1
|
Bazan IS, Kim SJ, Ardito TA, Zhang Y, Shan P, Sauler M, Lee PJ. Reply to Suresh. Am J Physiol Lung Cell Mol Physiol 2022; 323:L648-L649. [PMID: 36351165 PMCID: PMC9662795 DOI: 10.1152/ajplung.00294.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Isabel S Bazan
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - So-Jin Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina
- Section of Pulmonary and Critical Care Medicine, Durham Veterans Affairs Medical Center, Durham, North Carolina
| | - Taylor A Ardito
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina
| | - Yi Zhang
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Peiying Shan
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Maor Sauler
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Patty J Lee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University, Durham, North Carolina
- Section of Pulmonary and Critical Care Medicine, Durham Veterans Affairs Medical Center, Durham, North Carolina
| |
Collapse
|
2
|
Fu J, Zhang L, Li D, Tian T, Wang X, Sun H, Ge A, Liu Y, Zhang X, Huang H, Meng S, Zhang D, Zhao L, Sun S, Zheng T, Jia C, Zhao Y, Pang D. DNA Methylation of Imprinted Genes KCNQ1, KCNQ1OT1, and PHLDA2 in Peripheral Blood Is Associated with the Risk of Breast Cancer. Cancers (Basel) 2022; 14:cancers14112652. [PMID: 35681632 PMCID: PMC9179312 DOI: 10.3390/cancers14112652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 02/01/2023] Open
Abstract
Methylation alterations of imprinted genes lead to loss of imprinting (LOI). Although studies have explored the mechanism of LOI in breast cancer (BC) development, the association between imprinted gene methylation in peripheral blood and BC risk is largely unknown. We utilized HumanMethylation450 data from TCGA and GEO (n = 1461) to identify the CpG sites of imprinted genes associated with BC risk. Furthermore, we conducted an independent case-control study (n = 1048) to validate DNA methylation of these CpG sites in peripheral blood and BC susceptibility. cg26709929, cg08446215, cg25306939, and cg16057921, which are located at KCNQ1, KCNQ1OT1, and PHLDA2, were discovered to be associated with BC risk. Subsequently, the association between cg26709929, cg26057921, and cg25306939 methylation and BC risk was validated in our inhouse dataset. All 22 CpG sites in the KCNQ1OT1 region were associated with BC risk. Individuals with a hypermethylated KCNQ1OT1 region (>0.474) had a lower BC risk (OR: 0.553, 95% CI: 0.397−0.769). Additionally, the methylation of the KCNQ1OT1 region was not significantly different among B cells, monocytes, and T cells, which was also observed at CpG sites in PHLDA2. In summary, the methylation of KCNQ1, KCNQ1OT1, and PHLDA2 was associated with BC risk, and KCNQ1OT1 methylation could be a potential biomarker for BC risk assessment.
Collapse
Affiliation(s)
- Jinming Fu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou 221004, China
| | - Lei Zhang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Dapeng Li
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Tian Tian
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Xuan Wang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Hongru Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Anqi Ge
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Yupeng Liu
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Xianyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China;
| | - Hao Huang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Shuhan Meng
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Ding Zhang
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Liyuan Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Simin Sun
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Ting Zheng
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Chenyang Jia
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
| | - Yashuang Zhao
- Department of Epidemiology, College of Public Health, Harbin Medical University, Harbin 150081, China; (J.F.); (L.Z.); (D.L.); (T.T.); (X.W.); (H.S.); (A.G.); (Y.L.); (H.H.); (S.M.); (D.Z.); (L.Z.); (S.S.); (T.Z.); (C.J.)
- Correspondence: (Y.Z.); (D.P.); Tel.: +86-451-8750-2823 (Y.Z.); +86-451-8750-2885 (D.P.)
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin 150081, China;
- Correspondence: (Y.Z.); (D.P.); Tel.: +86-451-8750-2823 (Y.Z.); +86-451-8750-2885 (D.P.)
| |
Collapse
|
3
|
Lai J, Lin X, Cao F, Mok H, Chen B, Liao N. CDKN1C as a prognostic biomarker correlated with immune infiltrates and therapeutic responses in breast cancer patients. J Cell Mol Med 2021; 25:9390-9401. [PMID: 34464504 PMCID: PMC8500970 DOI: 10.1111/jcmm.16880] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/01/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) prognosis and therapeutic sensitivity could not be predicted efficiently. Previous evidence have shown the vital roles of CDKN1C in BC. Therefore, we aimed to construct a CDKN1C‐based model to accurately predicting overall survival (OS) and treatment responses in BC patients. In this study, 995 BC patients from The Cancer Genome Atlas database were selected. Kaplan‐Meier curve, Gene set enrichment and immune infiltrates analyses were executed. We developed a novel CDKN1C‐based nomogram to predict the OS, verified by the time‐dependent receiver operating characteristic curve, calibration curve and decision curve. Therapeutic response prediction was followed based on the low‐ and high‐nomogram score groups. Our results indicated that low‐CDKN1C expression was associated with shorter OS and lower proportion of naïve B cells, CD8 T cells, activated NK cells. The predictive accuracy of the nomogram for 5‐year OS was superior to the tumour‐node‐metastasis stage (area under the curve: 0.746 vs. 0.634, p < 0.001). The nomogram exhibited excellent predictive performance, calibration ability and clinical utility. Moreover, low‐risk patients were identified with stronger sensitivity to therapeutic agents. This tool can improve BC prognosis and therapeutic responses prediction, thus guiding individualized treatment decisions.
Collapse
Affiliation(s)
- Jianguo Lai
- Department of Breast Cancer, Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoyi Lin
- Department of Breast Cancer, Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Fangrong Cao
- Department of Breast Cancer, Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hsiaopei Mok
- Department of Breast Cancer, Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Bo Chen
- Department of Breast Cancer, Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ning Liao
- Department of Breast Cancer, Guangdong Provincial People's Hospital,Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
4
|
Naveh NSS, Deegan DF, Huhn J, Traxler E, Lan Y, Weksberg R, Ganguly A, Engel N, Kalish JM. The role of CTCF in the organization of the centromeric 11p15 imprinted domain interactome. Nucleic Acids Res 2021; 49:6315-6330. [PMID: 34107024 PMCID: PMC8216465 DOI: 10.1093/nar/gkab475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation, chromatin-binding proteins, and DNA looping are common components regulating genomic imprinting which leads to parent-specific monoallelic gene expression. Loss of methylation (LOM) at the human imprinting center 2 (IC2) on chromosome 11p15 is the most common cause of the imprinting overgrowth disorder Beckwith-Wiedemann Syndrome (BWS). Here, we report a familial transmission of a 7.6 kB deletion that ablates the core promoter of KCNQ1. This structural alteration leads to IC2 LOM and causes recurrent BWS. We find that occupancy of the chromatin organizer CTCF is disrupted proximal to the deletion, which causes chromatin architecture changes both in cis and in trans. We also profile the chromatin architecture of IC2 in patients with sporadic BWS caused by isolated LOM to identify conserved features of IC2 regulatory disruption. A strong interaction between CTCF sites around KCNQ1 and CDKN1C likely drive their expression on the maternal allele, while a weaker interaction involving the imprinting control region element may impede this connection and mediate gene silencing on the paternal allele. We present an imprinting model in which KCNQ1 transcription is necessary for appropriate CTCF binding and a novel chromatin conformation to drive allele-specific gene expression.
