein HD-PTP and its role in receptor trafficking and tumorigenesis.
Collapse
Affiliation(s)
- Guillaume Desrochers
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - Jalal M. Kazan
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
- Goodman Cancer Research Centre, McGill University, Montréal, QC H3A 1A3, Canada
| |
Collapse
|
24
|
Wang F, Zhang L, Xu H, Li R, Xu L, Qin Z, Zhong B. The Significance Role of microRNA-200c as a Prognostic Factor in Various Human Solid Malignant Neoplasms: A Meta-Analysis. J Cancer 2019; 10:277-286. [PMID: 30662548 PMCID: PMC6329861 DOI: 10.7150/jca.27536] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022] Open
Abstract
Objective: The aim of this study was to conduct a meta-analysis of 49 relevant studies to evaluate the prognostic value of miRNA-200c in various human malignant neoplasms. Methods: All relevant studies were identified by searching PubMed, Embase and Web of Science until August 15st, 2018. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) of miRNA-200c for overall survival (OS) and progression-free survival (PFS)/recurrence-free survival (RFS)/disease-free survival (DFS) were calculated to investigate such associations. Results: Overall, 49 eligible studies were included in this meta-analysis. Our results showed that high expression of miRNA-200c was significantly correlated with a poor OS in cancer (pooled HR = 1.32, 95% CI: 1.06-1.65), but was not significantly correlated with PFS/RFS/DFS in cancer (pooled HR=1.05, 95% CI: 0.84-1.23). In our subgroup analysis, high miRNA-200c expression predicted a significantly worse OS (pooled HR = 1.50, 95% CI: 1.12-2.01) only in Caucasians. Moreover, high miRNA-200c expression even showed significantly poor OS (pooled HR = 1.88, 95% CI: 1.39-2.54) in blood samples. In addition, a significantly unfavorable OS (pooled HR = 2.69, 95% CI: 1.49-4.85) and (pooled HR = 2.66, 95% CI: 1.07-6.59) associated with up-regulated miRNA-200c expression were observed in breast cancer and endometrial cancer, respectively. Besides, high miRNA-200c expression also showed significantly poor PFS/RFS/DFS (pooled HR=1.66, 95% CI: 1.03-2.67) in breast cancer. Conclusions: Our findings indicated that high miRNA-200c expression was a promising biomarker for patient survival and disease progression in malignant tumors, especially in breast cancer and endometrial cancer. Considering the insufficient evidence, further large-scale researches and clinical studies were needed to verify these results.
Collapse
Affiliation(s)
- Feng Wang
- Department of Ultrasound, Jiangsu Province Hospital of TCM, Affiliated Hospital of Nanjing University of TCM, Nanjing, 210029, China
| | - Lei Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Haoxiang Xu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Ran Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Lingyan Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Zhiqiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Bing Zhong
- Department of Urology, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, 223300, China.,Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| |
Collapse
|
25
|
Lao TD, Nguyen TV, Nguyen DH, Nguyen MT, Nguyen CH, Le THA. miR-141 is up-regulated in biopsies from Vietnamese patients with nasopharyngeal carcinoma. Braz Oral Res 2018; 32:e126. [PMID: 30569973 DOI: 10.1590/1807-3107bor-2018.vol32.0126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 11/05/2018] [Indexed: 11/22/2022] Open
Abstract
Novel biomarkers for screening, diagnosis and monitoring the treatment of nasopharyngeal carcinoma (NPC), one of the most common cancers in Vietnam, are urgently required. Increasing evidence suggests that microRNA-141 (miR-141) is associated with NPC, owing to its ability to affect the expression of genes that modulate tumorigenesis. Unfortunately, research on miR-141 expression in Vietnamese patients is limited. Therefore, the objective of the current study was to evaluate miR-141 expression and assess whether miR-141 might be a potential biomarker for diagnosis of NPC in Vietnamese patients. Total RNA isolated from 40 NPC biopsy samples and 37 non-cancerous samples was analyzed by quantitative reverse-transcription PCR. The miR-141 expression levels were compared between NPC biopsy and non-cancerous samples. The frequency of miR-141 detection was 37.50% and 10.80% in the NPC and non-cancerous samples, respectively (p = 0.0143). The miR-141 expression was 5.27 times higher in tumor samples than non-cancerous samples. Additionally, the RR (Relative risk) and OR (Odds ratio) were 1.83 (95%CI = 1.2576-2.6675, p = 0.0016) and 4.95 (95%CI = 1.4625-16.7541, p = 0.01), respectively. In conclusion, miR-141 was up-regulated in the biopsy samples and thus may be a potential biomarker for NPC in the Vietnamese population.
Collapse
Affiliation(s)
- Thuan Duc Lao
- Ho Chi Minh City Open University, Faculty of Biotechnology, Department of Pharmaceutical Biotechnology, Ho Chi Minh City, Vietnam
| | - Truong Van Nguyen
- Ho Chi Minh City International University, School of Biotechnology, Ho Chi Minh City, Vietnam
| | - Dung Huu Nguyen
- Cho Ray Hospital, Department of Otorhinolaryngology, Ho Chi Minh City, Vietnam
| | - Minh Trong Nguyen
- Cho Ray Hospital, Department of Otorhinolaryngology, Ho Chi Minh City, Vietnam
| | - Chuong Hoang Nguyen
- University of Science, Vietnam National University, Faculty of Biology and Biotechnology, Ho Chi Minh City, Vietnam
| | - Thuy Huyen Ai Le
- Ho Chi Minh City Open University, Faculty of Biotechnology, Department of Pharmaceutical Biotechnology, Ho Chi Minh City, Vietnam
| |
Collapse
|
26
|
Dissecting the role of His domain protein tyrosine phosphatase/PTPN23 and ESCRTs in sorting activated epidermal growth factor receptor to the multivesicular body. Biochem Soc Trans 2018; 46:1037-1046. [PMID: 30190330 PMCID: PMC6195633 DOI: 10.1042/bst20170443] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Abstract
Sorting of activated epidermal growth factor receptor (EGFR) into intraluminal vesicles (ILVs) within the multivesicular body (MVB) is an essential step during the down-regulation of the receptor. The machinery that drives EGFR sorting attaches to the cytoplasmic face of the endosome and generates vesicles that bud into the endosome lumen, but somehow escapes encapsulation itself. This machinery is termed the ESCRT (endosomal sorting complexes required for transport) pathway, a series of multi-protein complexes and accessory factors first identified in yeast. Here, we review the yeast ESCRT pathway and describe the corresponding components in mammalian cells that sort EGFR. One of these is His domain protein tyrosine phosphatase (HD-PTP/PTPN23), and we review the interactions involving HD-PTP and ESCRTs. Finally, we describe a working model for how this ESCRT pathway might overcome the intrinsic topographical problem of EGFR sorting to the MVB lumen.
