1
|
Yu Z, Su H, Gao Z, Chen Y, Zhang Y, Duan W, Zhang T, Wang X, Xu D, Liu X. Meg3-NONO-RAR axis mediates RA pathway activation in TCDD-induced cleft palate. Toxicology 2025; 514:154099. [PMID: 40024514 DOI: 10.1016/j.tox.2025.154099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Dioxins, a group of environmental pollutants, can cause developmental toxicity through interaction with the aromatic hydrocarbon receptor (AHR). Retinoic acid (RA) functions via binding to retinoic acid receptor (RAR)/retinoid X receptor (RXR). Both AHR and RA pathways can be activated by dioxins. TCDD or atRA exposure similarly alters the expression of the long non-coding RNA (lncRNA) Meg3 in mouse palatal tissue. This study further examined the mechanism of TCDD-induced cleft palate (CP) via the RA pathway in mouse embryonic palatal mesenchymal (MEPM) cells. Results showed that in MEPM cells TCDD treatment increased Meg3 and RARA expression, inhibited cell proliferation, and had a synergistic effect with atRA. RNA pull-down-MS and RIP assays revealed that Meg3 binds to NONO, which belongs to the drosophila behavior human splicing family (DBHS) and have been reported to be associated with cell cycle regulation. NONO interacts with RAR and inhibits RARA expression. TCDD and atRA treatment reduced NONO expression. Silencing Meg3 raised NONO levels and mitigated the impact of TCDD or atRA on RA pathway activation, cell proliferation and survival. These findings suggest that TCDD affects Meg3 and NONO expression and the RA pathway activation, Meg3 interacts with NONO which may regulate RARA in palatal tissue. Thus, we propose that the RA pathway activation in TCDD-induced cleft palate may be mediated by the Meg3-NONO-RAR axis.
Collapse
Affiliation(s)
- Zengli Yu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China; Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Hexin Su
- Department of Nutrition and Food Hygiene, Public Health College, Zhengzhou University, Henan 450001, China
| | - Zhan Gao
- Department of Clinical Nutrition, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yao Chen
- Department of Clinical Nutrition, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Yuwei Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Wenjing Duan
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Tingting Zhang
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiangdong Wang
- Department of Prosthodontics, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Dongliang Xu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Xiaozhuan Liu
- Center for Clinical Single-Cell Biomedicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| |
Collapse
|
2
|
Zhao G, Liu R, Ge L, Qi D, Wu Q, Lin Z, Song H, Zhong L, Cui H. NONO regulates m 5C modification and alternative splicing of PTEN mRNAs to drive gastric cancer progression. J Exp Clin Cancer Res 2025; 44:81. [PMID: 40033337 PMCID: PMC11877715 DOI: 10.1186/s13046-024-03260-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/16/2024] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND The effect of m5C modification on oncogene mRNAs has been well studied, while little is known about its influence on mRNAs of tumor suppressor genes (TSGs). Early studies showed PTEN, a key TSG, undergoes alternative splicing (AS) in cancers, however, the underlying regulatory mechanism remains elusive. METHODS We analyzed tissue microarrays and transcriptomic data derived from gastric cancer, with an emphasis on RNA splicing and m5C regulators. To unravel the role of NONO in GC, we employed RNA sequencing, RNA-Bis-Seq, RNA immunoprecipitation, RNA in situ hybridization, and Minigene reporter assay with NONO knockdown cells. The clinical relevance was validated using CDX models and human tissue microarrays. RESULTS Analysis of publicly available datasets and immunohistochemistry assay of tissue microarrays containing 40 GC tissues showed NONO was upregulated in GC and contributed to poor prognosis. In vitro and in vivo experiments indicated a positive regulatory role of NONO in terms of cell proliferation, migration, and invasion of GC. Mechanically, NONO interacted directly with PTEN pre-mRNA and recruited the RNA m5C methyltransferase NSUN2 via RNA-recognition motif (RRM) domains, altering the mRNA methylation pattern across PTEN pre-mRNA. The oncogenic role of NONO/NSUN2/PTEN axis in GC progression was further confirmed with pre-clinical experiments and clinical data. CONCLUSION Here, we revealed NONO-regulated AS of PTEN mRNA in an m5C-dependent manner, resulting in the downregulation of PTEN expression in gastric cancer (GC).This study unveils a novel regulatory mechanism of tumor suppressor gene inactivation mediated by m5C modification and related alternative splicing in cancer.
Collapse
Affiliation(s)
- Gaichao Zhao
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Ruochen Liu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China
| | - Lingjun Ge
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Dan Qi
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Qishu Wu
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Zini Lin
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Houji Song
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Hongjuan Cui
- State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing, 400716, China.
- Chongqing Engineering and Technology Research Center for Silk Biomaterials and Regenerative Medicine, Chongqing, 400716, China.
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing, 400716, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
3
|
Ronchetti D, Traini V, Silvestris I, Fabbiano G, Passamonti F, Bolli N, Taiana E. The pleiotropic nature of NONO, a master regulator of essential biological pathways in cancers. Cancer Gene Ther 2024; 31:984-994. [PMID: 38493226 PMCID: PMC11257950 DOI: 10.1038/s41417-024-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
NONO is a member of the Drosophila behavior/human splicing (DBHS) family of proteins. NONO is a multifunctional protein that acts as a "molecular scaffold" to carry out versatile biological activities in many aspects of gene regulation, cell proliferation, apoptosis, migration, DNA damage repair, and maintaining cellular circadian rhythm coupled to the cell cycle. Besides these physiological activities, emerging evidence strongly indicates that NONO-altered expression levels promote tumorigenesis. In addition, NONO can undergo various post-transcriptional or post-translational modifications, including alternative splicing, phosphorylation, methylation, and acetylation, whose impact on cancer remains largely to be elucidated. Overall, altered NONO expression and/or activities are a common feature in cancer. This review provides an integrated scenario of the current understanding of the molecular mechanisms and the biological processes affected by NONO in different tumor contexts, suggesting that a better elucidation of the pleiotropic functions of NONO in physiology and tumorigenesis will make it a potential therapeutic target in cancer. In this respect, due to the complex landscape of NONO activities and interactions, we highlight caveats that must be considered during experimental planning and data interpretation of NONO studies.
Collapse
Affiliation(s)
- Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Traini
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ilaria Silvestris
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppina Fabbiano
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Passamonti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Taiana
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
4
|
Young R, Huang T, Luo Z, Tan YS, Kaur A, Lau YH. Development of stapled NONO-associated peptides reveals unexpected cell permeability and nuclear localisation. J Pept Sci 2024; 30:e3562. [PMID: 38148630 DOI: 10.1002/psc.3562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/28/2023]
Abstract
The non-POU domain-containing octamer-binding protein (NONO) is a nucleic acid-binding protein with diverse functions that has been identified as a potential cancer target in cell biology studies. Little is known about structural motifs that mediate binding to NONO apart from its ability to form homodimers, as well as heterodimers and oligomers with related homologues. We report a stapling approach to macrocyclise helical peptides derived from the insulin-like growth factor binding protein (IGFBP-3) that NONO interacts with, and also from the dimerisation domain of NONO itself. Using a range of chemistries including Pd-catalysed cross-coupling, cysteine arylation and cysteine alkylation, we successfully improved the helicity and observed modest peptide binding to the NONO dimer, although binding could not be saturated at micromolar concentrations. Unexpectedly, we observed cell permeability and preferential nuclear localisation of various dye-labelled peptides in live confocal microscopy, indicating the potential for developing peptide-based tools to study NONO in a cellular context.
Collapse
Affiliation(s)
- Reginald Young
- School of Chemistry, The University of Sydney, Camperdown, Australia
| | - Tiancheng Huang
- School of Chemistry, The University of Sydney, Camperdown, Australia
| | - Zijie Luo
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Matrix, Singapore
| | - Amandeep Kaur
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Melbourne, Australia
| | - Yu Heng Lau
- School of Chemistry, The University of Sydney, Camperdown, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Camperdown, Australia
| |
Collapse
|
5
|
Weng N, Zhou C, Zhou Y, Zhong Y, Jia Z, Rao X, Qiu H, Zeng G, Jin X, Zhang J, Zhuang Z, Liang Z, Deng Y, Li Q, Yang S, Luo H, Wang H, Wu X. IKZF4/NONO-RAB11FIP3 axis promotes immune evasion in gastric cancer via facilitating PD-L1 endosome recycling. Cancer Lett 2024; 584:216618. [PMID: 38211652 DOI: 10.1016/j.canlet.2024.216618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/05/2023] [Accepted: 12/16/2023] [Indexed: 01/13/2024]
Abstract
As an immune checkpoint protein expressed by diverse cancer cells, programmed death ligand 1 (PD-L1) facilitates immune evasion by interacting with programmed cell death-1 (PD-1) on T cells. Despite the clinical benefits observed in various cancer types, strategies targeting PD-1/PD-L1 have demonstrated limited efficacy in gastric cancer (GC). Furthermore, the regulation of PD-L1, especially at post-translational modification levels, remains largely unknown. Therefore, it is crucial to elucidate the mechanisms governing PD-L1 expression to enhance anti-tumor immunity. In this study, we have identified that IKAROS family zinc finger 4 (IKZF4) and Non-POU domain-containing octamer-binding (NONO) synergistically regulate and enhance the expression of RAB11 family-interacting protein 3 (RAB11FIP3) in GC. The IKZF4/NONO-RAB11FIP3 axis facilitates the endosomal recycling of PD-L1, particularly on the cell membrane of GC cells. Moreover, overexpression of RAB11FIP3 mitigates the hypo-expression of PD-L1 protein resulting from IKZF4 or NONO deletion. Functionally, the silencing of RAB11FIP3 or IKZF4 promotes T cell proliferation, and enhances T-cell cytotoxicity towards GC cells in vitro, which further inhibits tumor immune evasion in mice via increasing the infiltration of CD8+ T cells into the tumor microenvironment (TME) to suppress GC progression. Our study suggests that the IKZF4/NONO-RAB11FIP3 axis promotes immune evasion by facilitating PD-L1 endosome recycling, thus presenting a potential therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Nuoqing Weng
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Chuzhou Zhou
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yuhang Zhou
- Department of Gastroenterology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yanping Zhong
- Department of Health Management, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Zhe Jia
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Xionghui Rao
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Huaiyu Qiu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Guangyan Zeng
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Xinghan Jin
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Jianbao Zhang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Zhehong Zhuang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Zhihao Liang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Yuan Deng
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Qinghai Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Shasha Yang
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China
| | - Huixing Luo
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Huiyun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xiaobin Wu
- Department of Gastrointestinal Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| |
Collapse
|
6
|
Gao Y, Feng C, Ma J, Yan Q. Protein arginine methyltransferases (PRMTs): Orchestrators of cancer pathogenesis, immunotherapy dynamics, and drug resistance. Biochem Pharmacol 2024; 221:116048. [PMID: 38346542 DOI: 10.1016/j.bcp.2024.116048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/15/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Protein Arginine Methyltransferases (PRMTs) are a family of enzymes regulating protein arginine methylation, which is a post-translational modification crucial for various cellular processes. Recent studies have highlighted the mechanistic role of PRMTs in cancer pathogenesis, immunotherapy, and drug resistance. PRMTs are involved in diverse oncogenic processes, including cell proliferation, apoptosis, and metastasis. They exert their effects by methylation of histones, transcription factors, and other regulatory proteins, resulting in altered gene expression patterns. PRMT-mediated histone methylation can lead to aberrant chromatin remodeling and epigenetic changes that drive oncogenesis. Additionally, PRMTs can directly interact with key signaling pathways involved in cancer progression, such as the PI3K/Akt and MAPK pathways, thereby modulating cell survival and proliferation. In the context of cancer immunotherapy, PRMTs have emerged as critical regulators of immune responses. They modulate immune checkpoint molecules, including programmed cell death protein 1 (PD-1), through arginine methylation. Drug resistance is a significant challenge in cancer treatment, and PRMTs have been implicated in this phenomenon. PRMTs can contribute to drug resistance through multiple mechanisms, including the epigenetic regulation of drug efflux pumps, altered DNA damage repair, and modulation of cell survival pathways. In conclusion, PRMTs play critical roles in cancer pathogenesis, immunotherapy, and drug resistance. In this overview, we have endeavored to illuminate the mechanistic intricacies of PRMT-mediated processes. Shedding light on these aspects will offer valuable insights into the fundamental biology of cancer and establish PRMTs as promising therapeutic targets.