Collapse
Affiliation(s)
- Natali S Sobel Naveh
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel F Deegan
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jacklyn Huhn
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Emily Traxler
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Genetics and Genome Biology, Hospital for Sick Children, and Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nora Engel
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
Pavanelli AC, Mangone FR, Barros LRC, Machado-Rugolo J, Capelozzi VL, Nagai MA. Abnormal Long Non-Coding RNAs Expression Patterns Have the Potential Ability for Predicting Survival and Treatment Response in Breast Cancer. Genes (Basel) 2021; 12:genes12070996. [PMID: 34209776 PMCID: PMC8305383 DOI: 10.3390/genes12070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 12/09/2022] Open
Abstract
Abnormal long non-coding RNAs (lncRNAs) expression has been documented to have oncogene or tumor suppressor functions in the development and progression of cancer, emerging as promising independent biomarkers for molecular cancer stratification and patients’ prognosis. Examining the relationship between lncRNAs and the survival rates in malignancies creates new scenarios for precision medicine and targeted therapy. Breast cancer (BRCA) is a heterogeneous malignancy. Despite advances in its molecular classification, there are still gaps to explain in its multifaceted presentations and a substantial lack of biomarkers that can better predict patients’ prognosis in response to different therapeutic strategies. Here, we performed a re-analysis of gene expression data generated using cDNA microarrays in a previous study of our group, aiming to identify differentially expressed lncRNAs (DELncRNAs) with a potential predictive value for response to treatment with taxanes in breast cancer patients. Results revealed 157 DELncRNAs (90 up- and 67 down-regulated). We validated these new biomarkers as having prognostic and predictive value for breast cancer using in silico analysis in public databases. Data from TCGA showed that compared to normal tissue, MIAT was up-regulated, while KCNQ1OT1, LOC100270804, and FLJ10038 were down-regulated in breast tumor tissues. KCNQ1OT1, LOC100270804, and FLJ10038 median levels were found to be significantly higher in the luminal subtype. The ROC plotter platform results showed that reduced expression of these three DElncRNAs was associated with breast cancer patients who did not respond to taxane treatment. Kaplan–Meier survival analysis revealed that a lower expression of the selected lncRNAs was significantly associated with worse relapse-free survival (RFS) in breast cancer patients. Further validation of the expression of these DELncRNAs might be helpful to better tailor breast cancer prognosis and treatment.
Collapse
Affiliation(s)
- Ana Carolina Pavanelli
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo 01246-903, Brazil; (A.C.P.); (F.R.M.); (L.R.C.B.)
- Center for Translational Research in Oncology, Cancer Institute of São Paulo, São Paulo 01246-903, Brazil
| | - Flavia Rotea Mangone
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo 01246-903, Brazil; (A.C.P.); (F.R.M.); (L.R.C.B.)
- Center for Translational Research in Oncology, Cancer Institute of São Paulo, São Paulo 01246-903, Brazil
| | - Luciana R. C. Barros
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo 01246-903, Brazil; (A.C.P.); (F.R.M.); (L.R.C.B.)
- Center for Translational Research in Oncology, Cancer Institute of São Paulo, São Paulo 01246-903, Brazil
| | - Juliana Machado-Rugolo
- Department of Pathology, University of São Paulo Medical School (USP), São Paulo 01246-903, Brazil; (J.M.-R.); (V.L.C.)
- Health Technology Assessment Center (NATS), Clinical Hospital (HCFMB), Medical School of São Paulo State University (UNESP), Botucatu, São Paulo 01246-903, Brazil
| | - Vera L. Capelozzi
- Department of Pathology, University of São Paulo Medical School (USP), São Paulo 01246-903, Brazil; (J.M.-R.); (V.L.C.)
| | - Maria A. Nagai
- Discipline of Oncology, Department of Radiology and Oncology, Faculty of Medicine, University of São Paulo, São Paulo 01246-903, Brazil; (A.C.P.); (F.R.M.); (L.R.C.B.)
- Center for Translational Research in Oncology, Cancer Institute of São Paulo, São Paulo 01246-903, Brazil
- Correspondence:
| |
Collapse
|
6
|
Bosire C, Vidal AC, Smith JS, Jima D, Huang Z, Skaar D, Valea F, Bentley R, Gradison M, Yarnall KSH, Ford A, Overcash F, Murphy SK, Hoyo C. Association between PEG3 DNA methylation and high-grade cervical intraepithelial neoplasia. Infect Agent Cancer 2021; 16:42. [PMID: 34120615 PMCID: PMC8201933 DOI: 10.1186/s13027-021-00382-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/02/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Epigenetic mechanisms are hypothesized to contribute substantially to the progression of cervical intraepithelial neoplasia (CIN) to cervical cancer, although empirical data are limited. METHODS Women (n = 419) were enrolled at colposcopic evaluation at Duke Medical Center in Durham, North Carolina. Human papillomavirus (HPV) was genotyped by HPV linear array and CIN grade was ascertained by biopsy pathologic review. DNA methylation was measured at differentially methylated regions (DMRs) regulating genomic imprinting of the IGF2/H19, IGF2AS, MESTIT1/MEST, MEG3, PLAGL1/HYMAI, KvDMR and PEG10, PEG3 imprinted domains, using Sequenom-EpiTYPER assays. Logistic regression models were used to evaluate the associations between HPV infection, DMR methylation and CIN risk overall and by race. RESULTS Of the 419 participants, 20 had CIN3+, 52 had CIN2, and 347 had ≤ CIN1 (CIN1 and negative histology). The median participant age was 28.6 (IQR:11.6) and 40% were African American. Overall, we found no statistically significant association between altered methylation in selected DMRs and CIN2+ compared to ≤CIN1. Similarly, there was no significant association between DMR methylation and CIN3+ compared to ≤CIN2. Restricting the outcome to CIN2+ cases that were HR-HPV positive and p16 staining positive, we found a significant association with PEG3 DMR methylation (OR: 1.56 95% CI: 1.03-2.36). CONCLUSIONS While the small number of high-grade CIN cases limit inferences, our findings suggest an association between altered DNA methylation at regulatory regions of PEG3 and high grade CIN in high-risk HPV positive cases.
Collapse
Affiliation(s)
- Claire Bosire
- Department of Health Behavior, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA.
| | - Adriana C Vidal
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer S Smith
- Department of Epidemiology, Gillings School of Global Public Health and Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Dereje Jima
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University School of Medicine, Durham, NC, USA
| | - David Skaar
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Fidel Valea
- Department of Obstetrics and Gynecology, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| | - Rex Bentley
- Department of Pathology, Duke University School of Medicine, Durham, NC, USA
| | - Margaret Gradison
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | - Kimberly S H Yarnall
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | - Anne Ford
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Francine Overcash
- Department of Family Medicine and Community Health, Duke University School of Medicine, Durham, NC, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
7
|
Fei Q, Li X, Lin J, Yu L, Yang Y. Identification of Aberrantly Expressed Long Non-Coding RNAs and Nearby Targeted Genes in Male Osteoporosis. Clin Interv Aging 2020; 15:1779-1792. [PMID: 33061329 PMCID: PMC7522435 DOI: 10.2147/cia.s271689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/16/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE To investigate different expression profiles of long non-coding RNAs (lncRNAs) and mRNAs between male osteoporosis and normal control by high throughput RNA sequencing. METHODS We obtained the different expression profiles of long non-coding RNAs (lncRNAs) and mRNAs between male osteoporosis and normal control by high throughput RNA sequencing. Compared to normal control, we identified the differentially expressed genes (DEGs), differentially expressed lncRNAs (DElncRNAs) and the nearby targeted DEGs of DElncRNAs in male osteoporosis. Functional annotation was used to further study the functions of DEGs in male osteoporosis. The DElncRNAs-DEGs interaction network was constructed. One DElncRNA-nearby targeted DEG interaction pair of LINC02009-CCR2 was validated in vitro. RESULTS Totally, 3296 DEGs, 204 DElncRNAs and 168 DElncRNAs-nearby targeted DEGs pairs were obtained. The most significantly up-regulated and down-regulated DElncRNAs in male osteoporosis were Loc105372801 and KCNQ1OT1, respectively. Osteoclast differentiation and chemokine signaling pathway were significantly enriched pathways in male osteoporosis. Based on the DElncRNAs-DEGs interaction network in male osteoporosis, we obtained several interaction pairs including SNHG5-SYNCRIP-HBA1-HBB, HCG27-HLA-C, LINC02009-CCR2, and LOC101926887-IFIT1-IFIT2/IFIT3/IFIT5. The expression of LINC02009 and CCR2 was down-regulated in keeping with the RNA sequencing data. CONCLUSION Identified DElncRNAs-DEGs interaction pairs may be involved in the development of male osteoporosis, which make a contribution to underlying the mechanism of male osteoporosis. Among which, the validated DElncRNAs-nearby targeted DEGs interaction pair of LINC02009-CCR2 may be important regulators in the development of male osteoporosis.