Collapse
|
27
|
Thuan Duc L, Phuong Kim T, Thuy Ai HL. miRNA-141 as the Biomarker for Human Cancers. ASIAN JOURNAL OF PHARMACEUTICAL RESEARCH AND HEALTH CARE 2018. [DOI: 10.18311/ajprhc/2018/21486] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Wang J, Wang G, Li B, Qiu C, He M. miR-141-3p is a key negative regulator of the EGFR pathway in osteosarcoma. Onco Targets Ther 2018; 11:4461-4478. [PMID: 30104888 PMCID: PMC6074763 DOI: 10.2147/ott.s171304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Many studies have used miRNA to modulate osteosarcoma development by regulating protein expression, and these studies showed that the expression of EGFR is increased in osteosarcoma. Methods Western blot, real-time PCR and immunohistochemical were used to detect the expression of EGFR and miR-141 in osteosarcoma tissues and cells. The correlation between miR-141 and the grading of osteosarcoma and the correlation with the survival time of the patients were analyzed. After predicting the target effect of miR-141 on EGFR by miRDB, correlation analysis was used to analyze the correlation between miR-141 and EGFR. Luciferase reporter gene, western blot and real-time PCR were used to detect the targeting effect of miR-141 on EGFR. Then we detected the effect of miR-141 on proliferation by MTT and PI staining. The effect of miR-141 on cell apoptosis was detected by Hochest33258 and AV-PI staining, and the effect of miR-141 on cell migration was detected by Transwell. The regulatory effects of miR-141 on related proteins were detected by western blot and real-time PCR. Finally, we transfected EGFR and EGFR DEL (mutation with miR-141 binding site) in osteosarcoma cells, and detected the effects of miR-141 on cell proliferation, apoptosis, migration and related proteins. Results The expression of miR-141-3p was negatively correlated with the expression of EGFR in osteosarcoma. The overexpression of miR-141-3p was not only closely related to the classification and size of the osteosarcoma but also had a negative effect on the growth and migration of the osteosarcoma through negative regulation of the expression of EGFR. MiR-141 can inhibit the growth and metastasis of osteosarcoma cells by targeting EGFR and affecting its downstream pathway proteins. Conclusion Our study provides miR-141-3p may be a new theoretical basis for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Jiashi Wang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China,
| | - Guangbin Wang
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China,
| | - Bin Li
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China,
| | - Chuang Qiu
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China,
| | - Ming He
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China,
| |
Collapse
|
29
|
Tang Q, Li M, Chen L, Bi F, Xia H. miR-200b/c targets the expression of RhoE and inhibits the proliferation and invasion of non-small cell lung cancer cells. Int J Oncol 2018; 53:1732-1742. [PMID: 30066855 DOI: 10.3892/ijo.2018.4493] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/26/2018] [Indexed: 02/05/2023] Open
Abstract
Lung cancer is a major cause of mortality worldwide and non‑small cell lung cancer (NSCLC) accounts for ~80% of all cases of lung cancer. Increasing evidence indicates that Rho family GTPase 3 (RhoE) is important in the carcinogenesis and progression of NSCLC. In addition, several studies have indicated that microRNA (miR)‑200b/c is downregulated in NSCLC cells. However, the exact mechanism remains to be elucidated. In the present study, immunohistochemistry (IHC) assays were used to analyze the RhoE and epithelial‑mesenchymal transition (EMT)‑related proteins in NSCLC tissues. Putative target sequences of the RhoE 3' untranslated region (3'UTR) for miR‑200b/c were detected using bioinformatics analysis. The mRNA expression levels of RhoE and miR‑200b/c were determined by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) analysis, and western blot analysis was used to detect the protein levels of RhoE in cells. The luciferase‑reporter activity of the RhoE 3'UTR was detected using a dual‑luciferase assay. A cell counting kit‑8 assay, flow cytometry and Transwell assay were used to detect cell proliferation, cell cycle, and invasion and migration ability, respectively. The IHC assays indicated that RhoE was overexpressed in NSCLC tissues. The bioinformatics analysis revealed that the RhoE 3'UTR contained a putative target site for miR‑200b/c, which was conserved across species. The results of RT‑qPCR analysis showed that the mRNA expression of RhoE was overexpressed and miR‑200b/200c was decreased in lung cancer tissues. The enhanced expression of miR‑200b or miR‑200c significantly downregulated the expression of RhoE at the mRNA and protein levels in A549 and NCI‑H1299 NSCLC cells. Furthermore, luciferase assays showed that miR‑200b and miR‑200c directly targeted the 3'UTR of RhoE. The forced expression of miR‑200b or miR‑200c markedly inhibited A549 cell and NCI‑H1299 cell proliferation, G0/G1 progression and cell invasion, which was consistent with the effects of RNA interference‑mediated RhoE knockdown in these cells. The suppression of RhoE regulated the expression of EMT‑related markers, which was consistent with the effect of miR‑200b/c in NSCLC cells, and the expression of EMT‑related proteins and RhoE were also correlated in the lung cancer tissues. Therefore, miR‑200b and miR‑200c targeted the expression of RhoE and inhibited the malignancy of NSCLC cells, and the downregulation of miR‑200b and miR‑200c may contribute to the high expression of RhoE in NSCLC.