Collapse
Affiliation(s)
- Yihang Gao
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Chongchong Feng
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Laboratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
7
|
Kluge V, Kappelmann-Fenzl M, Fischer S, Zimmermann T, Pommer M, Kuphal S, Bosserhoff AK. Alternative Wnt-signaling axis leads to a break of oncogene-induced senescence. Cell Death Dis 2024; 15:166. [PMID: 38388496 PMCID: PMC10883971 DOI: 10.1038/s41419-024-06550-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Oncogene-induced senescence (OIS) is an important process that suppresses tumor development, but the molecular mechanisms of OIS are still under investigation. It is known that BRAFV600E-mutated melanocytes can overcome OIS and develop melanoma, but the underlying mechanism is largely unknown. Using an established OIS model of primary melanocytes transduced with BRAFV600E, YAP activity was shown to be induced in OIS as well as in melanoma cells compared to that in normal epidermal melanocytes. This led to the assumption that YAP activation itself is not a factor involved in the disruption of OIS. However, its role and interaction partners potentially change. As Wnt molecules are known to be important in melanoma progression, these molecules were the focus of subsequent studies. Interestingly, activation of Wnt signaling using AMBMP resulted in a disruption of OIS in BRAFV600E-transduced melanocytes. Furthermore, depletion of Wnt6, Wnt10b or β-catenin expression in melanoma cells resulted in the induction of senescence. Given that melanoma cells do not exhibit canonical Wnt/β-catenin activity, alternative β-catenin signaling pathways may disrupt OIS. Here, we discovered that β-catenin is an interaction partner of YAP on DNA in melanoma cells. Furthermore, the β-catenin-YAP interaction changed the gene expression pattern from senescence-stabilizing genes to tumor-supportive genes. This switch is caused by transcriptional coactivation via the LEF1/TEAD interaction. The target genes with binding sites for LEF1 and TEAD are involved in rRNA processing and are associated with poor prognosis in melanoma patients. This study revealed that an alternative YAP-Wnt signaling axis is an essential molecular mechanism leading to OIS disruption in melanocytes.
Collapse
Affiliation(s)
- Viola Kluge
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Melanie Kappelmann-Fenzl
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Stefan Fischer
- Faculty of Computer Science, Deggendorf Institute of Technology, Dieter-Görlitz-Platz 1, 94469, Deggendorf, Germany
| | - Tom Zimmermann
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michaela Pommer
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Silke Kuphal
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
8
|
Lone BA, Siraj F, Sharma I, Verma S, Karna SKL, Ahmad F, Nagar P, Sachidanandan C, Pokharel YR. Non-POU Domain-Containing Octomer-Binding (NONO) protein expression and stability promotes the tumorigenicity and activation of Akt/MAPK/β-catenin pathways in human breast cancer cells. Cell Commun Signal 2023; 21:157. [PMID: 37370134 PMCID: PMC10294335 DOI: 10.1186/s12964-023-01179-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Breast cancer is one of the most common cancers with a high mortality rate, underscoring the need to identify new therapeutic targets. Here we report that non-POU domain-containing octamer-binding (NONO) protein is overexpressed in breast cancer and validated the interaction of the WW domain of PIN1 with c-terminal threonine-proline (thr-pro) motifs of NONO. The interaction of NONO with PIN1 increases the stability of NONO by inhibiting its proteasomal degradation, and this identifies PIN1 as a positive regulator of NONO in promoting breast tumor development. Functionally, silencing of NONO inhibits the growth, survival, migration, invasion, epithelial to mesenchymal transition (EMT), and stemness of breast cancer cells in vitro. A human metastatic breast cancer cell xenograft was established in transparent zebrafish (Danio rerio) embryos to study the metastatic inability of NONO-silenced breast cancer cells in vivo. Mechanistically, NONO depletion promotes the expression of the PDL1 cell-surface protein in breast cancer cells. The identification of novel interactions of NONO with c-Jun and β-catenin proteins and activation of the Akt/MAPK/β-catenin signaling suggests that NONO is a novel regulator of Akt/MAPK/β-catenin signaling pathways. Taken together, our results indicated an essential role of NONO in the tumorigenicity of breast cancer and could be a potential target for anti-cancerous drugs. Video Abstract.
Collapse
Affiliation(s)
- Bilal Ahmad Lone
- Cancer Biology Laboratory, Faculty of Life Science and Biotechnology, South Asian University, Rajpur Road, Maidangarhi, New Delhi, 110068, India
| | - Fouzia Siraj
- National Institute of Pathology, Safdarjung Hospital Campus, Room No.610, 6th Floor, Ansari Nagar, New Delhi, 110029, India
| | - Ira Sharma
- National Institute of Pathology, Safdarjung Hospital Campus, Room No.610, 6th Floor, Ansari Nagar, New Delhi, 110029, India
| | - Shweta Verma
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, 201002, India
| | - Shibendra Kumar Lal Karna
- Cancer Biology Laboratory, Faculty of Life Science and Biotechnology, South Asian University, Rajpur Road, Maidangarhi, New Delhi, 110068, India
| | - Faiz Ahmad
- Cancer Biology Laboratory, Faculty of Life Science and Biotechnology, South Asian University, Rajpur Road, Maidangarhi, New Delhi, 110068, India
| | - Preeti Nagar
- Cancer Biology Laboratory, Faculty of Life Science and Biotechnology, South Asian University, Rajpur Road, Maidangarhi, New Delhi, 110068, India
| | - Chetana Sachidanandan
- CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, 110025, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, 201002, India
| | - Yuba Raj Pokharel
- Cancer Biology Laboratory, Faculty of Life Science and Biotechnology, South Asian University, Rajpur Road, Maidangarhi, New Delhi, 110068, India.
| |
Collapse
|
9
|
Staebler S, Lichtblau A, Gurbiel S, Schubert T, Riechers A, Rottensteiner-Brandl U, Bosserhoff A. MIA/CD-RAP Regulates MMP13 and Is a Potential New Disease-Modifying Target for Osteoarthritis Therapy. Cells 2023; 12:cells12020229. [PMID: 36672165 PMCID: PMC9856983 DOI: 10.3390/cells12020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/06/2023] Open
Abstract
Melanoma inhibitory activity/cartilage-derived retinoicacid-sensitive protein (MIA/CD-RAP) is a protein expressed and secreted by chondrocytes and cartilaginous tissues. MIA/CD-RAP-deficient mice develop milder osteoarthritis than wildtype mice. In this study, we investigated MIA/CD-RAP downstream targets to explain this reduced disease development. As a possible mediator, we could detect matrix metalloproteinase 13 (MMP13), and the influence of MIA/CD-RAP on MMP13 regulation was analyzed in vitro using SW1353 chondrosarcoma cells and primary chondrocytes. The femoral head cartilage of WT and MIA/CD-RAP -/- mice were cultured ex vivo to further investigate MMP13 activity. Finally, osteoarthritis was surgically induced via DMM in C57BL/6 mice, and the animals were treated with an MIA/CD-RAP inhibitory peptide by subcutaneously implanted pellets. MMP13 was regulated by MIA/CD-RAP in SW1353 cells, and MIA/CD-RAP -/- murine chondrocytes showed less expression of MMP13. Further, IL-1β-treated MIA/CD-RAP -/- chondrocytes displayed less MMP13 expression and activity. Additionally, MIA/CD-RAP-deficient ex vivo cultured cartilage explants showed less MMP13 activity as well as reduced cartilage degradation. The mice treated with the MIA/CD-RAP inhibitory peptide showed less osteoarthritis development. Our findings revealed MIA/CD-RAP as a new regulator of MMP13 and highlighted its role as a potential new target for osteoarthritis therapy.
Collapse
Affiliation(s)
- Sebastian Staebler
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Adrian Lichtblau
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Slavyana Gurbiel
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
| | - Thomas Schubert
- Institute of Pathology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Krankenhausstraße 8-10, 91054 Erlangen, Germany
- Institute of Applied Pathology, 67346 Speyer, Germany
| | - Alexander Riechers
- Institute of Pathology, Medical School, University of Regensburg, 93053 Regensburg, Germany
| | | | - Anja Bosserhoff
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91052 Erlangen, Germany
- Correspondence:
| |
Collapse
|
10
|
The caspase-2 substrate p54nrb exhibits a multifaceted role in tumor cell death susceptibility via gene regulatory functions. Cell Death Dis 2022; 13:386. [PMID: 35444189 PMCID: PMC9021192 DOI: 10.1038/s41419-022-04829-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 12/18/2022]
Abstract
Caspase-2 represents an evolutionary conserved caspase, which plays a role in genotoxic stress-induced apoptosis, ageing-related metabolic changes, and in deleting aneuploid cells in tumors. Genetic deletion of caspase-2 leads to increased tumor susceptibility in vivo. The exact downstream signaling mechanism by which caspase-2 accomplishes its specific tumor suppressor functions is not clear. Caspase-2, uniquely among caspases, resides in the nucleus and other cellular compartments. In this study, we identify a nuclear caspase-2 specific substrate, p54nrb, which is selectively cleaved by caspase-2 at D422, leading to disruption of the C-terminal site, the putative DNA binding region of the protein. P54nrb is an RNA and DNA binding protein, which plays a role in RNA editing, transport, and transcriptional regulation of genes. Overexpression of p54nrb is observed in several human tumor types, such as cervix adenocarcinoma, melanoma, and colon carcinoma. In contrast, the loss of p54nrb in tumor cell lines leads to increased cell death susceptibility and striking decrease in tumorigenic potential. By employing high resolution quantitative proteomics, we demonstrate that the loss/cleavage of p54nrb results in altered expression of oncogenic genes, among which the downregulation of the tumorigenic protease cathepsin-Z and the anti-apoptotic gelsolin can be detected universally across three tumor cell types, including adenocarcinoma, melanoma and colon carcinoma. Finally, we demonstrate that p54nrb interacts with cathepsin-Z and gelsolin DNA, but not RNA. Taken together, this study uncovers a so far not understood mechanism of caspase-2 tumor suppressor function in human tumor cells. ![]()
Collapse
|
11
|
Shi X, Huang X, Chen R, Li Y, Xu Y, Zhang W, Zhu Q, Zha X, Wang J. The transcribed ultraconserved element uc.51 promotes the proliferation and metastasis of breast cancer by stabilizing NONO. Clin Exp Metastasis 2021; 38:551-571. [PMID: 34714466 DOI: 10.1007/s10585-021-10128-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs have recently emerged as significant contributors to cancers, including breast cancer (BC). One class of long noncoding RNAs called transcribed ultraconserved regions (T-UCRs) is highly conserved in many species and closely related to diverse physiological and pathological processes. However, the function of T-UCRs in BC remains largely unclear. In this study, we identified uc.51, a T-UCR that is overexpressed in both BC tissues and cell lines and is correlated with larger tumor size. Loss- and gain-of-function assays were performed in vitro and demonstrated that uc.51 promotes the proliferation, migration, and invasion of BC cells. Mechanistically, non-POU domain-containing octamer-binding protein (NONO) was found to physically interact with uc.51 by RNA pulldown followed by mass spectrometry. This interaction was further verified by RNA immunoprecipitation. Moreover, uc.51 positively regulated the expression of NONO, maintained its stability through the ubiquitin-proteasome system, and activated the phosphorylation of CREB. Rescue experiments demonstrated that NONO overexpression compensated for the attenuated influence on BC progression resulting from downregulation of uc.51, indicating that NONO functions downstream of uc.51. In vivo functional experiments also revealed a positive correlation between uc.51 expression and tumor size. Ki-67 and NONO levels in the lv-uc.51-shRNA group were decreased compared with those in the lv-con-shRNA group, according to the immunohistochemical staining results, and a decreased incidence of distant metastasis was observed in the lv-uc.51-shRNA group in the xenograft model. Collectively, our results reveal a substantial role for the uc.51-NONO axis in BC progression and indicate that the uc.51-NONO axis has potential to be a therapeutic target for BC.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Xiaofeng Huang
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Rui Chen
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Yan Li
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Yinggang Xu
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Weiwei Zhang
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Qiannan Zhu
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Xiaoming Zha
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210000, China.