Collapse
Affiliation(s)
- Qi Fei
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xiaoyu Li
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Jisheng Lin
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Lingjia Yu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| | - Yong Yang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
8
|
Lalem T, Zhang L, Scholz M, Burkhardt R, Saccheti V, Teren A, Thiery J, Devaux Y. Cyclin dependent kinase inhibitor 1 C is a female-specific marker of left ventricular function after acute myocardial infarction. Int J Cardiol 2019; 274:319-325. [DOI: 10.1016/j.ijcard.2018.07.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 12/12/2022]
|
9
|
van der Weijden VA, Flöter VL, Ulbrich SE. Gestational oral low-dose estradiol-17β induces altered DNA methylation of CDKN2D and PSAT1 in embryos and adult offspring. Sci Rep 2018; 8:7494. [PMID: 29748642 PMCID: PMC5945594 DOI: 10.1038/s41598-018-25831-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/30/2018] [Indexed: 02/07/2023] Open
Abstract
Endocrine disrupting chemicals (EDC) interfere with the natural hormone balance and may induce epigenetic changes through exposure during sensitive periods of development. In this study, the effects of short-term estradiol-17β (E2) exposure on various tissues of pregnant sows (F0) and on day 10 blastocysts (F1) were assessed. Intergenerational effects were investigated in the liver of 1-year old female offspring (F1). During gestation, sows were orally exposed to two low doses and a high dose of E2 (0.05, 10, and 1000 µg/kg body weight/day). In F0, perturbed tissue specific mRNA expression of cell cycle regulation and tumour suppressor genes was found at low and high dose exposure, being most pronounced in the endometrium and corpus luteum. The liver showed the most significant DNA hypomethylation in three target genes; CDKN2D, PSAT1, and RASSF1. For CDKN2D and PSAT1, differential methylation in blastocysts was similar as observed in the F0 liver. Whereas blastocysts showed hypomethylation, the liver of 1-year old offspring showed subtle, but significant hypermethylation. We show that the level of effect of estrogenic EDC, with the periconceptual period as a sensitive time window, is at much lower concentration than currently presumed and propose epigenetics as a sensitive novel risk assessment parameter.
Collapse
Affiliation(s)
| | - Veronika L Flöter
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland.,Physiology Weihenstephan, Technical University of Munich, Munich, Germany.,Department of Animal Physiology & Immunology, School of Life Sciences, Life Science Center Weihenstephan, Technical University Munich, Munich, Germany
| | - Susanne E Ulbrich
- ETH Zurich, Animal Physiology, Institute of Agricultural Sciences, Zurich, Switzerland. .,Physiology Weihenstephan, Technical University of Munich, Munich, Germany. .,Department of Animal Physiology & Immunology, School of Life Sciences, Life Science Center Weihenstephan, Technical University Munich, Munich, Germany.
| |
Collapse
|
10
|
Chen B, Ma J, Li C, Wang Y. Long noncoding RNA KCNQ1OT1 promotes proliferation and epithelial‑mesenchymal transition by regulation of SMAD4 expression in lens epithelial cells. Mol Med Rep 2018; 18:16-24. [PMID: 29749509 PMCID: PMC6059665 DOI: 10.3892/mmr.2018.8987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are associated with various diseases including cataracts. The role of lncRNA potassium voltage-gated channel subfamily Q member 1 opposite strand/antisense transcript 1 (KCNQ1OT1) on lens epithelial cell (LEC) proliferation and epithelial-mesenchymal transition (EMT) in cataracts disease remains unclear. In the present study, KCNQ1OT1 and mothers against decapentaplegic homolog (SMAD)4 expression levels were upregulated in human cataract lens posterior capsular samples and in transforming growth factor (TGF)-β2-treated SRA01/04 cells, as demonstrated by reverse transcription-quantitative polymerase chain reaction, immunohistochemical staining and western blot analyses. A further loss of function test revealed that suppression of KCNQ1OT1 inhibited the proliferation and EMT of TGF-β2-treated SRA01/04 cells. Additionally, the present study reported that increase and decrease of KCNQ1OT1 regulated SMAD4 expression, which indicated that SMAD4 may be a downstream gene of KCNQ1OT1. Finally, a constructed SMAD4 RNA interference experiment confirmed that the function of KCNQ1OT1 was to act on LEC proliferation and EMT, and this was achieved via the SMAD4 signaling pathway. The findings of the present study may provide a novel target for molecular therapy of cataracts disease.
Collapse
Affiliation(s)
- Bin Chen
- The Sixth Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Jian Ma
- Research Office, Shenyang Medical College, Shenyang, Liaoning 110034, P.R. China
| | - Chunwei Li
- Department of Ophthalmology, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| | - Yong Wang
- The Fourth Department of Orthopedic Surgery, Central Hospital Affiliated to Shenyang Medical College, Shenyang, Liaoning 110024, P.R. China
| |
Collapse
|
11
|
Gomih A, Smith JS, North KE, Hudgens MG, Brewster WR, Huang Z, Skaar D, Valea F, Bentley RC, Vidal AC, Maguire RL, Jirtle RL, Murphy SK, Hoyo C. DNA methylation of imprinted gene control regions in the regression of low-grade cervical lesions. Int J Cancer 2018; 143:552-560. [PMID: 29490428 DOI: 10.1002/ijc.31350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 12/15/2022]
Abstract
The role of host epigenetic mechanisms in the natural history of low-grade cervical intraepithelial neoplasia (CIN1) is not well characterized. We explored differential methylation of imprinted gene regulatory regions as predictors of the risk of CIN1 regression. A total of 164 patients with CIN1 were recruited from 10 Duke University clinics for the CIN Cohort Study. Participants had colposcopies at enrollment and up to five follow-up visits over 3 years. DNA was extracted from exfoliated cervical cells for methylation quantitation at CpG (cytosine-phosphate-guanine) sites and human papillomavirus (HPV) genotyping. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox regression to quantify the effect of methylation on CIN1 regression over two consecutive visits, compared to non-regression (persistent CIN1; progression to CIN2+; or CIN1 regression at a single time-point), adjusting for age, race, high-risk HPV (hrHPV), parity, oral contraceptive and smoking status. Median participant age was 26.6 years (range: 21.0-64.4 years), 39% were African-American, and 11% were current smokers. Most participants were hrHPV-positive at enrollment (80.5%). Over one-third of cases regressed (n = 53, 35.1%). Median time-to-regression was 12.6 months (range: 4.5-24.0 months). Probability of CIN1 regression was negatively correlated with methylation at IGF2AS CpG 5 (HR = 0.41; 95% CI = 0.23-0.77) and PEG10 DMR (HR = 0.80; 95% CI = 0.65-0.98). Altered methylation of imprinted IGF2AS and PEG10 DMRs may play a role in the natural history of CIN1. If confirmed in larger studies, further research on imprinted gene DMR methylation is warranted to determine its efficacy as a biomarker for cervical cancer screening.