Collapse
Affiliation(s)
- Qiulin Tang
- Laboratory of Molecular Target Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Target Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Liang Chen
- Laboratory of Molecular Target Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Feng Bi
- Laboratory of Molecular Target Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongwei Xia
- Laboratory of Molecular Target Therapy in Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
30
|
Chen L, Gao Y, Zhu L, Song H, Zhao L, Liu A, Zhang G, Shi G. Establishment and characterization of a GES-1 human gastric epithelial cell line stably expressing miR-23a. Oncol Lett 2018; 16:977-983. [PMID: 29963172 PMCID: PMC6019959 DOI: 10.3892/ol.2018.8765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/16/2018] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs/miRs) are highly conserved, endogenous, small and single-stranded RNA molecules that promote the degradation and translational inhibition of specific target mRNAs in order to regulate cell proliferation and differentiation, and organism growth and development. MiR-23a has been demonstrated to function as an oncogene in certain types of tumor. The aim of the present study was to provide a tool for elucidating the mechanisms of action of miR-23a in gastric cancer, and identify the function of miR-23a in a human gastric epithelium cell line, by establishing a human gastric epithelial GES-1 cell line that stably expressed miR-23a. A plasmid was constructed for the expression of miR-23a by inserting the miR-23a primary sequence into a pcDNA3 vector (pcDNA3/pri-23a). PcDNA3/pri-23a or the empty pcDNA3 vector (EV), which was then transfected into human gastric epithelium GES-1 cells using Lipofectamine to produce GES-1/miR-23a cells and GES-1/EV cells, respectively. G418 (Geneticin) was used to select and expand the G418-resistant colonies, and miR-23a expression was assessed by reverse transcription-semi-quantitative polymerase chain reaction. The proliferation of the cells was assessed using cell counting and MTT assays. The invasive ability of the cells was evaluated using a Transwell assay. The colony-forming ability of the cells was assessed using a colony formation assay. A human gastric epithelium GES-1/miR-23a cell line with the stable expression of miR-23a was successfully established. Compared with the control GES-1 and GES-1/EV cells, the mRNA expression of the miR-23a gene in GES-1/miR-23a cells was significantly increased (P<0.05). The proliferation rate, invasive ability and colony-forming ability of the GES-1/miR-23a cells were significantly higher compared with those of the control GES-1/EV cells and the parental GES-1 cells (P<0.05). Additionally, the results of the present study demonstrated that miR-23a enhanced the cell proliferation rate, invasive ability and cell colony forming ability of GES-1 cells. This data provides a solid experimental foundation for further studies on the function of miRNAs in the development and progression of gastric cancer.
Collapse
Affiliation(s)
- Li Chen
- Department of Pathogen Biology, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China.,Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Yan Gao
- The First Department of General Surgery, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Lihua Zhu
- Department of Pathogen Biology, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Hongjiang Song
- Department of Gastrointestinal Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, Heilongjiang 150081, P.R. China
| | - Linlin Zhao
- Pharmacy Disciplines, Jitang College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Aihua Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Guangling Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Guoyou Shi
- Department of Pathogen Biology, Jitang College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| |
Collapse
|
31
|
Itoh Y. Chemical Protein Degradation Approach and its Application to Epigenetic Targets. CHEM REC 2018; 18:1681-1700. [PMID: 29893461 DOI: 10.1002/tcr.201800032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/24/2018] [Indexed: 12/17/2022]
Abstract
In addition to traditional drugs, such as enzyme inhibitors, receptor agonists/antagonists, and protein-protein interaction inhibitors as well as genetic technology, such as RNA interference and the CRISPR/Cas9 system, protein knockdown approaches using proteolysis-targeting chimeras (PROTACs) have attracted much attention. PROTACs, which induce selective degradation of their target protein via the ubiquitin-proteasome system, are useful for the down-regulation of various proteins, including disease-related proteins and epigenetic proteins. Recent reports have shown that chemical protein knockdown is possible not only in cells, but also in vivo and this approach is expected to be used as the therapeutic strategy for several diseases. Thus, this approach may be a significant technique to complement traditional drugs and genetic ablation and will be more widely used for drug discovery and chemical biology studies in the future. In this personal account, a history of chemical protein knockdown is introduced, and its features, recent progress in the epigenetics field, and future outlooks are discussed.
Collapse
Affiliation(s)
- Yukihiro Itoh
- Department of Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| |
Collapse
|
32
|
Ishibashi O, Akagi I, Ogawa Y, Inui T. MiR-141-3p is upregulated in esophageal squamous cell carcinoma and targets pleckstrin homology domain leucine-rich repeat protein phosphatase-2, a negative regulator of the PI3K/AKT pathway. Biochem Biophys Res Commun 2018; 501:507-513. [DOI: 10.1016/j.bbrc.2018.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/04/2018] [Indexed: 12/24/2022]
|
33
|
BRD7 expression and c-Myc activation forms a double-negative feedback loop that controls the cell proliferation and tumor growth of nasopharyngeal carcinoma by targeting oncogenic miR-141. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:64. [PMID: 29559001 PMCID: PMC5859396 DOI: 10.1186/s13046-018-0734-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/14/2018] [Indexed: 01/03/2023]
Abstract
Background miR-141 is up-regulated and plays crucial roles in nasopharyngeal carcinoma (NPC). However, the molecular mechanism underlying the dysregulation of miR-141 is still obscure. Methods Thus, the ChIP-PCR was performed to identify the c-Myc-binding sites in miR-141 and BRD7. qRT-PCR, western blot and immunohistochemistry assays were used to detect the expression of miR-141 and its up/down stream molecules. The rescue experiments on the c-Myc/miR-141 axis were performed in vitro and in vivo. Results Our results showed that the levels of mature miR-141, pre-miR-141 and pri-miR-141 were downregulated in c-Myc knockdown NPC cells. Meanwhile, c-Myc transactivates the expression of miR-141 by binding its promoter region. Moreover, BRD7 was identified as a co-factor of c-Myc to negatively regulate the activation of c-Myc/miR-141 axis, as well as a direct target of c-Myc. Moreover, restoration of miR-141 in c-Myc knockdown NPC cells notably rescued the effect of c-Myc on cell proliferation and tumor growth, as well as the blocking of PTEN/AKT pathway. Additionally, the expression of c-Myc was positively correlated with that of miR-141 and the clinical stages of NPC patients and negatively associated with the expression of BRD7. Our findings demonstrated that BRD7 expression and c-Myc activation forms a negative feedback loop to control the cell proliferation and tumor growth by targeting miR-141. Conclusions These observations provide new mechanistic insights into the dysregulation of miR-141 expression and a promising therapeutic option for NPC. Electronic supplementary material The online version of this article (10.1186/s13046-018-0734-2) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
MiR-34b-3 and miR-449a inhibit malignant progression of nasopharyngeal carcinoma by targeting lactate dehydrogenase A. Oncotarget 2018; 7:54838-54851. [PMID: 27458165 PMCID: PMC5342385 DOI: 10.18632/oncotarget.10761] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/06/2016] [Indexed: 12/19/2022] Open
Abstract
MicroRNA expression profiling assays have shown that miR-34b/c and miR-449a are down-regulated in nasopharyngeal carcinoma (NPC); however, the targets and functions of miR-34b/c and miR-449a in the pathologenesis of NPC remain elusive. In this study, we verified miR-34b/c and miR-449a were significantly reduced with the advance of NPC. Overexpression of miR-34b-3 and miR-449a suppressed the growth of NPC cells in culture and mouse tumor xenografts. Using tandem mass tags for quantitative labeling and LC-MS/MS analysis to investigate protein changes after restoring expression of miR-34b-3, 251 proteins were found to be down-regulated after miR-34b-3 transfection. Through 3 replicate experiments, we found that miR-34b-3 regulated the expression of 15 potential targeted genes mainly clustered in the key enzymes of glycolysis metabolism, including lactate dehydrogenase A (LDHA). Further investigation revealed that miR-34b-3 and miR-449a negatively regulated LDHA by binding to the 3′ untranslated regions of LDHA. Furthermore, LDHA overexpression rescued the miR-34b-3 and miR-449a induced tumor inhibition effect in CNE2 cells. In addition, miR-34b-3 and miR-449a suppressed LDH activity and reduced LD content, which were directly induced by downregulation of the LDHA. Our findings suggest that miR-34b-3 and miR-449a suppress the development of NPC through regulation of glycolysis via targeting LDHA and may be potential therapeutic targets for the treatment of NPC.