| | - Jue Wang
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
12
|
Wei Y, Luo H, Yee PP, Zhang L, Liu Z, Zheng H, Zhang L, Anderson B, Tang M, Huang S, Li W. Paraspeckle Protein NONO Promotes TAZ Phase Separation in the Nucleus to Drive the Oncogenic Transcriptional Program. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102653. [PMID: 34716691 PMCID: PMC8693076 DOI: 10.1002/advs.202102653] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/24/2021] [Indexed: 05/20/2023]
Abstract
The Hippo pathway effector TAZ promotes cellular growth, survival, and stemness through regulating gene transcription. Recent studies suggest that TAZ liquid-liquid phase separation (LLPS) compartmentalizes key cofactors to activate transcription. However, how TAZ LLPS is achieved remains unknown. Here, it is shown that the paraspeckle protein NONO is required for TAZ LLPS and activation in the nucleus. NONO is a TAZ-binding protein. Their interaction shows temporal regulation parallel to the interaction between TAZ and TEAD as well as to the expression of TAZ target genes. NONO depletion reduces nuclear TAZ LLPS, while ectopic NONO expression promotes the LLPS. Accordingly, NONO depletion reduces TAZ interactions with TEAD, Rpb1, and enhancers. In glioblastoma, expressions of NONO and TAZ are both upregulated and predict poor prognosis. Silencing NONO expression in an orthotopic glioblastoma mouse model inhibits TAZ-driven tumorigenesis. Together, this study suggests that NONO is a nuclear factor that promotes TAZ LLPS and TAZ-driven oncogenic transcriptional program.
Collapse
Affiliation(s)
- Yiju Wei
- Division of Pediatric Hematology and OncologyDepartment of PediatricsPenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
| | - Huacheng Luo
- Division of Pediatric Hematology and OncologyDepartment of PediatricsPenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
- Department of PharmacologyPenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
| | - Patricia P. Yee
- Division of Pediatric Hematology and OncologyDepartment of PediatricsPenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
| | - Lijun Zhang
- Institute for Personalized MedicinePenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
- Department of Biochemistry & Molecular BiologyPenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
| | - Zhijun Liu
- Division of Pediatric Hematology and OncologyDepartment of PediatricsPenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
| | - Haiyan Zheng
- Biological Mass Spectrometry FacilityRobert Wood Johnson Medical School, RutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Lei Zhang
- Division of Pediatric Hematology and OncologyDepartment of PediatricsPenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
- Hepatic Surgery CenterTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanHubei Province430030China
| | - Benjamin Anderson
- Division of Pediatric Hematology and OncologyDepartment of PediatricsPenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
| | - Miaolu Tang
- Division of Pediatric Hematology and OncologyDepartment of PediatricsPenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
| | - Suming Huang
- Division of Pediatric Hematology and OncologyDepartment of PediatricsPenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
- Department of PharmacologyPenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
| | - Wei Li
- Division of Pediatric Hematology and OncologyDepartment of PediatricsPenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
- Department of Biochemistry & Molecular BiologyPenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
- Penn State Cancer InstitutePenn State Health Hershey Medical CenterPenn State College of MedicineHersheyPA17033USA
| |
Collapse
|
13
|
Qin Z, Tong H, Li T, Cao H, Zhu J, Yin S, He W. SPHK1 contributes to cisplatin resistance in bladder cancer cells via the NONO/STAT3 axis. Int J Mol Med 2021; 48:204. [PMID: 34549307 PMCID: PMC8480383 DOI: 10.3892/ijmm.2021.5037] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) serves an important role in various physiological and pathophysiological processes, including the regulation of cell apoptosis, proliferation and survival. Sphingosine kinase 1 (SPHK1) is a lipid kinase that phosphorylates sphingosine to generate S1P. S1P has been proven to be positively correlated with chemotherapy resistance in breast cancer, colorectal carcinoma and non-small cell lung cancer. However, whether SPHK1 is involved in the development of cisplatin resistance remains to be elucidated. The present study aimed to identify the association between SPHK1 and chemoresistance in bladder cancer cells and to explore the therapeutic implications in patients with bladder cancer. Bladder cancer cell proliferation and apoptosis were determined using Cell Counting Kit-8 assays and flow cytometry, respectively. Apoptosis-related proteins were detected via western blotting. The results revealed that SPHK1 was positively correlated with cisplatin resistance in bladder cancer cells, exhibiting an antiapoptotic effect that was reflected by the downregulation of apoptosis-related proteins (Bax and cleaved caspase-3) and the upregulation of an antiapoptotic protein (Bcl-2) in SPHK1-overexpression cell lines. Suppression of SPHK1 by small interfering RNA or FTY-720 significantly reversed the antiapoptotic effect. A potential mechanism underlying SPHK1-induced cisplatin resistance and apoptosis inhibition may be activation of STAT3 via binding non-POU domain containing octamer binding. In conclusion, the present study suggested that SPHK1 displayed significant antiapoptotic effects in cisplatin-based treatment, thus may serve as a potential novel therapeutic target for the treatment for bladder cancer.
Collapse
Affiliation(s)
- Zijia Qin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Hang Tong
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Honghao Cao
- Department of Urology, Rongchang Traditional Chinese Medicine Hospital, Chongqing 402460, P.R. China
| | - Junlong Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Siwen Yin
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
14
|
Orellana VP, Tittarelli A, Retamal MA. Connexins in melanoma: Potential role of Cx46 in its aggressiveness. Pigment Cell Melanoma Res 2021; 34:853-868. [PMID: 33140904 DOI: 10.1111/pcmr.12945] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/20/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022]
Abstract
Melanoma is the most aggressive skin cancer, and in metastatic advanced states, it is completely refractory to chemotherapy. Therefore, it is relevant to understand the molecular bases that rule their aggressiveness. Connexins (Cxs) are proteins that under normal physiological conditions participate in intercellular communication, via the exchange of signaling molecules between the cytoplasm and extracellular milieu and the exchange of ions/second messengers between the cytoplasm of contacting cells. These proteins have shown important roles in cancer progression, chemo- and radiotherapy resistance, and metastasis. Accordingly, Cx26 and Cx43 seem to play important roles in melanoma progression and metastasis. On the other hand, Cx46 is typically expressed in the eye lens, where it seems to be associated with oxidative stress protection in fiber lens cells. However, in the last decade, Cx46 expression has been associated with breast and brain cancers, due to its role in potentiation of both extracellular vesicle release and cancer stem cell-like properties. In this review, we analyzed a potential role of Cx46 as a new biomarker and therapeutic target in melanoma.
Collapse
Affiliation(s)
- Viviana P Orellana
- Universidad del Desarrollo. Centro de Fisiología Celular e Integrativa, Clinica Alemana Facultad de Medicina, Santiago, Chile
- Universidad del Desarrollo. Programa de Comunicación Celular en Cáncer, Clínica Alemana Facultad de Medicina, Santiago, Chile
| | - Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana (UTEM), Santiago, Chile
| | - Mauricio A Retamal
- Universidad del Desarrollo. Centro de Fisiología Celular e Integrativa, Clinica Alemana Facultad de Medicina, Santiago, Chile
- Universidad del Desarrollo. Programa de Comunicación Celular en Cáncer, Clínica Alemana Facultad de Medicina, Santiago, Chile
| |
Collapse
|
15
|
Zhang F, Tang X, Fan S, Liu X, Sun J, Ju C, Liang Y, Liu R, Zhou R, Yu B, Zhang C, Zhang Z, Kang T, Huang G, Lv XB. Targeting the p300/NONO axis sensitizes melanoma cells to BRAF inhibitors. Oncogene 2021; 40:4137-4150. [PMID: 34017080 DOI: 10.1038/s41388-021-01834-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/25/2021] [Accepted: 05/07/2021] [Indexed: 01/01/2023]
Abstract
BRAF inhibitors (BRAFi) that target BRAF V600E kinase, a driver mutation found in 50% of melanomas, show a significant antitumor response, but the common emergence of acquired resistance remains a challenge. Abnormal expression of RAF isoforms CRAF and ARAF reactivates pERK1/2, which plays crucial roles in the acquisition of resistance of melanoma cells. However, the mechanisms of dysregulation of RAF isoforms in resistant melanoma cells remain unknown. Here, we identified NONO interacted with and stabilized both CRAF and ARAF in melanoma cells, and that NONO was acetylated at 198K by p300 acetyltransferase, which stabilized NONO via antagonizing its ubiquitination/degradation mediated by RNF8. The upregulation of both p300 and NONO promoted the rebound of pERK1/2 and the subsequent resistance of melanoma cells to BRAFi, and the activation of ERK1/2 in turn induced p300 to form a positive feedback loop in resistant melanoma cells. There was a positive correlation between p300 and NONO in resistant melanoma cells and clinical samples, and p300 inhibitor C646 overcame the resistance of resistant melanoma cells to BRAF inhibitors in vitro and in vivo. Our findings reveal that targeting the positive feedback loop of p300-NONO-CRAF/ARAF-pERK1/2 may be excellent strategies to overcome the resistance of BRAF inhibitors for melanoma patients.
Collapse
Affiliation(s)
- Feifei Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xiaofeng Tang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Song Fan
- Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, PR China
| | - Xia Liu
- Department of Medical Oncology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, PR China
| | - Jun Sun
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Cheng Ju
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Yiping Liang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Renfeng Liu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Ruihao Zhou
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Bo Yu
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Changhua Zhang
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, PR China
| | - Zhiping Zhang
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.,Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, PR China
| | - Guofu Huang
- Department of Ophthalmology, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, PR China.
| | - Xiao-Bin Lv
- Jiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The Third Affiliated Hospital of Nanchang University, Nanchang, PR China.
| |
Collapse
|
16
|
Zhang J, Rui Y, Gao M, Wang L, Yan BC. Expression of Long Non-coding RNA RGD1566344 in the Brain Cortex of Male Mice After Focal Cerebral Ischemia-Reperfusion and the Neuroprotective Effect of a Non-coding RNA RGD1566344 Inhibitor. Cell Mol Neurobiol 2021; 41:705-716. [PMID: 32424772 PMCID: PMC11448627 DOI: 10.1007/s10571-020-00877-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
Ischemic stroke (IS) remains a major cause of disability and death. The changes in long non-coding RNA (lncRNA) RGD1566344 expression in the mouse cerebral cortex, including the infarct and penumbra regions after IS, are not clear. Less is known about the impact and underlying mechanisms of RGD1566344 in IS. In this study, we found that RGD1566344 levels were elevated in the ischemic infarct and penumbra regions 12 h after middle cerebral artery occlusion/reperfusion (MCAO/R) in male mice and in PC12 cells with oxygen glucose deprivation/reperfusion (OGD/R). The inhibition of RGD1566344 by small interference RNA (siRNA) significantly alleviated apoptosis in OGD/R PC12 cells. In cell transfection, quantitative real-time PCR, and Western blot experiments, we demonstrated the possible interaction of non-POU domain-containing octamer-binding protein (NONO) with RGD1566344. The NONO level in OGD/R PC12 cells was obviously increased after inhibiting the RGD1566344 treatment; subsequently the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway was activated. This demonstrated the effect of the RGD1566344-NONO-AKT axis on neural protection after IS. These results revealed a new molecular mechanism of lncRNA RGD1566344 inhibitors through targeting NONO/AKT/mTOR signaling to protect against ischemic neuronal injury, providing strong evidence for the development of promising therapeutic strategies against IS.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
- Department of Neurology, Affiliated Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Yanggang Rui
- Department of Neurology, Xuyi People's Hospital, Huai'an, 211700, People's Republic of China
| | - Manman Gao
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Li Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, People's Republic of China.