Collapse
Affiliation(s)
- Ayodele Gomih
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, 27599
| | - Jennifer S Smith
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, 27599.,Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA, 27599
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, 27599
| | - Michael G Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC, 27599
| | - Wendy R Brewster
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA, 27599.,Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, NC, 27599
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, 27710
| | - David Skaar
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695
| | - Fidel Valea
- Department of Obstetrics and Gynecology, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24101
| | - Rex C Bentley
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710
| | - Adriana C Vidal
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
| | - Rachel L Maguire
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695
| | - Randy L Jirtle
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695.,Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53706
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, 27710
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695
| |
Collapse
|
12
|
Sun X, Xin Y, Wang M, Li S, Miao S, Xuan Y, Wang Y, Lu T, Liu J, Jiao W. Overexpression of long non-coding RNA KCNQ1OT1 is related to good prognosis via inhibiting cell proliferation in non-small cell lung cancer. Thorac Cancer 2018; 9:523-531. [PMID: 29504267 PMCID: PMC5928359 DOI: 10.1111/1759-7714.12599] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/02/2018] [Accepted: 01/02/2018] [Indexed: 01/05/2023] Open
Abstract
Background Lung cancer (LC) is the most common malignancy in the world. Many long non‐coding RNAs (lncRNAs) have been reported to be associated with LC; however, the function of KCNQ1OT1 in LC requires exploration. Methods We conducted in silico analysis with data from The Cancer Genome Atlas to investigate the association between KCNQ1OT1 and LC. A Kaplan–Meier plotter was used to analyze the function of KCNQ1OT1 on LC patient prognosis. Quantitative reverse transcription‐PCR (qRT‐PCR) was performed to confirm previous results. An A549 lung cancer cell was transfected with pcDNA‐KCNQ1OT1, and methyl thiazolyl tetrazolium assay was performed to investigate the function of KCNQ1OT1 on cell proliferation. in vivo assay was performed with nude mice. Results Bioinformatics analysis and qRT‐PCR indicated that KCNQ1OT1 expression was higher in stage I LC patients (P < 0.01), and survival analysis showed that high expression of KCNQ1OT1 in LC patients was associated with better prognosis (P < 0.05). qRT‐PCR showed a negative correlation between KCNQ1OT1 and Ki67 expression and tumor size (P < 0.01), which indicated that KCNQ1OT1 is associated with tumor growth in LC. There was no significant correlation between KCNQ1OT1 level and lymph node metastasis (P > 0.05). KCNQ1OT1 overexpression significantly inhibited cell proliferation and tumor growth in vitro and in vivo (P < 0.05). Conclusion Our preliminary data showed that KCNQ1OT1 is overexpressed in early stage LC and is correlated with better prognosis in LC patients, possibly by suppressing cell proliferation.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yanlu Xin
- Department of Endocrinology and Metabolism, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Maolong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shicheng Li
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuncheng Miao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yunpeng Xuan
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tong Lu
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jia Liu
- School of Pharmacy, Qingdao University, Qingdao, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
13
|
Chen X, Yan CC, Zhang X, You ZH. Long non-coding RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2017; 18:558-576. [PMID: 27345524 PMCID: PMC5862301 DOI: 10.1093/bib/bbw060] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Indexed: 02/07/2023] Open
Abstract
LncRNAs have attracted lots of attentions from researchers worldwide in recent decades. With the rapid advances in both experimental technology and computational prediction algorithm, thousands of lncRNA have been identified in eukaryotic organisms ranging from nematodes to humans in the past few years. More and more research evidences have indicated that lncRNAs are involved in almost the whole life cycle of cells through different mechanisms and play important roles in many critical biological processes. Therefore, it is not surprising that the mutations and dysregulations of lncRNAs would contribute to the development of various human complex diseases. In this review, we first made a brief introduction about the functions of lncRNAs, five important lncRNA-related diseases, five critical disease-related lncRNAs and some important publicly available lncRNA-related databases about sequence, expression, function, etc. Nowadays, only a limited number of lncRNAs have been experimentally reported to be related to human diseases. Therefore, analyzing available lncRNA–disease associations and predicting potential human lncRNA–disease associations have become important tasks of bioinformatics, which would benefit human complex diseases mechanism understanding at lncRNA level, disease biomarker detection and disease diagnosis, treatment, prognosis and prevention. Furthermore, we introduced some state-of-the-art computational models, which could be effectively used to identify disease-related lncRNAs on a large scale and select the most promising disease-related lncRNAs for experimental validation. We also analyzed the limitations of these models and discussed the future directions of developing computational models for lncRNA research.
Collapse
Affiliation(s)
- Xing Chen
- School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou, China
- Corresponding authors. Xing Chen, School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China. E-mail: ; Zhu-Hong You, School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China. E-mail:
| | | | - Xu Zhang
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai, China
- Corresponding authors. Xing Chen, School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China. E-mail: ; Zhu-Hong You, School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China. E-mail:
| | - Zhu-Hong You
- School of Computer Science and Technology, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
14
|
Reprimo, a Potential p53-Dependent Tumor Suppressor Gene, Is Frequently Hypermethylated in Estrogen Receptor α-Positive Breast Cancer. Int J Mol Sci 2017; 18:ijms18081525. [PMID: 28809778 PMCID: PMC5577992 DOI: 10.3390/ijms18081525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/01/2017] [Accepted: 07/05/2017] [Indexed: 01/31/2023] Open
Abstract
Aberrant DNA methylation is a hallmark of many cancers. Currently, there are four intrinsic molecular subtypes in breast cancer (BC): Luminal A, B, Her2-positive, and triple negative (TNBC). Recently, The Cancer Genome Atlas (TCGA) project has revealed that Luminal subtypes have higher levels of genome-wide methylation that may be a result of Estrogen/Estrogen receptor α (E2/ERα) signaling pathway activation. In this study, we analyze promoter CpG-island (CGIs) of the Reprimo (RPRM) gene in breast cancers (n = 77), cell lines (n = 38), and normal breast tissue (n = 10) using a MBDCap-seq database. Then, a validation cohort (n = 26) was used to confirm the results found in the MBDCap-seq platform. A differential methylation pattern was found between BC and cell lines compared to normal breast tissue. In BC, a higher DNA methylation was observed in tissues that were ERα-positive than in ERα-negative ones; more precisely, subtypes Luminal A compared to TNBC. Also, significant reverse correlation was observed between DNA methylation and RPRM mRNA expression in BC. Our data suggest that ERα expression in BC may affect the DNA methylation of CGIs in the RPRM gene. This approach suggests that DNA methylation status in CGIs of some tumor suppressor genes could be driven by E2 availability, subsequently inducing the activation of the ERα pathway.
Collapse
|
15
|
RNF8 identified as a co-activator of estrogen receptor α promotes cell growth in breast cancer. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1615-1628. [PMID: 28216286 DOI: 10.1016/j.bbadis.2017.02.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 01/20/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
The ring finger protein 8 (RNF8), a key component of protein complex crucial for DNA-damage response, consists of a forkhead-associated (FHA) domain and a really interesting new gene (RING) domain that enables it to function as an E3 ubiquitin ligase. However, the biological functions of RNF8 in estrogen receptor α (ERα)-positive breast cancer and underlying mechanisms have not been fully defined. Here, we have explored RNF8 as an associated partner of ERα in breast cancer cells, and co-activates ERα-mediated transactivation. Accordingly, RNF8 depletion inhibits the expression of endogenous ERα target genes. Interestingly, our results have demonstrated that RNF8 increases ERα stability at least partially if not all via triggering ERα monoubiquitination. RNF8 functionally promotes breast cancer cell proliferation. RNF8 is highly expressed in clinical breast cancer samples and the expression of RNF8 positively correlates with that of ERα. Up-regulation of ERα-induced transactivation by RNF8 might contribute to the promotion of breast cancer progression by allowing enhancement of ERα target gene expression. Our study describes RNF8 as a co-activator of ERα increases ERα stability via post-transcriptional pathway, and provides a new insight into mechanisms for RNF8 to promote cell growth of ERα-positive breast cancer.
Collapse
|
16
|
Qiao MX, Li C, Zhang AQ, Hou LL, Yang J, Hu HG. Regulation of DEK expression by AP-2α and methylation level of DEK promoter in hepatocellular carcinoma. Oncol Rep 2016; 36:2382-90. [PMID: 27499261 DOI: 10.3892/or.2016.4984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 06/23/2016] [Indexed: 11/06/2022] Open
Abstract
DEK is overexpressed in multiple invasive tumors. However, the transcriptional regulatory mechanism of DEK remains unclear. In the present study, progressive-type truncation assay indicated that CpG2-2 (-167 bp/+35 bp) was the DEK core promoter, whose methylation inhibited DEK expression. Bisulfite genomic sequencing analysis indicated that the methylation levels of the DEK promoter in normal hepatic cells and tissues were higher than those in hepatocellular carcinoma (HCC) cells. TFSEARCH result revealed transcription factor binding sites in CpG2-2. Among the sites, the AP-2α binding site showed the most significant methylation difference; hence, AP-2α is a key transcription factor that regulates DEK expression. Point or deletion mutation of the AP-2α binding site significantly reduced the promoter activity. Chromatin immunoprecipitation assay demonstrated the binding of AP-2α to the core promoter. Furthermore, knock down of endogenous AP-2α downregulated DEK expression, whereas overexpression of AP-2α upregulated DEK expression. Thus, AP-2α is an important transcription factor of DEK expression, which is correlated with the methylation level of the DEK core promoter in HCC.