Collapse
|
35
|
He F, Wei L, Luo W, Liao Z, Li B, Zhou X, Xiao X, You J, Chen Y, Zheng S, Li P, Murata M, Huang G, Zhang Z. Glutaredoxin 3 promotes nasopharyngeal carcinoma growth and metastasis via EGFR/Akt pathway and independent of ROS. Oncotarget 2018; 7:37000-37012. [PMID: 27203742 PMCID: PMC5095054 DOI: 10.18632/oncotarget.9454] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 04/16/2016] [Indexed: 12/14/2022] Open
Abstract
Glutaredoxin 3 (GLRX3) is antioxidant enzyme, maintaining a low level of ROS, thus contributing to the survival and metastasis of several types of cancer. However, the expression and functions of GLRX3 have not been addressed in nasopharyngeal carcinoma (NPC). In this study, we found that GLRX3 was overexpressed in NPC. Knockdown of GLRX3 in NPC cell lines inhibited proliferation in vitro, tumorignesis in vivo, and colony formation. In addition, GLRX3 knockdown decreased the migration and invasion capacity of NPC cells by reversing the epithelial-mesenchymal transition (EMT). Furthermore, stabilization of GLRX3 was positively related to with epidermal growth factor receptor (EGFR) expression and negatively with ROS generation. Phosphorylation of Akt, a key downstream effector, was induced by EGFR signaling but did not rely on increasing ROS level in NPC cells. GLRX3 might be an oncoprotein in NPC, playing important roles in increasing redox reaction and activating EGFR/ Akt signals, so it may be a therapeutic target for NPC.
Collapse
Affiliation(s)
- Feng He
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lili Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhipeng Liao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Bo Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoying Zhou
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingping You
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yufeng Chen
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shixing Zheng
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ping Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie, Japan
| | - Guangwu Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
36
|
Epigenetic modification of miR-141 regulates SKA2 by an endogenous 'sponge' HOTAIR in glioma. Oncotarget 2017; 7:30610-25. [PMID: 27121316 PMCID: PMC5058705 DOI: 10.18632/oncotarget.8895] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/31/2016] [Indexed: 12/21/2022] Open
Abstract
Aberrant expression of miR-141 has recently implicated in the occurrence and development of various types of malignant tumors. However whether the involvement of miR-141 in the pathogenesis of glioma remains unknown. Here, we showed that miR-141 was markedly downregulated in glioma tissues and cell lines compared with normal brain tissues, and its expression correlated with the pathological grading. Enforced expression of miR-141 in glioma cells significantly inhibited cell proliferation, migration and invasion, whereas knockdown of miR-141 exerted opposite effect. Mechanistic investigations revealed that HOTAIR might act as an endogenous 'sponge' of miR-141, thereby regulating the derepression of SKA2. Further, we explored the molecular mechanism by which miR-141 expression was regulated, and found that the miR-141 promoter was hypermethylated and that promoter methylation of miR-141 was mediated by DNMT1 in glioma cells. Finally, both overexpression of miR-141 and knockdown of HOTAIR in a mouse model of human glioma resulted in significant reduction of tumor growth in vivo. Collectively, these results suggest that epigenetic modification of miR-141 and the interaction of ceRNA regulatory network will provide a new approach for therapeutics against glioma.
Collapse
|
37
|
Huang S, Wa Q, Pan J, Peng X, Ren D, Huang Y, Chen X, Tang Y. Downregulation of miR-141-3p promotes bone metastasis via activating NF-κB signaling in prostate cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:173. [PMID: 29202848 PMCID: PMC5716366 DOI: 10.1186/s13046-017-0645-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 11/20/2017] [Indexed: 01/19/2023]
Abstract
Background Clinically, prostate cancer (PCa) exhibits a high avidity to metastasize to bone. miR-141-3p is an extensively studied miRNA in cancers and downregulation of miR-141-3p has been widely reported to be involved in the progression and metastasis of several human cancer types. However, the clinical significance and biological roles of miR-141-3p in bone metastasis of PCa are still unclear. Methods miR-141-3p expression was examined in 89 non-bone metastatic and 52 bone metastatic PCa tissues by real-time PCR. Statistical analysis was performed to investigate the clinical correlation between miR-141-3p expression levels and clinicopathological characteristics in PCa patients. The biological roles of miR-141-3p in bone metastasis of PCa were evaluated both in vitro and a mouse intracardial model in vivo. Bioinformatics analysis, Western blot, luciferase reporter and miRNA immunoprecipitation assays were performed to explore and examine the relationship between miR-141-3p and its potential targets. Clinical correlation of miR-141-3p with its targets was examined in clinical PCa tissues. Results miR-141-3p expression is reduced in bone metastatic PCa tissues compared with non-bone metastatic PCa tissues. Low expression of miR-141-3p positively correlates with serum PSA levels, Gleason grade and bone metastasis status in PCa patients. Furthermore, upregulating miR-141-3p suppresses the EMT, invasion and migration of PCa cells in vitro. Conversely, silencing miR-141-3p yields an opposite effect. Importantly, upregulating miR-141-3p dramatically reduces bone metastasis of PC-3 cells in vivo. Our results further show that miR-141-3p inhibits the activation of NF-κB signaling via directly targeting tumor necrosis factor receptor-associated factor 5(TRAF5) and 6 (TRAF6), which further suppresses invasion, migration and bone metastasis of PCa cells. The clinical negative correlation of miR-141-3p expression with TRAF5, TRAF6 and NF-κB signaling activity is demonstrated in PCa tissues. Conclusion Our findings unravel a novel mechanism underlying the bone metastasis of PCa, suggesting that miR-141-3p mimics might represent a potential therapeutic avenue for the treatment of PCa bone metastasis. Electronic supplementary material The online version of this article (10.1186/s13046-017-0645-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shuai Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, People's Republic of China.,Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China
| | - Qingde Wa
- Department of Orthopaedic Surgery, the Affiliated Hospital of Zunyi Medical college, 563003, Zunyi, People's Republic of China
| | - Jincheng Pan
- Department of Urology Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China
| | - Xinsheng Peng
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China
| | - Dong Ren
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Sun Yat-sen University, 510080, Guangzhou, People's Republic of China
| | - Yan Huang
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Guangzhou Medical University, 510260, Guangzhou, People's Republic of China
| | - Xiao Chen
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, People's Republic of China.