- Department of Neurology, Affiliated Hospital, Yangzhou University, Yangzhou, 225001, People's Republic of China.
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, People's Republic of China.
| |
Collapse
|
17
|
Gaza A, Fritz V, Malek L, Wormser L, Treiber N, Danner J, Kremer AE, Thasler WE, Siebler J, Meister G, Neurath MF, Hellerbrand C, Bosserhoff AK, Dietrich P. Identification of novel targets of miR-622 in hepatocellular carcinoma reveals common regulation of cooperating genes and outlines the oncogenic role of zinc finger CCHC-type containing 11. Neoplasia 2021; 23:502-514. [PMID: 33901943 PMCID: PMC8099721 DOI: 10.1016/j.neo.2021.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/26/2022] Open
Abstract
The poor prognosis of advanced hepatocellular carcinoma (HCC) is driven by diverse features including dysregulated microRNAs inducing drug resistance and stemness. Lin-28 homolog A (LIN28A) and its partner zinc finger CCHC-type containing 11 (ZCCHC11) cooperate in binding, oligouridylation and subsequent degradation of tumorsuppressive let-7 precursor microRNAs. Functionally, activation of LIN28A was recently shown to promote stemness and chemoresistance in HCC. However, the expression and regulation of LIN28A in HCC had been unclear. Moreover, the expression, regulation and function of ZCCHC11 in liver cancer remained elusive. In contrast to "one-microRNA-one-target" interactions, we identified common binding sites for miR-622 in both LIN28A and ZCCHC11, suggesting miR-622 to function as a superior pathway regulator. Applying comprehensive microRNA database screening, human hepatocytes and HCC cell lines, patient-derived tissue samples as well as "The Cancer Genome Atlas" (TCGA) patient cohorts, we demonstrated that loss of tumorsuppressive miR-622 mediates derepression and overexpression of LIN28A in HCC. Moreover, the cooperator of LIN28A, ZCCHC11, was newly identified as a prognostic and therapeutic target of miR-622 in liver cancer. Together, identification of novel miR-622 target genes revealed common regulation of cooperating genes and outlines the previously unknown oncogenic role of ZCCHC11 in liver cancer.
Collapse
Affiliation(s)
- Anne Gaza
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Valerie Fritz
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Lara Malek
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Laura Wormser
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Nora Treiber
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, Germany
| | - Johannes Danner
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, Germany
| | - Andreas E Kremer
- Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Wolfgang E Thasler
- Department of General and Visceral Surgery, Red Cross Hospital of Munich, Germany
| | - Jürgen Siebler
- Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, Germany
| | - Markus F Neurath
- Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany; Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Anja K Bosserhoff
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil-Fischer-Zentrum, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Department of Medicine, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany.
| |
Collapse
|
18
|
Xu (徐兴丽) X, Xu (徐兴华) X, Mao (毛洋) Y, Lu (卢琳) L, Ma (马静) J, Zheng (郑腾飞) T, Zhang (张杰) J, Zhang (章萌) M, Meng (孟霖霖) L, Ma (马连越) L, Cheng (程晶) J, Chen (陈文强) W, Jiang (姜虹) H, Zhang (张运) Y, Zhang (张澄) C. Knockout of the NONO Gene Inhibits Neointima Formation in a Mouse Model of Vascular Injury. Arterioscler Thromb Vasc Biol 2021; 41:1428-1445. [PMID: 33626912 DOI: 10.1161/atvbaha.119.313581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xingli Xu (徐兴丽)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.).,Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu (Xingli Xu).,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China (Xingli Xu)
| | - Xinghua Xu (徐兴华)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.).,Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Science, Taian, China (Xinghua Xu)
| | - Yang Mao (毛洋)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Lin Lu (卢琳)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Jing Ma (马静)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Tengfei Zheng (郑腾飞)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Jie Zhang (张杰)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Meng Zhang (章萌)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Linlin Meng (孟霖霖)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Lianyue Ma (马连越)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Jing Cheng (程晶)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Wenqiang Chen (陈文强)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Hong Jiang (姜虹)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Yun Zhang (张运)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Cheng Zhang (张澄)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| |
Collapse
|
19
|
Zhu P, Huang H, Gu S, Liu Z, Zhang X, Wu K, Lu T, Li L, Dong C, Zhong C, Zhou Y. Long Noncoding RNA FAM225A Promotes Esophageal Squamous Cell Carcinoma Development and Progression via Sponging MicroRNA-197-5p and Upregulating NONO. J Cancer 2021; 12:1073-1084. [PMID: 33442405 PMCID: PMC7797645 DOI: 10.7150/jca.51292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the major subclass of esophageal cancer and one of the most life-threatening malignancies with high morbidity and mortality. Long noncoding RNAs (lncRNAs) participate in tumorigenesis and metastasis of various tumors. Here, we investigated the function of a newly identified lncRNA FAM225A in ESCC. LncRNA FAM225A expression was significantly higher in ESCC and predicted poor prognosis of ESCC patients. We confirmed that upregulation of FAM225A in ESCC and overexpression of FAM225A was associated with poor outcome in ESCC patients using TCGA ESCC cohort. Knockdown of FAM225A significantly inhibited cell growth, migration and invasion of ESCC cells in vitro and inhibited ESCC xenograft development in vivo. Mechanistically, we demonstrated that lncRNA FAM225A functioned as a competing endogenous RNA (ceRNA) via sponging miR-197-5p. LncRNA FAM225A exerted its regulatory function on ESCC proliferation and metastasis via modulating expression of miR-197-5p. MiR-197-5p overexpression antagonized the function of FAM225A, with decreased cell growth and invasion. Moreover, we identified that RNA binding protein NONO was a direct target of miR-197-5p and miR-197-5p negatively regulated NONO expression and TGF-β signaling in ESCC cells. In summary, our findings suggest that lncRNA FAM225A promotes ESCC development and progression via sponging miR-197-5p and upregulating NONO expression. These results suggest that lncRNA FAM225A could be explored as a new therapy target in ESCC treatment.
Collapse
Affiliation(s)
- Pengyuan Zhu
- Department of thoracic and Cardiovascular Surgery, the Second Affiliated Hospital of Nantong University, School of Medicine, Nantong University, Nantong, 226001, China
| | - Haitao Huang
- Department of thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Shaorui Gu
- Department of thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Zhenchuan Liu
- Department of thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xin Zhang
- Department of thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Kaiqin Wu
- Department of thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Tiancheng Lu
- Department of thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Lei Li
- Department of thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chenglai Dong
- Department of thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Chongjun Zhong
- Department of thoracic and Cardiovascular Surgery, the Second Affiliated Hospital of Nantong University, School of Medicine, Nantong University, Nantong, 226001, China
| | - Yongxin Zhou
- Department of thoracic and Cardiovascular Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| |
Collapse
|
20
|
Yin XK, Wang YL, Wang F, Feng WX, Bai SM, Zhao WW, Feng LL, Wei MB, Qin CL, Wang F, Chen ZL, Yi HJ, Huang Y, Xie PY, Kim T, Wang YN, Hou JW, Li CW, Liu Q, Fan XJ, Hung MC, Wan XB. PRMT1 enhances oncogenic arginine methylation of NONO in colorectal cancer. Oncogene 2021; 40:1375-1389. [PMID: 33420374 PMCID: PMC7892343 DOI: 10.1038/s41388-020-01617-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 01/29/2023]
Abstract
Arginine methylation is an important posttranslational modification catalyzed by protein arginine methyltransferases (PRMTs). However, the role of PRMTs in colorectal cancer (CRC) progression is not well understood. Here we report that non-POU domain-containing octamer-binding protein (NONO) is overexpressed in CRC tissue and is a potential marker for poor prognosis in CRC patients. NONO silencing resulted in decreased proliferation, migration, and invasion of CRC cells, whereas overexpression had the opposite effect. In a xenograft model, tumors derived from NONO-deficient CRC cells were smaller than those derived from wild-type (WT) cells, and PRMT1 inhibition blocked CRC xenograft progression. A mass spectrometry analysis indicated that NONO is a substrate of PRMT1. R251 of NONO was asymmetrically dimethylated by PRMT1 in vitro and in vivo. Compared to NONO WT cells, NONO R251K mutant-expressing CRC cells showed reduced proliferation, migration, and invasion, and PRMT1 knockdown or pharmacological inhibition abrogated the malignant phenotype associated with NONO asymmetric dimethylation in both KRAS WT and mutant CRC cells. Compared to adjacent normal tissue, PRMT1 was highly expressed in the CRC zone in clinical specimens, which was correlated with poor overall survival in patients with locally advanced CRC. These results demonstrate that PRMT1-mediated methylation of NONO at R251 promotes CRC growth and metastasis, and suggest that PRMT1 inhibition may be an effective therapeutic strategy for CRC treatment regardless of KRAS mutation status.
Collapse
Affiliation(s)
- Xin-Ke Yin
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Yun-Long Wang
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China ,grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Fei Wang
- grid.12981.330000 0001 2360 039XDepartment of Gastroenterology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518107 PR China
| | - Wei-Xing Feng
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Shao-Mei Bai
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Wan-Wen Zhao
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Li-Li Feng
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Ming-Biao Wei
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Cao-Litao Qin
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Fang Wang
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Zhi-Li Chen
- grid.12981.330000 0001 2360 039XDepartment of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Hong-Jun Yi
- grid.12981.330000 0001 2360 039XDepartment of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Yan Huang
- grid.12981.330000 0001 2360 039XDepartment of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Pei-Yi Xie
- grid.12981.330000 0001 2360 039XDepartment of Radiology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Taewan Kim
- grid.508211.f0000 0004 6004 3854Base for International Science and Technology Cooperation, Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518055 PR China ,grid.261331.40000 0001 2285 7943The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210 USA
| | - Ying-Nai Wang
- grid.240145.60000 0001 2291 4776Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Jun-Wei Hou
- grid.240145.60000 0001 2291 4776Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Chia-Wei Li
- grid.240145.60000 0001 2291 4776Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ,grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529 Taiwan
| | - Quentin Liu
- grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044 PR China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 PR China
| | - Xin-Juan Fan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China ,grid.12981.330000 0001 2360 039XDepartment of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| | - Mien-Chie Hung
- grid.240145.60000 0001 2291 4776Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ,grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences and Research Centers for Cancer Biology and Molecular Medicine, China Medical University, Taichung, 404 Taiwan ,grid.252470.60000 0000 9263 9645Department of Biotechnology, Asia University, Taichung, 413 Taiwan
| | - Xiang-Bo Wan
- grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China ,grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China ,grid.12981.330000 0001 2360 039XDepartment of Medical Engineering, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 PR China
| |
Collapse
|
21
|
Feng P, Li L, Dai J, Zhou L, Liu J, Zhao J, Li X, Ling N, Qiu S, Zhang L, Xie T, Chen Y, Donovan MJ, Peng T, Song J, Ye M. The regulation of NONO by USP11 via deubiquitination is linked to the proliferation of melanoma cells. J Cell Mol Med 2020; 25:1507-1517. [PMID: 33369124 PMCID: PMC7875907 DOI: 10.1111/jcmm.16243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/12/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Ubiquitin‐specific protease 11 (USP11) has been implicated in the regulation of DNA repair, apoptosis, signal transduction and cell cycle. It belongs to a USP subfamily of deubiquitinases. Although previous research has shown that USP11 overexpression is frequently found in melanoma and is correlated with a poor prognosis, the potential molecular mechanism of USP11 in melanoma remains indefinitive. Here, we report that USP11 and NONO colocalize and interact with each other in the nucleus of melanoma cells. As a result, the knockdown of USP11 decreases NONO levels. Whereas, overexpression of USP11 increases NONO levels in a dose‐dependent manner. Furthermore, we reveal that USP11 protects NONO protein from proteasome‐mediated degradation by removing poly‐ubiquitin chains conjugated onto NONO. Functionally, USP11 mediated melanoma cell proliferation via the regulation of NONO levels because ablation of USP11 inhibits the proliferation which could be rescued by ectopic expression of NONO protein. Moreover, a significant positive correlation between USP11 and NONO concentrations was found in clinical melanoma samples. Collectively, these results demonstrate that USP11 is a new deubiquitinase of NONO and that the signalling axis of USP11‐NONO is significantly involved in melanoma proliferation.