Collapse
Affiliation(s)
- Ming-Xu Qiao
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Chun Li
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Ai-Qun Zhang
- Institute of Hepatobiliary Surgery, PLA General Hospital, Beijing 100853, P.R. China
| | - Ling-Ling Hou
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Juan Yang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| | - Hong-Gang Hu
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, P.R. China
| |
Collapse
|
17
|
Kumar M, DeVaux R, Herschkowitz J. Molecular and Cellular Changes in Breast Cancer and New Roles of lncRNAs in Breast Cancer Initiation and Progression. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 144:563-586. [DOI: 10.1016/bs.pmbts.2016.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Exploration of Deregulated Long Non-Coding RNAs in Association with Hepatocarcinogenesis and Survival. Cancers (Basel) 2015; 7:1847-62. [PMID: 26378581 PMCID: PMC4586798 DOI: 10.3390/cancers7030865] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/20/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are larger than 200 nucleotides in length and pervasively expressed across the genome. An increasing number of studies indicate that lncRNA transcripts play integral regulatory roles in cellular growth, division, differentiation and apoptosis. Deregulated lncRNAs have been observed in a variety of human cancers, including hepatocellular carcinoma (HCC). We determined the expression profiles of 90 lncRNAs for 65 paired HCC tumor and adjacent non-tumor tissues, and 55 lncRNAs were expressed in over 90% of samples. Eight lncRNAs were significantly down-regulated in HCC tumor compared to non-tumor tissues (p < 0.05), but no lncRNA achieved statistical significance after Bonferroni correction for multiple comparisons. Within tumor tissues, carrying more aberrant lncRNAs (6–7) was associated with a borderline significant reduction in survival (HR = 8.5, 95% CI: 1.0–72.5). The predictive accuracy depicted by the AUC was 0.93 for HCC survival when using seven deregulated lncRNAs (likelihood ratio test p = 0.001), which was similar to that combining the seven lncRNAs with tumor size and treatment (AUC = 0.96, sensitivity = 87%, specificity = 87%). These data suggest the potential association of deregulated lncRNAs with hepatocarcinogenesis and HCC survival.
Collapse
|
19
|
Long non-coding RNA chromogenic in situ hybridisation signal pattern correlation with breast tumour pathology. J Clin Pathol 2015; 69:76-81. [DOI: 10.1136/jclinpath-2015-203275] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/10/2015] [Indexed: 12/19/2022]
|
20
|
Chen X. Predicting lncRNA-disease associations and constructing lncRNA functional similarity network based on the information of miRNA. Sci Rep 2015; 5:13186. [PMID: 26278472 PMCID: PMC4538606 DOI: 10.1038/srep13186] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/22/2015] [Indexed: 12/16/2022] Open
Abstract
Accumulating experimental studies have indicated that lncRNAs play important roles in various critical biological process and their alterations and dysregulations have been associated with many important complex diseases. Developing effective computational models to predict potential disease-lncRNA association could benefit not only the understanding of disease mechanism at lncRNA level, but also the detection of disease biomarkers for disease diagnosis, treatment, prognosis and prevention. However, known experimentally confirmed disease-lncRNA associations are still very limited. In this study, a novel model of HyperGeometric distribution for LncRNA-Disease Association inference (HGLDA) was developed to predict lncRNA-disease associations by integrating miRNA-disease associations and lncRNA-miRNA interactions. Although HGLDA didn't rely on any known disease-lncRNA associations, it still obtained an AUC of 0.7621 in the leave-one-out cross validation. Furthermore, 19 predicted associations for breast cancer, lung cancer, and colorectal cancer were verified by biological experimental studies. Furthermore, the model of LncRNA Functional Similarity Calculation based on the information of MiRNA (LFSCM) was developed to calculate lncRNA functional similarity on a large scale by integrating disease semantic similarity, miRNA-disease associations, and miRNA-lncRNA interactions. It is anticipated that HGLDA and LFSCM could be effective biological tools for biomedical research.
Collapse
Affiliation(s)
- Xing Chen
- National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing, 100190, China
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
21
|
Barrdahl M, Canzian F, Lindström S, Shui I, Black A, Hoover RN, Ziegler RG, Buring JE, Chanock SJ, Diver WR, Gapstur SM, Gaudet MM, Giles GG, Haiman C, Henderson BE, Hankinson S, Hunter DJ, Joshi AD, Kraft P, Lee IM, Le Marchand L, Milne RL, Southey MC, Willett W, Gunter M, Panico S, Sund M, Weiderpass E, Sánchez MJ, Overvad K, Dossus L, Peeters PH, Khaw KT, Trichopoulos D, Kaaks R, Campa D. Association of breast cancer risk loci with breast cancer survival. Int J Cancer 2015; 137:2837-45. [PMID: 25611573 DOI: 10.1002/ijc.29446] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/27/2014] [Accepted: 12/04/2014] [Indexed: 01/23/2023]
Abstract
The survival of breast cancer patients is largely influenced by tumor characteristics, such as TNM stage, tumor grade and hormone receptor status. However, there is growing evidence that inherited genetic variation might affect the disease prognosis and response to treatment. Several lines of evidence suggest that alleles influencing breast cancer risk might also be associated with breast cancer survival. We examined the associations between 35 breast cancer susceptibility loci and the disease over-all survival (OS) in 10,255 breast cancer patients from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3) of which 1,379 died, including 754 of breast cancer. We also conducted a meta-analysis of almost 35,000 patients and 5,000 deaths, combining results from BPC3 and the Breast Cancer Association Consortium (BCAC) and performed in silico analyses of SNPs with significant associations. In BPC3, the C allele of LSP1-rs3817198 was significantly associated with improved OS (HRper-allele =0.70; 95% CI: 0.58-0.85; ptrend = 2.84 × 10(-4) ; HRheterozygotes = 0.71; 95% CI: 0.55-0.92; HRhomozygotes = 0.48; 95% CI: 0.31-0.76; p2DF = 1.45 × 10(-3) ). In silico, the C allele of LSP1-rs3817198 was predicted to increase expression of the tumor suppressor cyclin-dependent kinase inhibitor 1C (CDKN1C). In the meta-analysis, TNRC9-rs3803662 was significantly associated with increased death hazard (HRMETA =1.09; 95% CI: 1.04-1.15; ptrend = 6.6 × 10(-4) ; HRheterozygotes = 0.96 95% CI: 0.90-1.03; HRhomozygotes = 1.21; 95% CI: 1.09-1.35; p2DF =1.25 × 10(-4) ). In conclusion, we show that there is little overlap between the breast cancer risk single nucleotide polymorphisms (SNPs) identified so far and the SNPs associated with breast cancer prognosis, with the possible exceptions of LSP1-rs3817198 and TNRC9-rs3803662.