| | - Yubo Tang
- Department of Pharmacy, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, People's Republic of China.
| |
Collapse
|
38
|
Wang W. Study of miR-10b regulatory mechanism for epithelial-mesenchymal transition, invasion and migration in nasopharyngeal carcinoma cells. Oncol Lett 2017; 14:7207-7210. [PMID: 29344154 PMCID: PMC5754829 DOI: 10.3892/ol.2017.7172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/27/2017] [Indexed: 12/21/2022] Open
Abstract
The aim of the study was to investigate the miR-10b regulatory mechanism for epithelial-mesenchymal transition (EMT) and its effect on the proliferation and migration of nasopharyngeal carcinoma cells. RT-qPCR was used to detect the expression of miR-10b in CNE1 nasopharyngeal carcinoma cell line. The NP69 nasopharyngeal mucosal cell line was used to determine the expression of miR-10b after infection with lentivirus. The effect of miR-10b on the proliferation of NP69 was examined using cell counting kit-8. The effect of miR-10b on NP69 migration was examined using scratch assay. Western blot analysis was used to detect the effects of miR-10b on the expression of epithelial cell markers E-cadherin and β-catenin and mesenchymal cell markers fibronectin, N-cadherin, vimentin and matrix metalloproteinase-9 (MMP-9). The present study showed that miR-10b was highly expressed in CNE1 cells. The stable expression of miR-10b promoted the proliferation and migration of NP69 cells, downregulated the expression of epithelial cell markers E-cadherin and β-catenin, and upregulated the expression of mesenchymal cell markers fibronectin, N-cadherin, vimentin and MMP-9 resulting in cell EMT. In conclusion, miR-10b promotes the proliferation and migration of nasopharyngeal carcinoma cells, and induces EMT in nasopharyngeal carcinoma cells, thereby having the potential to become a new target for the treatment of nasopharyngeal carcinoma.
Collapse
Affiliation(s)
- Weiyi Wang
- Department of Ear-Nose-Throat, Hunan Provincial People's Hospital, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
39
|
Xue L, Yu X, Jiang X, Deng X, Mao L, Guo L, Fan J, Fan Q, Wang L, Lu SH. TM4SF1 promotes the self-renewal of esophageal cancer stem-like cells and is regulated by miR-141. Oncotarget 2017; 8:19274-19284. [PMID: 27974706 PMCID: PMC5386683 DOI: 10.18632/oncotarget.13866] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/22/2016] [Indexed: 12/17/2022] Open
Abstract
Cancer stem-like cells have been identified in primary human tumors and cancer cell lines. Previously we found TM4SF1 gene was highly expressed in side population (SP) cells from esophageal squamous cell carcinoma (ESCC) cell lines, but the role and underlying mechanism of TM4SF1 in ESCC remain unclear. In this study, we observed TM4SF1 was up-regulated but miR-141 was down-regulated in SP cells isolated from ESCC cell lines. TM4SF1 could stimulate the self-renewal ability and carcinogenicity of esophageal cancer stem-like cells, and promote cell invasion and migration. In miR-141 overexpression cells, the expression of TM4SF1 was significantly reduced. We also found that overexpression of miR-141 could abolish the self-renewal ability and carcinogenicity of esophageal cancer stem-like cells and decrease cell invasion and migration by suppressing TM4SF1. Consequently, TM4SF1 is a direct target gene of miR-141. The regulation of TM4SF1 by miR-141 may play an important role in controlling self-renewals of esophageal cancer stem-like cells. It may also promote the development of new therapeutic strategies and efficient drugs to target ESCC stem-like cells.
Collapse
Affiliation(s)
- Lei Xue
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiying Yu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China
| | - Xingran Jiang
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China.,Current address: Department of Pathology, Beijing ChaoYang Hospital, Capital Medical University, Beijing, China
| | - Xin Deng
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China
| | - Linlin Mao
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China
| | - Liping Guo
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China
| | - Jinhu Fan
- Department of Cancer Epidemiology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Qinqxia Fan
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liuxing Wang
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shih-Hsin Lu
- Department of Etiology and Carcinogenesis and State Key Laboratory of Molecular Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China.,Beijing Key Laboratory for Carcinogenesis and Cancer Prevention, Beijing, China
| |
Collapse
|
40
|
MicroRNA profiling study reveals miR-150 in association with metastasis in nasopharyngeal carcinoma. Sci Rep 2017; 7:12012. [PMID: 28931826 PMCID: PMC5607379 DOI: 10.1038/s41598-017-10695-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/11/2017] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in pathogenesis of human cancers. Several miRNAs have been shown to involve in nasopharyngeal carcinoma (NPC) pathogenesis through alteration of gene networks. A global view of the miRNA expression profile of clinical specimens would be the best way to screen out the possible miRNA candidates that may be involved in disease pathogenesis. In this study, we investigated the expression profiles of miRNA in formalin-fixed paraffin-embedded tissues from patients with undifferentiated NPC versus non-NPC controls using a miRNA real-time PCR platform, which covered a total of 95 cancer-related miRNAs. Hierarchical cluster analysis revealed that NPC and non-NPC controls were clearly segregated. Promisingly, 10 miRNA candidates were differentially expressed. Among them, 9 miRNAs were significantly up-regulated of which miR-205 and miR-196a showed the most up-regulated in NPC with the highest incidence percentage of 94.1% and 88.2%, respectively, while the unique down-regulated miR-150 was further validated in patient sera. Finally, the in vitro gain-of-function and loss-of-function assays revealed that miR-150 can modulate the epithelial-mesenchymal-transition property in NPC/HK-1 cells and led to the cell motility and invasion. miR-150 may be a potential biomarker for NPC and plays a critical role in NPC tumourigenesis.