Collapse
Affiliation(s)
- Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Ling Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Jing Dai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Lingli Zhou
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Jing Liu
- Molecular Biology Research Center & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Jinfeng Zhao
- Key Laboratory of Nanobiological Technology of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaodong Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Neng Ling
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Siyuan Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Lin Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Tiantian Xie
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Yinglei Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Michael J Donovan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Tianhuan Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| | - Jianhui Song
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, China
| |
Collapse
|
22
|
Xie R, Chen X, Cheng L, Huang M, Zhou Q, Zhang J, Chen Y, Peng S, Chen Z, Dong W, Huang J, Lin T. NONO Inhibits Lymphatic Metastasis of Bladder Cancer via Alternative Splicing of SETMAR. Mol Ther 2020; 29:291-307. [PMID: 32950106 DOI: 10.1016/j.ymthe.2020.08.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/13/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022] Open
Abstract
Bladder cancer patients with lymph node (LN) metastasis have an extremely poor prognosis and no effective treatment. The alternative splicing of precursor (pre-)mRNA participates in the progression of various tumors. However, the precise mechanisms of splicing factors and cancer-related variants in LN metastasis of bladder cancer remain largely unknown. The present study identified a splicing factor, non-POU domain-containing octamer-binding protein (NONO), that was significantly downregulated in bladder cancer tissues and correlated with LN metastasis status, tumor stage, and prognosis. Functionally, NONO markedly inhibited bladder cancer cell migration and invasion in vitro and LN metastasis in vivo. Mechanistically, NONO regulated the exon skipping of SETMAR by binding to its motif, mainly through the RRM2 domain. NONO directly interacted with splicing factor proline/glutamine rich (SFPQ) to regulate the splicing of SETMAR, and it induced metastasis suppression of bladder cancer cells. SETMAR-L overexpression significantly reversed the metastasis of NONO-knockdown bladder cancer cells, both in vitro and in vivo. The further analysis revealed that NONO-mediated SETMAR-L can induce H3K27me3 at the promotor of metastatic oncogenes and inhibit their transcription, ultimately resulting in metastasis suppression. Therefore, the present findings uncover the molecular mechanism of lymphatic metastasis in bladder cancer, which may provide novel clinical markers and therapeutic strategies for LN-metastatic bladder cancer.
Collapse
Affiliation(s)
- Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingtong Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuelong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziyue Chen
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Urology, The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, China.
| |
Collapse
|
23
|
Zamani-Ahmadmahmudi M, Nassiri SM, Soltaninezhad F. Development of an RNA sequencing-based prognostic gene signature in multiple myeloma. Br J Haematol 2020; 192:310-321. [PMID: 32410217 DOI: 10.1111/bjh.16744] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023]
Abstract
Several prognostic gene signatures have been developed to predict the clinical outcome in patients with multiple myeloma (MM). The most salient disadvantage of the previous signatures is their non-reproducibility in external datasets. Given the disadvantages and the superiority of RNA sequencing over microarrays in transcriptome profiling to produce more reliable outputs, we sought to develop a reproducible RNA sequencing-based prognostic gene signature for MM. Genes significantly associated with survival were detected in The Cancer Genome Atlas (TCGA) MM RNA sequencing dataset (MMRF-CoMMpass) (n = 412) through a strict pipeline containing four rigid filters. The reproducibility of the selected genes was checked in an independent dataset (GSE24080), containing 559 newly diagnosed patients with MM. The RNA sequencing-based prognostic signature was reconstructed based on the final genes in the training dataset (MMRF-CoMMpass) and externally validated in five independent datasets (i.e. GSE2658, GSE13624, GSE9782, GSE6477 and GSE57317), containing 1461 MM cases. The RNA sequencing-based signature was reconstructed using finally five reproducible genes: CCT2, CKS1B, PRKDC, NONO and UBE2A. This signature was able to robustly discriminate between low- and high-risk patients in both training and validation datasets (Ps ≤ 0·001). Our signature was also independent of and more powerful than the routine MM prognostic factors (i.e. β2-microglobulin, albumin, age and sex) (Ps ≤ 0·01). Treatment regimens had no effect on RNA sequencing-based signature insofar as this signature succeeded in predicting the clinical outcome in various treatment groups (Ps ≤ 0·001).
Collapse
Affiliation(s)
- Mohamad Zamani-Ahmadmahmudi
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Seyed Mahdi Nassiri
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Soltaninezhad
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
24
|
Feng P, Li L, Deng T, Liu Y, Ling N, Qiu S, Zhang L, Peng B, Xiong W, Cao L, Zhang L, Ye M. NONO and tumorigenesis: More than splicing. J Cell Mol Med 2020; 24:4368-4376. [PMID: 32168434 PMCID: PMC7176863 DOI: 10.1111/jcmm.15141] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/05/2020] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The non-POU domain-containing octamer-binding protein NONO/p54nrb , which belongs to the Drosophila behaviour/human splicing (DBHS) family, is a multifunctional nuclear protein rarely functioning alone. Emerging solid evidences showed that NONO engages in almost every step of gene regulation, including but not limited to mRNA splicing, DNA unwinding, transcriptional regulation, nuclear retention of defective RNA and DNA repair. NONO is involved in many biological processes including cell proliferation, apoptosis, migration and DNA damage repair. Dysregulation of NONO has been found in many types of cancer. In this review, we summarize the current and fast-growing knowledge about the regulation of NONO, its biological function and implications in tumorigenesis and cancer progression. Overall, significant findings about the roles of NONO have been made, which might make NONO to be a new biomarker or/and a possible therapeutic target for cancers.
Collapse
Affiliation(s)
- Peifu Feng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Ling Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Tanggang Deng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Yan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Neng Ling
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Siyuan Qiu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Lin Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Bo Peng
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| | - Wei Xiong
- Ophthalmology and Eye Research Center, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Lanqin Cao
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, China
| | - Lei Zhang
- Department of Nephrology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theranostics, Hunan University, Changsha, China
| |
Collapse
|
25
|
Xu X, Jiang H, Lu Y, Zhang M, Cheng C, Xue F, Zhang M, Zhang C, Ni M, Zhang Y. Deficiency of NONO is associated with impaired cardiac function and fibrosis in mice. J Mol Cell Cardiol 2019; 137:46-58. [PMID: 31634484 DOI: 10.1016/j.yjmcc.2019.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/06/2019] [Accepted: 10/17/2019] [Indexed: 11/28/2022]
Abstract
Non-POU-domain-containing octamer-binding protein (NONO), a component of multifunctional Drosophila behavior/human splicing (DBHS) family, plays an important role in regulating glucose and fat metabolism, circadian cycles, cell division, collagen formation and fibrosis. Dysfunctional variants of NONO have been described as the cause of congenital heart defects in males. However, the effects of NONO deficiency on the ventricular function and cardiac fibrosis as well as the related mechanisms are not clear. In the present study, we aimed to reveal the overall phenotypes, cardiac function and fibroblasts in NONO knockout (NONO KO) mice compared with the wild-type (WT) male littermates. The results showed that the birth rate of NONOgt/0 mice was much lower than their WT male littermates at the time of weaning. The body weight of NONOgt/0 mice was 19% lower than that of WT male littermates (27.2 ± 1.49 g vs. 22.01 ± 1.20 g, P < .001). NONO KO mice exhibited continuous higher mortality from birth to a year later (P < .05). Compared with those in the WT mice, the heart weight was lower(142.0 ± 8.7 mg vs. 179.0 ± 10.4 mg, P < .001), the heart weight to body weight ratio (HW/BW) was similar, the E/A ratio was higher (1.80 ± 0.47 vs. 1.44 ± 0.26, P < .05), and the left ventricular end diastolic diameter (LVEDd) was significantly lower (2.72 ± 0.51 mm vs.3.54 ± 0.43 mm, P < .001) in the NONO KO mice. We also found excessive matrix deposition in vivo. In vitro, NONO deficiency led to fibroblasts hyperproliferation, while migration was inhibited, which would induce collagen maturation and deposition. Conversely, overexpression of NONO inhibited fibroblasts proliferation and increased migration which reduced collagen deposition. RNA-seq of cardiac fibroblasts further indicated that NONO deficiency upregulated the cell cycle regulators, which included cyclin B2, the origin recognition complex 1 (ORC1) and cell division cycle 6 (CDC6), while downregulated the migration regulators, which included myosins, integrin and coagulation factor II. Overexpression of NONO further verified the effects of these indicators. In conclusion, our study demonstrated that NONO deficiency was associated with developing heart defects in mice. Hyperproliferation of cardiac fibroblasts with dramatically excessive collagen secretion might be the cause of heart defects of NONO KO mice.
Collapse
Affiliation(s)
- Xingli Xu
- The Key Laboratory of Cardiovascular Remodeling and Function Researcdh, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Hong Jiang
- The Key Laboratory of Cardiovascular Remodeling and Function Researcdh, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Researcdh, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Researcdh, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- The Key Laboratory of Cardiovascular Remodeling and Function Researcdh, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Fei Xue
- The Key Laboratory of Cardiovascular Remodeling and Function Researcdh, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Meng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Researcdh, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Researcdh, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Mei Ni
- The Key Laboratory of Cardiovascular Remodeling and Function Researcdh, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Researcdh, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
26
|
Kappelmann-Fenzl M, Kuphal S, Krupar R, Schadendorf D, Umansky V, Vardimon L, Hellerbrand C, Bosserhoff AK. Complex Formation with Monomeric α-Tubulin and Importin 13 Fosters c-Jun Protein Stability and Is Required for c-Jun's Nuclear Translocation and Activity. Cancers (Basel) 2019; 11:cancers11111806. [PMID: 31744174 PMCID: PMC6895814 DOI: 10.3390/cancers11111806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Microtubules are highly dynamic structures, which consist of α- and β-tubulin heterodimers. They are essential for a number of cellular processes, including intracellular trafficking and mitosis. Tubulin-binding chemotherapeutics are used to treat different types of tumors, including malignant melanoma. The transcription factor c-Jun is a central driver of melanoma development and progression. Here, we identify the microtubule network as a main regulator of c-Jun activity. Monomeric α-tubulin fosters c-Jun protein stability by protein-protein interaction. In addition, this complex formation is necessary for c-Jun's nuclear localization sequence binding to importin 13, and consequent nuclear import and activity of c-Jun. A reduction in monomeric α-tubulin levels by treatment with the chemotherapeutic paclitaxel resulted in a decline in the nuclear accumulation of c-Jun in melanoma cells in an experimental murine model and in patients' tissues. These findings add important knowledge to the mechanism of the action of microtubule-targeting drugs and indicate the newly discovered regulation of c-Jun by the microtubule cytoskeleton as a novel therapeutic target for melanoma and potentially also other types of cancer.
Collapse
Affiliation(s)
- Melanie Kappelmann-Fenzl
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
- Faculty of Applied Health Care Sciences, University of Applied Science Deggendorf, 94469 Deggendorf, Germany
| | - Silke Kuphal
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
| | - Rosemarie Krupar
- Pathology of the University Medical Center Schleswig-Holstein, Campus Lübeck and Research Center Borstel, Leibniz Center for Medicine and Biosciences, 23566 Lübeck, Germany;
| | - Dirk Schadendorf
- Department of Dermatology, University Duisburg-Essen, 45355 Essen, Germany;
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, 69117 Heidelberg, Germany;
| | - Lily Vardimon
- Department of Biochemistry and Molecular Biology, Tel Aviv University, 69978 Tel Aviv, Israel;
| | - Claus Hellerbrand
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry (Emil-Fischer Center), Friedrich-Alexander University, Erlangen-Nürnberg, 91054 Erlangen, Germany (S.K.); (C.H.)