Collapse
Affiliation(s)
- Myrto Barrdahl
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sara Lindström
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Irene Shui
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Robert N Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Regina G Ziegler
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Julie E Buring
- Department of Ambulatory Care and Prevention, Harvard Medical School, Boston, MA.,Divisions of Preventive Medicine and Aging, Brigham and Women's Hospital and Harvard Medical School, Boston, MA.,Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD.,Core Genotyping Facility Frederick National Laboratory for Cancer Research, Gaithersburg, MD
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society, NW Atlanta, GA
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, NW Atlanta, GA
| | - Mia M Gaudet
- Epidemiology Research Program, American Cancer Society, NW Atlanta, GA
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, VIC, Australia
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Brian E Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Susan Hankinson
- Department of Epidemiology, Harvard School of Public Health, Boston, MA.,Department of Epidemiology, University of Massachusetts-Amherst School of Public Health and Health Sciences, Amherst, MA.,Cancer Research Center, Brigham and Women's Hospital, Boston, MA
| | - David J Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Amit D Joshi
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, MA
| | - I-Min Lee
- Department of Epidemiology, Harvard School of Public Health, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Loic Le Marchand
- Cancer Research Center of Hawaii, University of Hawaii, Honolulu, HI
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia.,Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, VIC, Australia
| | | | - Walter Willett
- Department of Nutrition, Harvard School of Public Health, Boston, MA
| | - Marc Gunter
- Department of Epidemiology Biostatistics, School of Public Health, Imperial College, South Kensington Campus, London, United Kingdom
| | | | - Malin Sund
- Department of Surgical and Perioperative Sciences, Surgery, Umeå University, Sweden
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, Norway.,Department of Research, Cancer Registry of Norway, Oslo, Norway.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Sweden.,Samfundet Folkhälsan, Helsinki, Finland
| | - María-José Sánchez
- Escuela Andaluza De Salud Pública, Instituto De Investigación Biosanitaria Ibs, Granada, Hospitales Universitarios De Granada/Universidad De Granada, Spain.,CIBER De Epidemiología Y Salud Pública (CIBERESP), Barcelona, Spain
| | - Kim Overvad
- Department of Public Health, Section for Epidemiology, Aarhus University, Denmark
| | - Laure Dossus
- INSERM, Centre for Research in Epidemiology and Population Health (CESP), U1018, Nutrition, Hormones and Women's Health Team, Villejuif, France.,University of Paris Sud, UMRS 1018, Villejuif, France.,IGR, Villejuif, France
| | - Petra H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, The Netherlands.,MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, United Kingdom
| | - Dimitrios Trichopoulos
- Department of Epidemiology, Harvard School of Public Health, Boston, MA.,Bureau of Epidemiologic Research, Academy of Athens, Greece.,Hellenic Health Foundation, Athens, Greece
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniele Campa
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
22
|
Yang C, Nan H, Ma J, Jiang L, Guo Q, Han L, Zhang Y, Nan K, Guo H. High Skp2/Low p57(Kip2) Expression is Associated with Poor Prognosis in Human Breast Carcinoma. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2015; 9:13-21. [PMID: 26309408 PMCID: PMC4525793 DOI: 10.4137/bcbcr.s30101] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/12/2015] [Accepted: 07/14/2015] [Indexed: 01/20/2023]
Abstract
Downregulation of p57Kip2 is involved in tumor progression, and S-phase kinase-associated protein 2 (Skp2) is an E3 ligase that regulates a variety of cell cycle proteins. However, the prognostic value of p57Kip2 and its correlation with Skp2 in breast cancer have not been fully elucidated. Here we report our study on the expression of p57Kip2 and Skp2 in 102 breast cancer patients by immunohistochemistry, and analysis of clinicopathologic parameters in relation to patient prognosis. The expression of p57Kip2 was negatively associated with Skp2 expression in breast cancer (r = −0.26, P = 0.009). Kaplan–Meier analysis indicated that both high Skp2 and low p57Kip2 correlated with poor disease-free survival (DFS) (P = 0.05), and a group with the combination of high Skp2/low p57Kip2 demonstrated even worse DFS (log-rank = 21.118, P < 0.001). In addition, univariate analysis showed that Skp2, p57Kip2, histological grade, lymph node metastasis, and estrogen and progesterone receptors (ER and PR) were all associated with DFS, and multivariate analysis revealed that lymph node metastasis and Skp2 were independent prognostic biomarkers. The correlation between p57 and Skp2 was further demonstrated in multiple breast cancer cell lines and cell cycle phases. Half-life and immunoprecipitation (IP) experiments indicated that Skp2 directly interacts with p57Kip2 and promotes its degradation, rather than its mutant p57Kip2 (T310A). Overall, our findings demonstrate that Skp2 directly degrades p57Kip2, and an inverse correlation between these proteins (high skp2/low p57Kip2) is associated with poor prognosis in breast cancer. Thus, our results indicate a combined prognostic value of these markers in breast cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Chengcheng Yang
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Haocheng Nan
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Jiequn Ma
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Lili Jiang
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Qianqian Guo
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Lili Han
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Yamin Zhang
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Kejun Nan
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| | - Hui Guo
- Department of Oncology, First Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shannxi, P. R. China
| |
Collapse
|
23
|
Mair KM, Yang XD, Long L, White K, Wallace E, Ewart MA, Docherty CK, Morrell NW, MacLean MR. Sex affects bone morphogenetic protein type II receptor signaling in pulmonary artery smooth muscle cells. Am J Respir Crit Care Med 2015; 191:693-703. [PMID: 25608111 DOI: 10.1164/rccm.201410-1802oc] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Major pulmonary arterial hypertension (PAH) registries report a greater incidence of PAH in women; mutations in the bone morphogenic protein type II receptor (BMPR-II) occur in approximately 80% of patients with heritable PAH (hPAH). OBJECTIVES We addressed the hypothesis that women may be predisposed to PAH due to normally reduced basal BMPR-II signaling in human pulmonary artery smooth muscle cells (hPASMCs). METHODS We examined the BMPR-II signaling pathway in hPASMCs derived from men and women with no underlying cardiovascular disease (non-PAH hPASMCs). We also determined the development of pulmonary hypertension in male and female mice deficient in Smad1. MEASUREMENTS AND MAIN RESULTS Platelet-derived growth factor, estrogen, and serotonin induced proliferation only in non-PAH female hPASMCs. Female non-PAH hPASMCs exhibited reduced messenger RNA and protein expression of BMPR-II, the signaling intermediary Smad1, and the downstream genes, inhibitors of DNA binding proteins, Id1 and Id3. Induction of phospho-Smad1/5/8 and Id protein by BMP4 was also reduced in female hPASMCs. BMP4 induced proliferation in female, but not male, hPASMCs. However, small interfering RNA silencing of Smad1 invoked proliferative responses to BMP4 in male hPASMCs. In male hPASMCs, estrogen decreased messenger RNA and protein expression of Id genes. The estrogen metabolite 4-hydroxyestradiol decreased phospho-Smad1/5/8 and Id expression in female hPASMCs while increasing these in males commensurate with a decreased proliferative effect in male hPASMCs. Female Smad1(+/-) mice developed pulmonary hypertension (reversed by ovariectomy). CONCLUSIONS We conclude that estrogen-driven suppression of BMPR-II signaling in non-PAH hPASMCs derived from women contributes to a pro-proliferative phenotype in hPASMCs that may predispose women to PAH.
Collapse
Affiliation(s)
- Kirsty M Mair
- 1 College of Medical and Veterinary Science, University of Glasgow, Glasgow, United Kingdom; and
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Barrow TM, Barault L, Ellsworth RE, Harris HR, Binder AM, Valente AL, Shriver CD, Michels KB. Aberrant methylation of imprinted genes is associated with negative hormone receptor status in invasive breast cancer. Int J Cancer 2015; 137:537-47. [PMID: 25560175 DOI: 10.1002/ijc.29419] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 12/19/2014] [Indexed: 11/07/2022]
Abstract
Epigenetic regulation of imprinted genes enables monoallelic expression according to parental origin, and its disruption is implicated in many cancers and developmental disorders. The expression of hormone receptors is significant in breast cancer because they are indicators of cancer cell growth rate and determine response to endocrine therapies. We investigated the frequency of aberrant events and variation in DNA methylation at nine imprinted sites in invasive breast cancer and examined the association with estrogen and progesterone receptor status. Breast tissue and blood from patients with invasive breast cancer (n = 38) and benign breast disease (n = 30) were compared with those from healthy individuals (n = 36), matched with the cancer patients by age at diagnosis, ethnicity, body mass index, menopausal status and familial history of cancer. DNA methylation and allele-specific expression were analyzed by pyrosequencing. Tumor-specific methylation changes at IGF2 DMR2 were observed in 59% of cancer patients, IGF2 DMR0 in 38%, DIRAS3 DMR in 36%, GRB10 ICR in 23%, PEG3 DMR in 21%, MEST ICR in 19%, H19 ICR in 18%, KvDMR in 8% and SNRPN/SNURF ICR in 4%. Variation in methylation was significantly greater in breast tissue from cancer patients compared with that in healthy individuals and benign breast disease. Aberrant methylation of three or more sites was significantly associated with negative estrogen-alpha (Fisher's exact test, p = 0.02) and progesterone-A (p = 0.02) receptor status. Aberrant events and increased variation in imprinted gene DNA methylation, therefore, seem to be frequent in invasive breast cancer and are associated with negative estrogen and progesterone receptor status, without loss of monoallelic expression.