Collapse
|
41
|
Palliative systemic therapy for recurrent or metastatic nasopharyngeal carcinoma – How far have we achieved? Crit Rev Oncol Hematol 2017; 114:13-23. [DOI: 10.1016/j.critrevonc.2017.03.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/28/2017] [Indexed: 02/05/2023] Open
|
42
|
Li L, Luo Z. Dysregulated miR-27a-3p promotes nasopharyngeal carcinoma cell proliferation and migration by targeting Mapk10. Oncol Rep 2017; 37:2679-2687. [PMID: 28393229 PMCID: PMC5428281 DOI: 10.3892/or.2017.5544] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/16/2017] [Indexed: 11/21/2022] Open
Abstract
miRNA-27a-3p is an important regulator of carcinogenesis and other pathological processes. However, its role in laryngeal carcinoma is still unknown. In our previous research, we found that miR-27a-3p expression was upregulated in nasopharyngeal carcinoma (NPC) using a microarray chip. In the present study, we identified miR-27a-3p as an endogenous promoter of metastatic invasion. The expression levels of miR-27a-3p were correlated with human metastatic progression outcomes and Kaplan-Meier survival. In silico database analyses revealed that Mapk10 is a potential target of miR-27a-3p, and luciferase reporter assay results revealed that miR-27a-3p directly inhibits the Mapk10 3 untranslated region (3′UTR). Real-time PCR and western blotting results ascertained that Mapk10 expression was regulated by miR-27a-3p. In addition, miR-27a-3p gain-of-function promoted cell proliferation, migration and invasion in 5–8 F NPC cells. These effects partially depended on Mapk10, and loss of miR-27a-3p function had the opposite effects.
Collapse
Affiliation(s)
- Lihua Li
- Department of Radiotherapy, Hunan Cancer Hospital, Changsha, Hunan 410013, P.R. China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
43
|
Peng N, Shi L, Zhang Q, Hu Y, Wang N, Ye H. Microarray profiling of circular RNAs in human papillary thyroid carcinoma. PLoS One 2017; 12:e0170287. [PMID: 28288173 PMCID: PMC5347999 DOI: 10.1371/journal.pone.0170287] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Non-coding circular RNAs (circRNAs) have displayed dysregulated expression in several human cancers. Here, we profiled the circRNA expression of papillary thyroid carcinoma (PTC) tumors to improve our understanding of PTC pathogenesis. METHODS Microarray profiling was performed on 18 thyroid samples, consisting of six PTC tumors, six matching contralateral normal samples, and six benign thyroid lesions. After low-intensity filtering, hierarchical clustering revealed the circRNA expression patterns. Statistical analysis followed by qRT-PCR validation identified the differential circRNAs. MicroRNA (miRNA) target prediction software identified putative miRNA response elements (MREs), which were used to construct a network map of circRNA-miRNA interactions for the differential circRNAs. Bioinformatics platforms predicted cancer-related circRNA-miRNA associations and putative downstream target genes, respectively. RESULTS A total of 88 circRNAs and 10 circRNAs were significantly upregulated and downregulated, respectively, in PTC tumors relative to normal thyroid tissue, while 129 circRNAs and 226 circRNAs were significantly upregulated and downregulated, respectively, in PTC tumors relative to benign thyroid lesions. A total of 12 upregulated and four downregulated circRNAs were overlapping between the foregoing comparisons. One downregulated circRNA (hsa_circRNA_100395) showed interactive potential with two cancer-related miRNAs (miR-141-3p and miR-200a-3p). From this analysis, we identified several promising cancer-related genes that may be targets of the dysregulated hsa_circRNA_100395/miR-141-3p/miR-200a-3p axis in PTC tumors. CONCLUSIONS circRNA dysregulation may play a role in PTC pathogenesis, and several key circRNAs show promise as candidate biomarkers for PTC. The hsa_circRNA_100395/miR-141-3p/ miR-200a-3p axis may be involved in the pathogenesis of PTC.
Collapse
Affiliation(s)
- Nianchun Peng
- Department of Endocrinology and Metabolism, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Lixin Shi
- Department of Endocrinology and Metabolism, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qiao Zhang
- Department of Endocrinology and Metabolism, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ying Hu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Nanpeng Wang
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hui Ye
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
44
|
Zhou L, Wu F, Jin W, Yan B, Chen X, He Y, Yang W, Du W, Zhang Q, Guo Y, Yuan Q, Dong X, Yu W, Zhang J, Xiao L, Tong P, Shan L, Efferth T. Theabrownin Inhibits Cell Cycle Progression and Tumor Growth of Lung Carcinoma through c-myc-Related Mechanism. Front Pharmacol 2017; 8:75. [PMID: 28289384 PMCID: PMC5326752 DOI: 10.3389/fphar.2017.00075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/06/2017] [Indexed: 12/12/2022] Open
Abstract
Green tea, the fresh leaves of Camellia sinensis, is not only a health-promoting beverage but also a traditional Chinese medicine used for prevention or treatment of cancer, such as lung cancer. Theabrownin (TB) is the main fraction responsible for the medicinal effects of green tea, but whether it possesses anti-cancer effect is unknown yet. This study aimed to determine the in vitro and in vivo anti-lung cancer effect of TB and explore the underlying molecular mechanism, by using A549 cell line and Lewis lung carcinoma-bearing mice. In cellular experiment, MTT assay was performed to evaluate the inhibitory effect and IC50 values of TB, and flow cytometry was conducted to analyze the cell cycle progression affected by TB. In animal experiment, mice body mass, tumor incidence, tumor size and tumor weight were measured, and histopathological analysis on tumor was performed with Transferase dUTP nick-end labeling staining. Real time PCR and western blot assays were adopted to detect the expression of C-MYC associated genes and proteins for mechanism clarification. TB was found to inhibit A549 cell viability in a dose- and time-dependent manner and block A549 cell cycle at G0/G1 phase. Down-regulation of c-myc, cyclin A, cyclin D, cdk2, cdk4, proliferation of cell nuclear antigen and up-regulation of p21, p27, and phosphate and tension homolog in both gene and protein levels were observed with TB treatment. A c-myc-related mechanism was thereby proposed, since c-myc could transcriptionally regulate all other genes in its downstream region for G1/S transitions of cell cycle and proliferation of cancer cells. This is the first report regarding the anti-NSCLC effect and the underlying mechanism of TB on cell cycle progression and proliferation of A549 cells. The in vivo data verified the in vitro result that TB could significantly inhibit the lung cancer growth in mice and induce apoptosis on tumors in a dose-dependent manner. It provides a promising candidate of natural products for lung cancer therapy and new development of anti-cancer agent.