- Comprehensive Cancer Center (CCC) Erlangen-EMN, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-8524191
| |
Collapse
|
27
|
Feuerer L, Lamm S, Henz I, Kappelmann-Fenzl M, Haferkamp S, Meierjohann S, Hellerbrand C, Kuphal S, Bosserhoff AK. Role of melanoma inhibitory activity in melanocyte senescence. Pigment Cell Melanoma Res 2019; 32:777-791. [PMID: 31172672 DOI: 10.1111/pcmr.12801] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 05/16/2019] [Accepted: 05/26/2019] [Indexed: 01/10/2023]
Abstract
The protein melanoma inhibitory activity (MIA) is known to be expressed in melanoma and to support melanoma progression. Interestingly, previous studies also observed the expression of MIA in nevi. Concentrating on these findings, we revealed that MIA expression is correlated with a senescent state in melanocytes. Induction of replicative or oncogene-induced senescence resulted in increased MIA expression in vitro. Notably, MIA knockdown in senescent melanocytes reduced the percentage of senescence-associated beta-Gal-positive cells and enhanced proliferation. Using the melanoma mouse model Tg(Grm1), MIA-deficient mice supported the impact of MIA on senescence by showing a significantly earlier tumor onset compared to controls. In melanocytes, MIA knockdown led to a downregulation of the cell cycle inhibitor p21 in vitro and in vivo. In contrast, after induction of hTERT in human melanoma cells, p21 regulation by MIA was lost. In summary, our data show for the first time that MIA is a regulator of cellular senescence in human and murine melanocytes.
Collapse
Affiliation(s)
- Lena Feuerer
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Lamm
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ingmar Henz
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Kappelmann-Fenzl
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany.,Deggendorf Institute of Technology, Deggendorf, Germany
| | - Sebastian Haferkamp
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | | | - Claus Hellerbrand
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Silke Kuphal
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Katrin Bosserhoff
- Emil Fischer Center, Institute of Biochemistry, University of Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
28
|
Stieglitz D, Lamm S, Braig S, Feuerer L, Kuphal S, Dietrich P, Arndt S, Echtenacher B, Hellerbrand C, Karrer S, Bosserhoff AK. BMP6-induced modulation of the tumor micro-milieu. Oncogene 2018; 38:609-621. [PMID: 30171260 DOI: 10.1038/s41388-018-0475-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 06/22/2018] [Accepted: 07/27/2018] [Indexed: 12/22/2022]
Abstract
Melanoma is the deadliest form of skin cancer with rising incidence, creating a significant health problem. We discovered increased expression of bone morphogenetic protein 6 (BMP6) in melanoma cells and tissues, and observed that BMP6 deficiency caused significantly delayed tumor onset and decelerated tumor progression in a melanoma mouse model. Moreover, we determined that BMP6 inhibits dermal mast cell recruitment and found that mast cell-derived mediators significantly reduced melanoma growth in vitro. In line with this, mast cell deficiency accelerated tumor onset and progression in a melanoma mouse model. Analysis of human melanoma tissues revealed a strong negative correlation between melanoma proliferation and mast cell infiltration. This study elucidates a novel role of BMP6-induced modulation of the tumor microenvironment.
Collapse
Affiliation(s)
- David Stieglitz
- Institute of Biochemistry, Emil Fischer Center, Department of Biochemistry and Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Susanne Lamm
- Institute of Biochemistry, Emil Fischer Center, Department of Biochemistry and Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Simone Braig
- Department of Pharmacy, Pharmaceutical Biology, University of Munich, Munich, Germany
| | - Lena Feuerer
- Institute of Biochemistry, Emil Fischer Center, Department of Biochemistry and Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Silke Kuphal
- Institute of Biochemistry, Emil Fischer Center, Department of Biochemistry and Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Dietrich
- Institute of Biochemistry, Emil Fischer Center, Department of Biochemistry and Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Stephanie Arndt
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Bernd Echtenacher
- Regensburg Center for Interventional Immunology (RCI) and University Medical Center of Regensburg, Regensburg, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Emil Fischer Center, Department of Biochemistry and Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany.,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany
| | - Sigrid Karrer
- Department of Dermatology, University Medical Center Regensburg, Regensburg, Germany
| | - Anja-Katrin Bosserhoff
- Institute of Biochemistry, Emil Fischer Center, Department of Biochemistry and Molecular Medicine, University of Erlangen-Nürnberg, Erlangen, Germany. .,Comprehensive Cancer Center (CCC) Erlangen-EMN, Erlangen, Germany.
| |
Collapse
|
29
|
Li D, Chen Y, Mei H, Jiao W, Song H, Ye L, Fang E, Wang X, Yang F, Huang K, Zheng L, Tong Q. Ets-1 promoter-associated noncoding RNA regulates the NONO/ERG/Ets-1 axis to drive gastric cancer progression. Oncogene 2018; 37:4871-4886. [PMID: 29773901 PMCID: PMC6117270 DOI: 10.1038/s41388-018-0302-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 03/20/2018] [Accepted: 04/16/2018] [Indexed: 01/12/2023]
Abstract
Emerging studies have indicated the essential functions of long noncoding RNAs (lncRNAs) during cancer progression. However, whether lncRNAs contribute to the upregulation of v-ets erythroblastosis virus E26 oncogene homolog 1 (Ets-1), an established oncogenic protein facilitating tumor invasion and metastasis, in gastric cancer remains elusive. Herein, we identified Ets-1 promoter-associated noncoding RNA (pancEts-1) as a novel lncRNA associated with the gastric cancer progression via mining of publicly available datasets and rapid amplification of cDNA ends. RNA pull-down, RNA immunoprecipitation, in vitro binding, and RNA electrophoretic mobility shift assays indicated the binding of pancEts-1 to non-POU domain containing octamer binding (NONO) protein. Mechanistically, pancEts-1 facilitated the physical interaction between NONO and Ets related gene (ERG), resulting in increased ERG transactivation and transcription of Ets-1 associated with gastric cancer progression. In addition, pancEts-1 facilitated the growth and aggressiveness of gastric cancer cells via interacting with NONO. In gastric cancer tissues, pancEts-1, NONO, and ERG were upregulated and significantly correlated with Ets-1 levels. High levels of pancEts-1, NONO, ERG, or Ets-1 were respectively associated with poor survival of gastric cancer patients, whereas simultaneous expression of all of them (HR = 3.012, P = 0.105) was not an independent prognostic factor for predicting clinical outcome. Overall, these results demonstrate that lncRNA pancEts-1 exhibits oncogenic properties that drive the progression of gastric cancer via regulating the NONO/ERG/Ets-1 axis.
Collapse
Affiliation(s)
- Dan Li
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Yajun Chen
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Hong Mei
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Huajie Song
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Lin Ye
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Erhu Fang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Xiaojing Wang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Feng Yang
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China.
| | - Qiangsong Tong
- Department of Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China. .,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, 430022, Wuhan, Hubei Province, China.
| |
Collapse
|
30
|
Downregulation of NONO induces apoptosis, suppressing growth and invasion in esophageal squamous cell carcinoma. Oncol Rep 2018; 39:2575-2583. [PMID: 29620226 PMCID: PMC5983930 DOI: 10.3892/or.2018.6334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/01/2017] [Indexed: 01/12/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies in China, and is associated with high morbidity and mortality. However, the molecular mechanisms that control ESCC tumorigenicity and metastasis remain unclear. Here, we report that the RNA splicing factor, NONO, is an important regulator of ESCC growth, apoptosis and invasion. NONO protein levels were dramatically upregulated in ESCC when compared with that in adjacent benign esophageal squamous epithelium. Particularly, NONO expression was statistically higher in tumors with greater tumor invasion depth. Using multiple ESCC cell models, we further showed that NONO depletion using siRNA significantly inhibited proliferation, invasion, and promoted apoptosis of ESCC cells. In addition we found that knockdown of NONO could reduce protein levels of phosphorylated Akt and Erk1/2. Our findings suggest that NONO plays a potent role in multiple biological aspects of ESCC through activation of the Akt and Erk1/2 signaling pathways. Taken together, our findings suggest that NONO might play an important role in promoting tumorigenesis of ESCC. It may provide a promising approach to prevent the progress of ESCC.
Collapse
|
31
|
Alfano L, Costa C, Caporaso A, Antonini D, Giordano A, Pentimalli F. HUR protects NONO from degradation by mir320, which is induced by p53 upon UV irradiation. Oncotarget 2018; 7:78127-78139. [PMID: 27816966 PMCID: PMC5363649 DOI: 10.18632/oncotarget.13002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 10/12/2016] [Indexed: 12/13/2022] Open
Abstract
UV radiations challenge genomic stability and are a recognized cancer risk factor. We previously found that the RNA-binding protein NONO regulates the intra-S phase checkpoint and its silencing impaired HeLa and melanoma cell response to UV-induced DNA damage. Here we investigated the mechanisms underlying NONO regulation upon UVC treatment. We found that UVC rays induce the expression of mir320a, which can indeed target NONO. However, despite mir320a induction, NONO mRNA and protein expression are not affected by UVC. We found through RNA immunoprecipitation that UVC rays induce the ubiquitous RNA-binding protein HUR to bind NONO 5′UTR in a site overlapping mir320a binding site. Both HUR silencing and its pharmacological inhibition induced NONO downregulation following UVC exposure, whereas concomitant mir320a silencing restored NONO stability. UVC-mediated mir320a upregulation is triggered by p53 binding to its promoter, which lies within a region marked by H3K4me3 and H3K27ac signals upon UVC treatment. Silencing mir320a sensitizes cells to DNA damage. Overall our findings reveal a new mechanism whereby HUR protects NONO from mir320-mediated degradation upon UVC exposure and identify a new component within the complex network of players underlying the DNA damage response adding mir320a to the list of p53-regulated targets upon genotoxic stress.
Collapse
Affiliation(s)
- Luigi Alfano
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, 80131, Italy
| | - Caterina Costa
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, 80131, Italy
| | - Antonella Caporaso
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, 53100, Italy
| | | | - Antonio Giordano
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, 53100, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA, 19122, USA
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Per Lo Studio E La Cura Dei Tumori "Fondazione Giovanni Pascale", IRCCS, Naples, 80131, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia PA, 19122, USA
| |
Collapse
|
32
|
Overexpression of p54 nrb/NONO induces differential EPHA6 splicing and contributes to castration-resistant prostate cancer growth. Oncotarget 2018. [PMID: 29535823 PMCID: PMC5828187 DOI: 10.18632/oncotarget.24063] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The non-POU domain-containing octamer binding protein p54nrb/NONO is a multifunctional nuclear protein involved in RNA splicing, processing, and transcriptional regulation of nuclear hormone receptors. Through chromosome copy number analysis via whole-exome sequencing, we revealed amplification of the chromosome Xq11.22-q21.33 locus containing the androgen receptor (AR) and NONO genes in androgen-independent, castration-resistant prostate cancer (CRPC)-like LNCaP-SF cells. Moreover, NONO was frequently amplified and overexpressed in patients with CRPC. RNA sequencing data revealed that a truncated ephrin type-A receptor 6 (EPHA6) splice variant (EPHA6-001) was overexpressed in LNCaP-SF cells, and knockdown of NONO or EPHA6-001 prevented EPHA6-001 expression and reduced proliferation and invasion by LNCaP-SF cells grown under androgen deprivation conditions. Growth inhibition and differential splicing of EPHA6 mRNA by p54nrb/NONO were confirmed in gene silencing experiments in 22Rv1 PCa cells. Importantly, NONO knockdown in LNCaP-SF cells led to reduced tumor growth in castrated mice. These findings indicate that p54nrb/NONO is amplified and overexpressed in CRPC cells and clinical samples, and facilitates CRPC growth by mediating aberrant EPHA6 splicing. We therefore propose that p54nrb/NONO constitutes a novel and attractive therapeutic target for CRPC.