Collapse
Affiliation(s)
- Timothy M Barrow
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Ludovic Barault
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Rachel E Ellsworth
- Clinical Breast Care Project, Henry M. Jackson Foundation for the Advancement of Military Medicine, Windber, PA
| | - Holly R Harris
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Alexandra M Binder
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Allyson L Valente
- Clinical Breast Care Project, Windber Research Institute, Windber, PA
| | - Craig D Shriver
- Clinical Breast Care Project, Walter Reed National Military Medical Center, Bethesda, MD
| | - Karin B Michels
- Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics, Gynecology and Reproductive Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.,Institute for Prevention and Cancer Epidemiology, University Medical Center Freiburg, Freiburg, Germany.,Department of Epidemiology, Harvard School of Public Health, Boston, MA
| |
Collapse
|
25
|
Long Non-Coding RNAs Embedded in the Rb and p53 Pathways. Cancers (Basel) 2013; 5:1655-75. [PMID: 24305655 PMCID: PMC3875959 DOI: 10.3390/cancers5041655] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/12/2013] [Accepted: 11/20/2013] [Indexed: 11/16/2022] Open
Abstract
In recent years, long non-coding RNAs (lncRNAs) have gained significant attention as a novel class of gene regulators. Although a small number of lncRNAs have been shown to regulate gene expression through diverse mechanisms including transcriptional regulation, mRNA splicing and translation, the physiological function and mechanism of action of the vast majority are not known. Profiling studies in cell lines and tumor samples have suggested a potential role of lncRNAs in cancer. Indeed, distinct lncRNAs have been shown to be embedded in the p53 and Rb networks, two of the major tumor suppressor pathways that control cell cycle progression and survival. Given the fact that inactivation of Rb and p53 is a hallmark of human cancer, in this review we discuss recent evidence on the function of lncRNAs in the Rb and p53 signaling pathways.
Collapse
|
26
|
Wan J, Huang M, Zhao H, Wang C, Zhao X, Jiang X, Bian S, He Y, Gao Y. A novel tetranucleotide repeat polymorphism within KCNQ1OT1 confers risk for hepatocellular carcinoma. DNA Cell Biol 2013; 32:628-634. [PMID: 23984860 DOI: 10.1089/dna.2013.2118] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
KCNQ1 overlapping transcript 1 (KCNQ1OT1), a long noncoding RNA responsible for silencing a cluster of genes in cis, has been shown to be involved in multiple cancers. However, much remains unclear of how KCNQ1OT1 contributes to carcinogenesis. By thoroughly analyzing 510 hepatocellular carcinoma (HCC) cases and 1014 healthy controls in a Chinese population, we identified a novel short tandem repeat (STR) polymorphism (rs35622507) within the KCNQ1OT1 coding region and evaluated its association with HCC susceptibility. Logistic regression analysis showed that compared with individuals carrying the homozygote 10-10 genotype, those heterozygote subjects who carry only one allele 10 had a significantly decreased risk of HCC (adjusted odds ratio [OR]=0.67, 95% confidence interval [CI]=0.53-0.86, p=0.0009), with the risk decreased even further in those without allele 10 (adjusted OR=0.38, 95% CI=0.21-0.69, p=0.0005). Furthermore, genotype-phenotype correlation studies using four hepatoma cell lines support a significant association between STR genotypes and the expression of KCNQ1OT1. Cell lines without allele 10 conferred a 20.9-33.3-fold higher expression of KCNQ1OT1. Meanwhile, KCNQ1OT1 expression was reversely correlated with the expression of the cyclin-dependent kinase inhibitor 1C (CDKN1C), a tumor suppressor gene located within the CDKN1C/KCNQ1OT1 imprinted region, in three hepatoma cell lines. Finally, in silico prediction suggested that different alleles could alter the local structure of KCNQ1OT1. Taken together, our findings suggest that the STR polymorphism within KCNQ1OT1 contributes to hepatocarcinogenesis, possibly by affecting KCNQ1OT1 and CDKN1C expression through a structure-dependent mechanism. The replication of our studies and further functional studies are needed to validate our hypothesis and understand the roles of KCNQ1OT1 polymorphisms in predisposition for HCC.
Collapse
Affiliation(s)
- Jiao Wan
- 1 Department of Forensic Medicine, Medical College of Soochow University , Suzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
|
28
|
Susiarjo M, Sasson I, Mesaros C, Bartolomei MS. Bisphenol a exposure disrupts genomic imprinting in the mouse. PLoS Genet 2013; 9:e1003401. [PMID: 23593014 PMCID: PMC3616904 DOI: 10.1371/journal.pgen.1003401] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 02/07/2013] [Indexed: 11/29/2022] Open
Abstract
Exposure to endocrine disruptors is associated with developmental defects. One compound of concern, to which humans are widely exposed, is bisphenol A (BPA). In model organisms, BPA exposure is linked to metabolic disorders, infertility, cancer, and behavior anomalies. Recently, BPA exposure has been linked to DNA methylation changes, indicating that epigenetic mechanisms may be relevant. We investigated effects of exposure on genomic imprinting in the mouse as imprinted genes are regulated by differential DNA methylation and aberrant imprinting disrupts fetal, placental, and postnatal development. Through allele-specific and quantitative real-time PCR analysis, we demonstrated that maternal BPA exposure during late stages of oocyte development and early stages of embryonic development significantly disrupted imprinted gene expression in embryonic day (E) 9.5 and 12.5 embryos and placentas. The affected genes included Snrpn, Ube3a, Igf2, Kcnq1ot1, Cdkn1c, and Ascl2; mutations and aberrant regulation of these genes are associated with imprinting disorders in humans. Furthermore, the majority of affected genes were expressed abnormally in the placenta. DNA methylation studies showed that BPA exposure significantly altered the methylation levels of differentially methylated regions (DMRs) including the Snrpn imprinting control region (ICR) and Igf2 DMR1. Moreover, exposure significantly reduced genome-wide methylation levels in the placenta, but not the embryo. Histological and immunohistochemical examinations revealed that these epigenetic defects were associated with abnormal placental development. In contrast to this early exposure paradigm, exposure outside of the epigenetic reprogramming window did not cause significant imprinting perturbations. Our data suggest that early exposure to common environmental compounds has the potential to disrupt fetal and postnatal health through epigenetic changes in the embryo and abnormal development of the placenta. BPA is a widely used compound to which humans are exposed, and recent studies have demonstrated the association between exposure and adverse developmental outcomes in both animal models and humans. Unfortunately, exact mechanisms of BPA–induced health abnormalities are unclear, and elucidation of these relevant biological pathways is critical for understanding the public health implication of exposure. Recently, increasing data have demonstrated the ability of BPA to induce changes in DNA methylation, suggesting that epigenetic mechanisms are relevant. In this work, we study effects of BPA exposure on expression and regulation of imprinted genes in the mouse. Imprinted genes are regulated by differential DNA methylation, and they play critical roles during fetal, placental, and postnatal development. We have found that fetal exposure to BPA at physiologically relevant doses alters expression and methylation status of imprinted genes in the mouse embryo and placenta, with the latter tissue exhibiting the more significant changes. Additionally, abnormal imprinting is associated with defective placental development. Our data demonstrate that BPA exposure may perturb fetal and postnatal health through epigenetic changes in the embryo as well as through alterations in placental development.
Collapse
Affiliation(s)
- Martha Susiarjo
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Isaac Sasson
- Department of Obstetrics and Gynecology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- Center of Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
29
|
Wang J, Lan X, Hsu PY, Hsu HK, Huang K, Parvin J, Huang THM, Jin VX. Genome-wide analysis uncovers high frequency, strong differential chromosomal interactions and their associated epigenetic patterns in E2-mediated gene regulation. BMC Genomics 2013; 14:70. [PMID: 23368971 PMCID: PMC3599885 DOI: 10.1186/1471-2164-14-70] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 01/26/2013] [Indexed: 01/07/2023] Open
Abstract
Background An emerging Hi-C protocol has the ability to probe three-dimensional (3D) architecture and capture chromatin interactions in a genome-wide scale. It provides informative results to address how chromatin organization changes contribute to disease/tumor occurrence and progression in response to stimulation of environmental chemicals or hormones. Results In this study, using MCF7 cells as a model system, we found estrogen stimulation significantly impact chromatin interactions, leading to alteration of gene regulation and the associated histone modification states. Many chromosomal interaction regions at different levels of interaction frequency were identified. In particular, the top 10 hot regions with the highest interaction frequency are enriched with breast cancer specific genes. Furthermore, four types of E2-mediated strong differential (gain- or loss-) chromosomal (intra- or inter-) interactions were classified, in which the number of gain-chromosomal interactions is less than the number of loss-chromosomal interactions upon E2 stimulation. Finally, by integrating with eight histone modification marks, DNA methylation, regulatory elements regions, ERα and Pol-II binding activities, associations between epigenetic patterns and high chromosomal interaction frequency were revealed in E2-mediated gene regulation. Conclusions The work provides insight into the effect of chromatin interaction on E2/ERα regulated downstream genes in breast cancer cells.