Collapse
Affiliation(s)
- Li Zhou
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Feifei Wu
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Wangdong Jin
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Bo Yan
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Xin Chen
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Yingfei He
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Weiji Yang
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Wenlin Du
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Qiang Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Yonghua Guo
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Qiang Yuan
- The Second Clinical Medical College, Zhejiang Chinese Medical UniversityHangzhou, China
| | | | - Wenhua Yu
- Hangzhou First People’s HospitalHangzhou, China
| | | | - Luwei Xiao
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Peijian Tong
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
| | - Letian Shan
- Institute of Orthopaedics and Traumatology, Zhejiang Chinese Medical UniversityHangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences Inc.Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University of MainzMainz, Germany
| |
Collapse
|
45
|
Ding L, Yu LL, Han N, Zhang BT. miR-141 promotes colon cancer cell proliferation by inhibiting MAP2K4. Oncol Lett 2017; 13:1665-1671. [PMID: 28454307 PMCID: PMC5403415 DOI: 10.3892/ol.2017.5653] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/09/2016] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs or miRs) can function as tumor-suppressor or oncogenic genes. Upregulation of miRNA-141 has been frequently observed in colorectal cancer (CRC) samples. The experimentally observed targets of miR-141 include the tumor-suppressor gene mitogen-activated protein kinase kinase 4 (MAP2K4). The aim of the present study was to investigate the role of miR-141 in the proliferation of colonic cancer. Western blotting, immunohistochemistry and reverse transcription-quantitative polymerase chain reaction were used to detect the expression levels of miR-141 and MAP2K4 in colonic adenocarcinoma (CAC) and adjacent non-cancerous (NC) tissue samples, as well as in human CAC cell lines (HT29, T94 and LS174). MTT assay was used to investigate the proliferation and apoptosis of these three cell lines. The expression levels of miR-141 were significantly upregulated in clinical samples of CAC, compared with adjacent NC tissues. By contrast, MAP2K4 was downregulated in CAC. The in vitro assays demonstrated that overexpression of miR-141 resulted in cell proliferation of CAC by inhibiting MAP2K4 activity. Our study suggests that targeting the miR-141-MAP2K4 signaling pathway may represent a novel approach for the treatment of CRC.
Collapse
Affiliation(s)
- Lei Ding
- Department of Radiology, The Third Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Li-Li Yu
- Department of Radiology, The Third Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Ning Han
- Department of Radiology, The Third Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| | - Bu-Tian Zhang
- Department of Radiology, The Third Hospital of Jilin University, Changchun, Jilin 130000, P.R. China
| |
Collapse
|
46
|
Wang D, Ma J, Ji X, Xu F, Wei Y. miR-141 regulation of EIF4E expression affects docetaxel chemoresistance of non-small cell lung cancer. Oncol Rep 2017; 37:608-616. [PMID: 27840955 DOI: 10.3892/or.2016.5214] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/16/2016] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the role of miR-141 regulation of eukaryotic initiation factor-4E (EIF4E) expression in docetaxel chemoresistance of human non-small cell lung cancer (NSCLC). The expression of miR-141 in docetaxel chemoresistant patients with NSCLCs was markedly higher than those of non-docetaxel chemoresistant patients with NSCLCs. The expression of EIF4E in docetaxel chemoresistant patients with NSCLCs was markedly lower than those of non-docetaxel chemoresistant patients with NSCLCs. Downregulation of miR-141 suppressed cell proliferation, induced cell death and increased caspase-3 activity in H1299 or H2009/docetaxel cells. Downregulation of miR-141 also increased the protein expression of EIF4E, VEGF, c-Myc and Bax in H1299 or H2009/docetaxel cells. Conversely, up-regulation of miR-141 promoted cell proliferation, inhibited cell death and caspase-3 activity in H1299 or H2009/docetaxel cell. Upregulation of miR-141 suppressed EIF4E, VEGF, c-Myc protein expression and inhibited Bax in H1299 or H2009/docetaxel cells. Thus, the present study is the first to show the induction of miR-141/EIF4E expression in an acquired model of docetaxel chemoresistant patients with NSCLCs. This serves as a mechanism of acquired docetaxel chemoresistant patients with NSCLCs, possibly through direct interactions with VEGF, c-Myc, and Bax, therefore presenting a potential therapeutic target for the treatment of docetaxel chemoresistant patients with NSCLCs.