Collapse
|
33
|
Sasahira T, Nishiguchi Y, Fujiwara R, Kurihara M, Kirita T, Bosserhoff AK, Kuniyasu H. Storkhead box 2 and melanoma inhibitory activity promote oral squamous cell carcinoma progression. Oncotarget 2018; 7:26751-64. [PMID: 27050375 PMCID: PMC5042012 DOI: 10.18632/oncotarget.8495] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/10/2016] [Indexed: 11/25/2022] Open
Abstract
Background Storkhead box protein 2 (STOX2) is a transcriptional factor associated with pre-eclampsia with fetal growth restriction. We recently reported that melanoma inhibitory activity (MIA) promotes oral squamous cell carcinoma (OSCC) progression. However, the relationship between STOX2 and MIA remains unknown in malignancies. Methods We used immunohistochemistry and PCR to investigate MIA and STOX2 expression in OSCC. We also performed functional analysis in human OSCC cells. Results MIA and STOX2 mRNA levels were higher in OSCCs than in normal oral epithelial cells, and upregulation of STOX2 was significantly correlated with overexpression of MIA. Immunostaining for STOX2 was associated with nodal metastasis (P = 0.0002) and MIA expression (P < 0.0001). Furthermore, MIA expression (P = 0.0035) and STOX2 expression (P = 0.0061) were associated with poor outcome in OSCCs. In vitro analysis using OSCC cells revealed that MIA increased expression of STOX2 by paracrine manner. Moreover, STOX2 accelerated OSCC cell growth, invasion, suppressed apoptosis, and enhanced resistance to paclitaxel, cisplatin, and 5-FU. Conclusions Our results suggest that MIA-STOX2 signaling may be a useful diagnostic and therapeutic target in OSCCs.
Collapse
Affiliation(s)
- Tomonori Sasahira
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Rina Fujiwara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Miyako Kurihara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan.,Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Anja Katrin Bosserhoff
- Institute for Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
34
|
Alfano L, Caporaso A, Altieri A, Costa C, Forte IM, Iannuzzi CA, Barone D, Esposito L, Giordano A, Pentimalli F. NONO ubiquitination is mediated by FBW7 and GSK3
β
via a degron lost upon chromosomal rearrangement in cancer. J Cell Physiol 2017; 233:4338-4344. [DOI: 10.1002/jcp.26269] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Luigi Alfano
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori “Fondazione G. Pascale”IRCCSNapoliItalia
| | - Antonella Caporaso
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
| | - Angela Altieri
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
| | - Caterina Costa
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori “Fondazione G. Pascale”IRCCSNapoliItalia
| | - Iris M. Forte
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori “Fondazione G. Pascale”IRCCSNapoliItalia
| | - Carmelina A. Iannuzzi
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori “Fondazione G. Pascale”IRCCSNapoliItalia
| | - Daniela Barone
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori “Fondazione G. Pascale”IRCCSNapoliItalia
| | - Luca Esposito
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori “Fondazione G. Pascale”IRCCSNapoliItalia
| | - Antonio Giordano
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori “Fondazione G. Pascale”IRCCSNapoliItalia
- Department of Medicine, Surgery and NeuroscienceUniversity of SienaSienaItaly
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and TechnologyTemple UniversityPhiladelphiaPennsylvania
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori “Fondazione G. Pascale”IRCCSNapoliItalia
| |
Collapse
|
35
|
Huang CJ, Das U, Xie W, Ducasse M, Tucker HO. Altered stoichiometry and nuclear delocalization of NonO and PSF promote cellular senescence. Aging (Albany NY) 2017; 8:3356-3374. [PMID: 27992859 PMCID: PMC5270673 DOI: 10.18632/aging.101125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/26/2016] [Indexed: 12/21/2022]
Abstract
While cellular senescence is a critical mechanism to prevent malignant transformation of potentially mutated cells, persistence of senescent cells can also promote cancer and aging phenotypes. NonO/p54nrb and PSF are multifunctional hnRNPs typically found as a complex exclusively within the nuclei of all mammalian cells. We demonstrate here that either increase or reduction of expression of either factor results in cellular senescence. Coincident with this, we observe expulsion of NonO and PSF-containing nuclear paraspeckles and posttranslational modification at G2/M. That senescence is mediated most robustly by overexpression of a cytoplasmic C-truncated form of NonO further indicated that translocation of NonO and PSF from the nucleus is critical to senescence induction. Modulation of NonO and PSF expression just prior to or coincident with senescence induction disrupts the normally heterodimeric NonO-PSF nuclear complex resulting in a dramatic shift in stoichiometry to heterotetramers and monomer with highest accumulation within the cytoplasm. This is accompanied by prototypic cell cycle checkpoint activation and chromatin condensation. These observations identify yet another role for these multifunctional factors and provide a hitherto unprecedented mechanism for cellular senescence and nuclear-cytoplasmic trafficking.
Collapse
Affiliation(s)
- Ching-Jung Huang
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Utsab Das
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Weijun Xie
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Miryam Ducasse
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| | - Haley O Tucker
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Department of Molecular Biosciences, Austin, TX 78712, USA
| |
Collapse
|
36
|
Jaafar L, Li Z, Li S, Dynan WS. SFPQ•NONO and XLF function separately and together to promote DNA double-strand break repair via canonical nonhomologous end joining. Nucleic Acids Res 2017; 45:1848-1859. [PMID: 27924002 PMCID: PMC5605232 DOI: 10.1093/nar/gkw1209] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/28/2016] [Indexed: 01/10/2023] Open
Abstract
A complex of two related mammalian proteins, SFPQ and NONO, promotes DNA double-strand break repair via the canonical nonhomologous end joining (c-NHEJ) pathway. However, its mechanism of action is not fully understood. Here we describe an improved SFPQ•NONO-dependent in vitro end joining assay. We use this system to demonstrate that the SFPQ•NONO complex substitutes in vitro for the core c-NHEJ factor, XLF. Results are consistent with a model where SFPQ•NONO promotes sequence-independent pairing of DNA substrates, albeit in a way that differs in detail from XLF. Although SFPQ•NONO and XLF function redundantly in vitro, shRNA-mediated knockdown experiments indicate that NONO and XLF are both required for efficient end joining and radioresistance in cell-based assays. In addition, knockdown of NONO sensitizes cells to the interstrand crosslinking agent, cisplatin, whereas knockdown of XLF does not, and indeed suppresses the effect of NONO deficiency. These findings suggest that each protein has one or more unique activities, in addition to the DNA pairing revealed in vitro, that contribute to DNA repair in the more complex cellular milieu. The SFPQ•NONO complex contains an RNA binding domain, and prior work has demonstrated diverse roles in RNA metabolism. It is thus plausible that the additional repair function of NONO, revealed in cell-based assays, could involve RNA interaction.
Collapse
Affiliation(s)
- Lahcen Jaafar
- Departments of Radiation Oncology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Zhentian Li
- Departments of Radiation Oncology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Shuyi Li
- Departments of Radiation Oncology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - William S Dynan
- Departments of Radiation Oncology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
37
|
Zhang XF, Cui X. Connexin 43: Key roles in the skin. Biomed Rep 2017; 6:605-611. [PMID: 28584630 DOI: 10.3892/br.2017.903] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/17/2017] [Indexed: 12/26/2022] Open
Abstract
Gap junctions are tightly packed intercellular channels that serve a common purpose of allowing the intercellular exchange of small metabolites, second messengers and electrical signals. Connexins (Cxs) are gap junction proteins. Currently, 20 and 21 members of Cxs have been characterized in mice and humans, respectively. Connexin 43 (Cx43) is the most ubiquitously expressed type of Cx in the skin. It is produced by various different types of skin cell, such as keratinocytes, fibroblasts, endothelial and basal cells, melanocytes and dermal papilla cells. At present, more evidence indicates that Cx43 has an important role in skin repair and skin tumor development, as well as in skin cell invasion and metastasis. In this review, current knowledge regarding the regulation and function of Cx43 is summarized and the therapeutic potential of regulating Cx43 activity is discussed.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- Department of Biological Sciences and Biotechnology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, P.R. China
| | - Xiaofeng Cui
- Department of Biological Sciences and Biotechnology, School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
38
|
Shen W, Liang XH, Sun H, De Hoyos CL, Crooke ST. Depletion of NEAT1 lncRNA attenuates nucleolar stress by releasing sequestered P54nrb and PSF to facilitate c-Myc translation. PLoS One 2017; 12:e0173494. [PMID: 28288210 PMCID: PMC5348036 DOI: 10.1371/journal.pone.0173494] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 02/21/2017] [Indexed: 12/03/2022] Open
Abstract
Altered expression of NEAT1, the architectural long non-coding RNA (lncRNA) of nuclear paraspeckles, has been reported during tumorigenesis, as well as under various cellular stress conditions. Here we report that the depletion of NEAT1 lncRNA alleviates nucleolar stress during RNAP I inhibition through releasing sequestered P54nrb and PSF to facilitate the IRES-dependent translation of c-Myc. RNAP I inhibitor CX5461 disrupts the SL1-rDNA interaction and induces nucleolar disruption, demonstrated by the accumulation of fibrillarin-containing nucleoplasmic foci and nucleolar clearance of ribosomal proteins in HeLa cells. Antisense oligonucleotide-mediated depletion of NEAT1 lncRNA significantly attenuated the RNAP I inhibition and its related nucleolar disruption. Interestingly, induction in the levels of c-Myc protein was observed in NEAT1-depeleted cells under RNAP I inhibition. NEAT1-associated paraspeckle proteins P54nrb and PSF have been reported as positive regulators of c-Myc translation through interaction with c-Myc IRES. Indeed, an increased association of P54nrb and PSF with c-Myc mRNA was observed in NEAT1-depleted cells. Moreover, apoptosis was observed in HeLa cells depleted of P54nrb and PSF, further confirming the positive involvement of P54nrb and PSF in cell proliferation. Together, our results suggest that NEAT1 depletion rescues CX5461-induced nucleolar stress through facilitating c-Myc translation by relocating P54nrb/PSF from nuclear paraspeckles to c-Myc mRNAs.
Collapse
Affiliation(s)
- Wen Shen
- Department of Core Antisense Research, IONIS Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA, United States of America
| | - Xue-hai Liang
- Department of Core Antisense Research, IONIS Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA, United States of America
| | - Hong Sun
- Department of Core Antisense Research, IONIS Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA, United States of America
| | - Cheryl L. De Hoyos
- Department of Core Antisense Research, IONIS Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA, United States of America
| | - Stanley T. Crooke
- Department of Core Antisense Research, IONIS Pharmaceuticals, Inc. 2855 Gazelle Court, Carlsbad, CA, United States of America
| |
Collapse
|
39
|
Li S, Shu FJ, Li Z, Jaafar L, Zhao S, Dynan WS. Cell-type specific role of the RNA-binding protein, NONO, in the DNA double-strand break response in the mouse testes. DNA Repair (Amst) 2017; 51:70-78. [PMID: 28209515 DOI: 10.1016/j.dnarep.2017.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/22/2016] [Accepted: 02/04/2017] [Indexed: 01/03/2023]
Abstract
The tandem RNA recognition motif protein, NONO, was previously identified as a candidate DNA double-strand break (DSB) repair factor in a biochemical screen for proteins with end-joining stimulatory activity. Subsequent work showed that NONO and its binding partner, SFPQ, have many of the properties expected for bona fide repair factors in cell-based assays. Their contribution to the DNA damage response in intact tissue in vivo has not, however, been demonstrated. Here we compare DNA damage sensitivity in the testes of wild-type mice versus mice bearing a null allele of the NONO homologue (Nono gt). In wild-type mice, NONO protein was present in Sertoli, peritubular myoid, and interstitial cells, with an increase in expression following induction of DNA damage. As expected for the product of an X-linked gene, NONO was not detected in germ cells. The Nono gt/0 mice had at most a mild testis developmental phenotype in the absence of genotoxic stress. However, following irradiation at sublethal, 2-4 Gy doses, Nono gt/0 mice displayed a number of indicators of radiosensitivity as compared to their wild-type counterparts. These included higher levels of persistent DSB repair foci, increased numbers of apoptotic cells in the seminiferous tubules, and partial degeneration of the blood-testis barrier. There was also an almost complete loss of germ cells at later times following irradiation, evidently arising as an indirect effect reflecting loss of stromal support. Results demonstrate a role for NONO protein in protection against direct and indirect biological effects of ionizing radiation in the whole animal.