Collapse
Affiliation(s)
- Junbai Wang
- Department of Pathology, Oslo University Hospital - Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hervouet E, Cartron PF, Jouvenot M, Delage-Mourroux R. Epigenetic regulation of estrogen signaling in breast cancer. Epigenetics 2013; 8:237-45. [PMID: 23364277 PMCID: PMC3669116 DOI: 10.4161/epi.23790] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Estrogen signaling is mediated by ERα and ERβ in hormone dependent, breast cancer (BC). Over the last decade the implication of epigenetic pathways in BC tumorigenesis has emerged: cancer-related epigenetic modifications are implicated in both gene expression regulation, and chromosomal instability. In this review, the epigenetic-mediated estrogen signaling, controlling both ER level and ER-targeted gene expression in BC, are discussed: (1) ER silencing is frequently observed in BC and is often associated with epigenetic regulations while chemical epigenetic modulators restore ER expression and increase response to treatment;(2) ER-targeted gene expression is tightly regulated by co-recruitment of ER and both coactivators/corepressors including HATs, HDACs, HMTs, Dnmts and Polycomb proteins.
Collapse
Affiliation(s)
- Eric Hervouet
- Université de Franche-Comté, Laboratoire de Biochimie, EA3922, Expression Génique et Pathologies du Système Nerveux Central, SFRIBCT FED 4234, UFR Sciences et Techniques, Besançon, France.
| | | | | | | |
Collapse
|
31
|
|
32
|
Bonneville R, Jin VX. A hidden Markov model to identify combinatorial epigenetic regulation patterns for estrogen receptor α target genes. ACTA ACUST UNITED AC 2012; 29:22-8. [PMID: 23104890 DOI: 10.1093/bioinformatics/bts639] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MOTIVATION Many studies have shown that epigenetic changes, such as altered DNA methylation and histone modifications, are linked to estrogen receptor α (ERα)-positive tumors and disease prognoses. Several recent studies have applied high-throughput technologies such as ChIP-seq and MBD-seq to interrogate the altered architectures of ERα regulation in tamoxifen (Tam)-resistant breast cancer cells. However, the details of combinatorial epigenetic regulation of ERα target genes in breast cancers with acquired Tam resistance have not yet been fully examined. RESULTS We developed a computational approach to identify and analyze epigenetic patterns associated with Tam resistance in the MCF7-T cell line as opposed to the Tam-sensitive MCF7 cell line, with the goal of understanding the underlying mechanisms of epigenetic regulatory influence on resistance to Tam treatment in breast cancer. In this study, we used ChIP-seq of ERα, RNA polymerase II, three histone modifications and MBD-seq data of DNA methylation in MCF7 and MCF7-T cells to train hidden Markov models (HMMs). We applied the Bayesian information criterion to determine that a 20-state HMM was best, which was reduced to a 14-state HMM with a Bayesian information criterion score of 1.21291 × 10(7). We further identified four classes of biologically meaningful states in this breast cancer cell model system, and a set of ERα combinatorial epigenetic regulated target genes. The correlated gene expression level and gene ontology analyses showed that different gene ontology terms were enriched with Tam-resistant versus sensitive breast cancer cells. Our study illustrates the applicability of HMM-based analysis of genome-wide high-throughput genomic data to study epigenetic influences on E2/ERα regulation in breast cancer.
Collapse
Affiliation(s)
- Russell Bonneville
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
33
|
Worster DT, Schmelzle T, Solimini NL, Lightcap ES, Millard B, Mills GB, Brugge JS, Albeck JG. Akt and ERK control the proliferative response of mammary epithelial cells to the growth factors IGF-1 and EGF through the cell cycle inhibitor p57Kip2. Sci Signal 2012; 5:ra19. [PMID: 22394561 DOI: 10.1126/scisignal.2001986] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epithelial cells respond to growth factors including epidermal growth factor (EGF), insulin-like growth factor 1 (IGF-1), and insulin. Using high-content immunofluorescence microscopy, we quantitated differences in signaling networks downstream of EGF, which stimulated proliferation of mammary epithelial cells, and insulin or IGF-1, which enhanced the proliferative response to EGF but did not stimulate proliferation independently. We found that the abundance of the cyclin-dependent kinase inhibitors p21Cip1 and p57Kip2 increased in response to IGF-1 or insulin but decreased in response to EGF. Depletion of p57Kip2, but not p21Cip1, rendered IGF-1 or insulin sufficient to induce cellular proliferation in the absence of EGF. Signaling through the PI3K (phosphatidylinositol 3-kinase)-Akt-mTOR (mammalian target of rapamycin) pathway was necessary and sufficient for the increase in p57Kip2, whereas MEK [mitogen-activated or extracellular signal-regulated protein kinase (ERK) kinase]-ERK activity suppressed this increase, forming a regulatory circuit that limited proliferation in response to unaccompanied Akt activity. Knockdown of p57Kip2 enhanced the proliferative phenotype induced by tumor-associated PI3K mutant variants and released mammary epithelial acini from growth arrest during morphogenesis in three-dimensional culture. These results provide a potential explanation for the context-dependent proliferative activities of insulin and IGF-1 and for the finding that the CDKN1C locus encoding p57Kip2 is silenced in many breast cancers, which frequently show hyperactivation of the PI3K pathway. The status of p57Kip2 may thus be an important factor to assess when considering targeted therapy against the ERK or PI3K pathways.
Collapse
Affiliation(s)
- Devin T Worster
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mitra SA, Mitra AP, Triche TJ. A central role for long non-coding RNA in cancer. Front Genet 2012; 3:17. [PMID: 22363342 PMCID: PMC3279698 DOI: 10.3389/fgene.2012.00017] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/28/2012] [Indexed: 01/29/2023] Open
Abstract
Long non-coding RNAs (ncRNAs) have been shown to regulate important biological processes that support normal cellular functions. Aberrant regulation of these essential functions can promote tumor development. In this review, we underscore the importance of the regulatory role played by this distinct class of ncRNAs in cancer-associated pathways that govern mechanisms such as cell growth, invasion, and metastasis. We also highlight the possibility of using these unique RNAs as diagnostic and prognostic biomarkers in malignancies.
Collapse
Affiliation(s)
- Sheetal A Mitra
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles Los Angeles, CA, USA
| | | | | |
Collapse
|
35
|
Denisov EV, Sukhanovskaya TV, Dultseva TS, Malinovskaya EA, Litviakov NV, Slonimskaya EM, Choinzonov EL, Cherdyntseva NV. Coordination of TP53 abnormalities in breast cancer: data from analysis of TP53 polymorphisms, loss of heterozygosity, methylation, and mutations. Genet Test Mol Biomarkers 2011; 15:901-7. [PMID: 21810023 DOI: 10.1089/gtmb.2011.0038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
AIMS We have studied whether TP53 rs1042522, rs17878362, and rs1625895 alleles having a protective effect against breast cancer (BC) will be lost in tumors, whereas those allowing disease development will be retained. METHODS Analysis of TP53 polymorphisms was performed in blood leukocytes and tumors from 80 Caucasian BC patients. In addition, TP53 loss of heterozygosity (LOH), methylation, and mutations were studied in tumor DNA of BC individuals with loss of alleles of TP53 polymorphisms. RESULTS In breast tumors of patients heterozygous for TP53 polymorphisms, we detected loss of rs1042522 C and G and rs17878362 A2 alleles; however, the loss of the C allele was preferential. We found that loss of TP53 alleles, namely rs1042522 C, has been caused by an LOH mechanism, namely TP53 deletions, whereas TP53 point mutations frequently occurred in the retained G allele (p=0.03). In addition, we showed that BC patients with rs1042522 CC genotype were characterized by only unifocal tumors and decreased frequency of lymph node metastases (p=0.03). CONCLUSIONS Taken together, we showed the preferential loss of the rs1042522 C allele, which is protective against BC progression, in breast tumors. Also, the loss of the C allele, which encodes p53 protein with the best DNA repair capability according to literature data, may create prerequisites for mutations, but not for methylation in a retained G variant, as we found here. However, these results need to be confirmed because of the limited statistical power of the present study and the small sampling.
Collapse
Affiliation(s)
- Evgeny V Denisov
- Department of Experimental Oncology, Cancer Research Institute, Siberian Branch of Russian Academy of Medical Sciences, Kooperativny St. 5, Tomsk, Russian Federation.
| | | | | | | | | | | | | | | |
Collapse
|