Collapse
Affiliation(s)
- Dong Wang
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Junjie Ma
- Department of Thoracic Surgery, The Second People's Hospital of Liaocheng, Liaocheng, Shandong 252600, P.R. China
| | - Xiangyu Ji
- Department of Anesthesia, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Feng Xu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| | - Yucheng Wei
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, P.R. China
| |
Collapse
|
47
|
Li JZ, Li J, Wang HQ, Li X, Wen B, Wang YJ. MiR-141-3p promotes prostate cancer cell proliferation through inhibiting kruppel-like factor-9 expression. Biochem Biophys Res Commun 2017; 482:1381-1386. [DOI: 10.1016/j.bbrc.2016.12.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 01/26/2023]
|
48
|
Lee KTW, Tan JK, Lam AKY, Gan SY. MicroRNAs serving as potential biomarkers and therapeutic targets in nasopharyngeal carcinoma: A critical review. Crit Rev Oncol Hematol 2016; 103:1-9. [PMID: 27179594 DOI: 10.1016/j.critrevonc.2016.04.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 03/09/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022] Open
Abstract
Despite significant medical advancement, nasopharyngeal carcinoma (NPC) remains one of the most difficult cancers to detect and treat where it continues to prevail especially among the Asian population. miRNAs could act as tumour suppressor genes or oncogenes in NPC. They play important roles in the pathogenesis of NPC by regulating specific target genes which are involved in various cellular processes and pathways. In particular, studies on miRNAs related to the Epstein Barr virus (EBV)-encoded latent membrane protein one (LMP1) and EBVmiRNA- BART miRNA confirmed the link between EBV and NPC. Both miRNA and its target genes could potentially be exploited for prognostic and therapeutic strategies. They are also important in predicting the sensitivity of NPC to radiotherapy and chemotherapy. The detection of stable circulating miRNAs in plasma of NPC patients has raised the potential of miRNAs as novel diagnostic markers. To conclude, understanding the roles of miRNA in NPC will identify ways to improve the management of patients with NPC.
Collapse
Affiliation(s)
- Katherine Ting-Wei Lee
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia; School of Postgraduate Studies and Research, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Juan-King Tan
- School of Medicine, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia.
| | - Sook-Yee Gan
- School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| |
Collapse
|
49
|
Ospina-Prieto S, Chaiwangyen W, Herrmann J, Groten T, Schleussner E, Markert UR, Morales-Prieto DM. MicroRNA-141 is upregulated in preeclamptic placentae and regulates trophoblast invasion and intercellular communication. Transl Res 2016; 172:61-72. [PMID: 27012474 DOI: 10.1016/j.trsl.2016.02.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/05/2016] [Accepted: 02/25/2016] [Indexed: 12/27/2022]
Abstract
Preeclampsia (PE) is one of the leading causes of maternal and perinatal morbidity and mortality worldwide. Abnormal expression of microRNAs (miRNAs) occurs in several pregnancy diseases including PE. Placental trophoblast cells express a specific set of miRNAs which changes during pregnancy. These miRNAs can be released within extracellular vesicles (EVs) and mediate intercellular communication. miR-141 is a pregnancy-related miRNA which is expressed by trophoblast cells at increased levels in maternal plasma in the third trimester. We hypothesize that miR-141 is abnormally expressed in PE placentae, controls trophoblast, and immune cell functions and is involved in the intercellular communication between fetal trophoblast and maternal immune cells. Expression of miR-141 was analyzed by quantitative real-time PCR (qPCR) in normal and preeclamptic placentae and in 2 different trophoblastic cell lines, JEG-3 and HTR-8/SVneo. Changes in JEG-3 and HTR-8/SVneo cell proliferation and invasion were investigated after miR-141 inhibition and overexpression by MTS-, BrdU-, and Matrigel assays. EVs from miR-141 transfected cells were isolated from supernatants and characterized by NanoSight analysis and qPCR. Proliferation of Jurkat T cells and invasion of HTR-8/SVneo cells were investigated after treatment with EVs containing different miR-141 levels. miR-141 expression was higher in placentae from PE patients compared with those from normal pregnancies. miR-141 inhibition in trophoblastic cells resulted in decreased cell viability and reduced invasion capability. After transfection with miR-141-mimic, trophoblastic cells secreted EVs with increased miR-141 content. These vesicles did not exert effects on trophoblastic cell invasion but reduced Jurkat T cell proliferation. In conclusion, miR-141 regulates major functions of trophoblastic and immune cells. Trophoblast cells release EVs whose miRNA content can be modified by transfection of origin cells. Furthermore, elevated levels of miR-141 can be transferred from trophoblast to immune cells by release and internalization of EVs suggesting their role in the immune regulation of normal and pathologic pregnancies.
Collapse
Affiliation(s)
- Stephanie Ospina-Prieto
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Bachstraße 18, Jena 07743, Germany
| | - Wittaya Chaiwangyen
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Bachstraße 18, Jena 07743, Germany; School of Medical Sciences, University of Phayao, Phayao 56000, Thailand
| | - Jörg Herrmann
- Department of Gynecology and Obstetrics, Hufeland Klinikum, Henry-van-de-Velde-Straße 2, Weimar 99425, Germany
| | - Tanja Groten
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Bachstraße 18, Jena 07743, Germany
| | - Ekkehard Schleussner
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Bachstraße 18, Jena 07743, Germany
| | - Udo R Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Bachstraße 18, Jena 07743, Germany.
| | - Diana M Morales-Prieto
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Bachstraße 18, Jena 07743, Germany.
| |
Collapse
|
50
|
miR-3188 regulates nasopharyngeal carcinoma proliferation and chemosensitivity through a FOXO1-modulated positive feedback loop with mTOR-p-PI3K/AKT-c-JUN. Nat Commun 2016; 7:11309. [PMID: 27095304 PMCID: PMC4842991 DOI: 10.1038/ncomms11309] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/11/2016] [Indexed: 12/15/2022] Open
Abstract
The biological role of miR-3188 has not yet been reported in the context of cancer. In this study, we observe that miR-3188 not only reduces cell-cycle transition and proliferation, but also significantly prolongs the survival time of tumour-bearing mice as well as sensitizes cells to 5-FU. Mechanistic analyses indicate that miR-3188 directly targets mTOR to inactivate p-PI3K/p-AKT/c-JUN and induces its own expression. This feedback loop further suppresses cell-cycle signalling through the p-PI3K/p-AKT/p-mTOR pathway. Interestingly, we also observe that miR-3188 direct targeting of mTOR is mediated by FOXO1 suppression of p-PI3K/p-AKT/c-JUN signalling. In clinical samples, reduced miR-3188 is an unfavourable factor and negatively correlates with mTOR and c-JUN levels but positively correlates with FOXO1 expression. Our studies demonstrate that as a tumour suppressor, miR-3188 directly targets mTOR to stimulate its own expression and participates in FOXO1-mediated repression of cell growth, tumorigenesis and NPC chemotherapy resistance. Although miR-related mechanisms have been implicated in nasopharyngeal carcinoma (NPC), a precise role for miR-3188 has not been reported in this context. Here, Zhao et al. show that FOXO1-induced miR-3188 acts as a tumour suppressor in NPC by regulating the axis mTOR/PI3K/Akt/c-Jun.
Collapse
|