Collapse
Affiliation(s)
- Shuyi Li
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA.
| | - Feng-Jue Shu
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Zhentian Li
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Lahcen Jaafar
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA
| | - Shourong Zhao
- Columbus Pathology,710 Center Street 101, Columbus, GA 31901, USA
| | - William S Dynan
- Departments of Biochemistry and Radiation Oncology, Emory University School of Medicine, 4127 Rollins Research Center,1510 Clifton Rd. NE, Atlanta, GA 30322, USA.
| |
Collapse
|
40
|
Ho TT, Huang J, Zhou N, Zhang Z, Koirala P, Zhou X, Wu F, Ding X, Mo YY. Regulation of PCGEM1 by p54/nrb in prostate cancer. Sci Rep 2016; 6:34529. [PMID: 27682980 PMCID: PMC5041109 DOI: 10.1038/srep34529] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 09/15/2016] [Indexed: 02/06/2023] Open
Abstract
PCGEM1 is a long non-coding RNA (lncRNA) that is often upregulated in prostate cancer. However, little is known how PCGEM1 is regulated. In the present study, we show transcriptional regulation of PCGEM1 in response to androgen deprivation by p54/nrb. While ectopic expression of p54/nrb increases, suppression of p54/nrb by RNAi or knockout (KO) reduces PCGEM1. Moreover, rescue experiments indicate that re-expression of p54/nrb in KO cells restores the ability to induce PCGEM1, leading to upregulation of the androgen receptor splice variant AR3 which has been shown to play a role in castration resistance. Finally, 3,3′-Diindolylmethane (DIM), a known chemoprevention agent, is capable of suppressing PCGEM1 expression by preventing the interaction of p54/nrb with the PCGEM1 promoter. In particular, DIM reduces tumor growth by suppression of PCGEM1 and promoting apoptosis in the castrated xenograft mouse model. Together, these results demonstrate a novel mechanism of p54/nrb-mediated expression of PCGEM1 and AR3, contributing to castration resistance in prostate cancer.
Collapse
Affiliation(s)
- Tsui-Ting Ho
- Department of Pharmacology and Toxicology, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Radiation Oncology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jianguo Huang
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Nanjiang Zhou
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,System Biosciences, Mountain View, CA, USA
| | - Ziqiang Zhang
- Department of Pulmonary Medicine, Tongji Hospital, Tongji University, Shanghai, China
| | - Pratirodh Koirala
- Department of Biochemistry, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Xinchun Zhou
- Department of Pathology, University of Mississippi Medical Center, Jackson, MS, USA
| | | | - Xianfeng Ding
- Department of Pharmacology and Toxicology, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA.,College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yin-Yuan Mo
- Department of Pharmacology and Toxicology, Cancer Institute, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
41
|
Lee AR, Hung W, Xie N, Liu L, He L, Dong X. Tyrosine Residues Regulate Multiple Nuclear Functions of P54nrb. J Cell Physiol 2016; 232:852-861. [PMID: 27430900 DOI: 10.1002/jcp.25493] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/18/2016] [Indexed: 11/10/2022]
Abstract
The non-POU-domain-containing octamer binding protein (NONO; also known as p54nrb) has various nuclear functions ranging from transcription, RNA splicing, DNA synthesis and repair. Although tyrosine phosphorylation has been proposed to account for the multi-functional properties of p54nrb, direct evidence on p54nrb as a phosphotyrosine protein remains unclear. To investigate the tyrosine phosphorylation status of p54nrb, we performed site-directed mutagenesis on the five tyrosine residues of p54nrb, replacing the tyrosine residues with phenylalanine or alanine, and immunoblotted for tyrosine phosphorylation. We then preceded with luciferase reporter assays, RNA splicing minigene assays, co-immunoprecipitation, and confocal microscopy to study the function of p54nrb tyrosine residues on transcription, RNA splicing, protein-protein interaction, and cellular localization. We found that p54nrb was not phosphorylated at tyrosine residues. Rather, it has non-specific binding affinity to anti-phosphotyrosine antibodies. However, replacement of tyrosine with phenylalanine altered p54nrb activities in transcription co-repression and RNA splicing in gene context-dependent fashions by means of differential regulation of p54nrb protein association with its interacting partners and co-regulators of transcription and splicing. These results demonstrate that tyrosine residues, regardless of phosphorylation status, are important for p54nrb function. J. Cell. Physiol. 232: 852-861, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ahn R Lee
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Wayne Hung
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Ning Xie
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Liangliang Liu
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada
| | - Leye He
- Department of Urology, Third Xiangya Hospital, Institute of Prostate Disease, Central South University, Changsha, China
| | - Xuesen Dong
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, Canada.,Department of Urology, Third Xiangya Hospital, Institute of Prostate Disease, Central South University, Changsha, China
| |
Collapse
|
42
|
Study on the expression of PAK4 and P54 protein in breast cancer. World J Surg Oncol 2016; 14:160. [PMID: 27297086 PMCID: PMC4906770 DOI: 10.1186/s12957-016-0913-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/09/2016] [Indexed: 01/28/2023] Open
Abstract
Background Previous evidence have demonstrated that p21-activated kinase PAK4 was correlated with breast cancer. The aim of this paper is to study the expression and interaction of p21-activated kinase (pAK)-4 and P54 protein in breast cancer. Methods A total of 80 patients were enrolled in our study (breast fibroma n = 20, breast noninvasive cancer n = 20, early breast invasive cancer n = 20, and advanced breast invasive cancer). The expression of PAK4 was detected by immunohistochemical S-P method, and the relationship between them and the different pathological characteristics were compared. The subcellular localization of P54 and PAK4 in vitro was observed by immunofluorescence assay. Results The expression of both PAK4 and P54 in breast cancer was much higher than that in breast fibroma. Meanwhile, we found that both PAK4 and P54 increased gradually as breast cancer progressed (advanced invasive > early invasive > noninvasive). The positive staining of P54 were mainly located in the cytoplasm, especially around the nucleus. There was no significant stained region in the cell matrix. The P54 localization in the cytoplasm was verified by confocal experiment, and the PAK4 was co-localized. Conclusions PAK4 and P54 proteins may be used as molecular markers for diagnosis and treatment of breast cancer.
Collapse
|
43
|
ZHANG XIUJUAN, WU CHANGLI, XIONG WEI, CHEN CHUNLING, LI RONG, ZHOU GUANGJI. Knockdown of p54nrb inhibits migration, invasion and TNF-α release of human acute monocytic leukemia THP1 cells. Oncol Rep 2016; 35:3742-8. [DOI: 10.3892/or.2016.4756] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/22/2016] [Indexed: 11/06/2022] Open
|
44
|
Knott GJ, Bond CS, Fox AH. The DBHS proteins SFPQ, NONO and PSPC1: a multipurpose molecular scaffold. Nucleic Acids Res 2016; 44:3989-4004. [PMID: 27084935 PMCID: PMC4872119 DOI: 10.1093/nar/gkw271] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/05/2016] [Indexed: 12/23/2022] Open
Abstract
Nuclear proteins are often given a concise title that captures their function, such as 'transcription factor,' 'polymerase' or 'nuclear-receptor.' However, for members of the Drosophila behavior/human splicing (DBHS) protein family, no such clean-cut title exists. DBHS proteins are frequently identified engaging in almost every step of gene regulation, including but not limited to, transcriptional regulation, RNA processing and transport, and DNA repair. Herein, we present a coherent picture of DBHS proteins, integrating recent structural insights on dimerization, nucleic acid binding modalities and oligomerization propensity with biological function. The emerging paradigm describes a family of dynamic proteins mediating a wide range of protein-protein and protein-nucleic acid interactions, on the whole acting as a multipurpose molecular scaffold. Overall, significant steps toward appreciating the role of DBHS proteins have been made, but we are only beginning to understand the complexity and broader importance of this family in cellular biology.
Collapse
Affiliation(s)
- Gavin J Knott
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Charles S Bond
- School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia
| | - Archa H Fox
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley, Western Australia, WA 6009, Australia Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| |
Collapse
|
45
|
Wang XT, Xia QY, Ni H, Wang ZY, Ye SB, Li R, Wang X, Lv JH, Shi SS, Ma HH, Lu ZF, Shen Q, Zhou XJ, Rao Q. Xp11 neoplasm with melanocytic differentiation of the prostate harbouring the novel NONO-TFE3 gene fusion: report of a unique case expanding the gene fusion spectrum. Histopathology 2016; 69:450-8. [PMID: 26844676 DOI: 10.1111/his.12949] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 12/16/2022]
Abstract
Recently, an increasing number of TFE3 rearrangement-associated tumours have been reported, such as TFE3 rearrangement-associated perivascular epithelioid cell tumours (PEComas), melanotic Xp11 translocation renal cancers and melanotic Xp11 neoplasms. We have suggested that these tumours belong to a single clinicopathological spectrum. 'Xp11 neoplasm with melanocytic differentiation' or 'melanotic Xp11 neoplasm' have been proposed to designate this unique neoplasm. Herein, we describe the first case of an Xp11 neoplasm with melanocytic differentiation to be described in the prostate, bearing the novel NONO-TFE3 gene fusion. This study both adds to the spectrum regarding melanotic Xp11 neoplasms and expands its gene fusion spectrum. Moreover, we discuss the relationship of these rare tumours to neoplasms such as conventional PEComas, alveolar soft part sarcomas, malignant melanomas, clear cell sarcomas and Xp11 translocation renal cancers.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China.,Department of Pathology, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiu-Yuan Xia
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Hao Ni
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China.,Department of Pathology, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zi-Yu Wang
- School of Basic Medical Sciences, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Sheng-Bing Ye
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Rui Li
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Xuan Wang
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Jing-Huan Lv
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Shan-Shan Shi
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Heng-Hui Ma
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Zhen-Feng Lu
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Qin Shen
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Xiao-Jun Zhou
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Qiu Rao
- Department of Pathology, Nanjing Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China.,Department of Pathology, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
46
|
Desai SS, Kharade SS, Parekh VI, Iyer S, Agarwal SK. Pro-oncogenic Roles of HLXB9 Protein in Insulinoma Cells through Interaction with Nono Protein and Down-regulation of the c-Met Inhibitor Cblb (Casitas B-lineage Lymphoma b). J Biol Chem 2015; 290:25595-608. [PMID: 26342078 DOI: 10.1074/jbc.m115.661413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Indexed: 12/21/2022] Open
Abstract
Pancreatic islet β-cells that lack the MEN1-encoded protein menin develop into tumors. Such tumors express the phosphorylated isoform of the β-cell differentiation transcription factor HLXB9. It is not known how phospho-HLXB9 acts as an oncogenic factor in insulin-secreting β-cell tumors (insulinomas). In this study we investigated the binding partners and target genes of phospho-HLXB9 in mouse insulinoma MIN6 β-cells. Co-immunoprecipitation coupled with mass spectrometry showed a significant association of phospho-HLXB9 with the survival factor p54nrb/Nono (54-kDa nuclear RNA-binding protein, non-POU-domain-containing octamer). Endogenous phospho-HLXB9 co-localized with endogenous Nono in the nucleus. Overexpression of HLXB9 decreased the level of overexpressed Nono but not endogenous Nono. Anti-phospho-HLXB9 chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) identified the c-Met inhibitor, Cblb, as a direct phospho-HLXB9 target gene. Phospho-HLXB9 occupied the promoter of Cblb and reduced the expression of Cblb mRNA. Cblb overexpression or HLXB9 knockdown decreased c-Met protein and reduced cell migration. Also, increased phospho-HLXB9 coincided with reduced Cblb and increased c-Met in insulinomas of two mouse models of menin loss. These data provide mechanistic insights into the role of phospho-HLXB9 as a pro-oncogenic factor by interacting with a survival factor and by promoting the oncogenic c-Met pathway. These mechanisms have therapeutic implications for reducing β-cell proliferation in insulinomas by inhibiting phospho-HLXB9 or its interaction with Nono and modulating the expression of its direct (Cblb) or indirect (c-Met) targets. Our data also implicate the use of pro-oncogenic activities of phospho-HLXB9 in β-cell expansion strategies to alleviate β-cell loss in diabetes.
Collapse
Affiliation(s)
- Shruti S Desai
- From the Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Sampada S Kharade
- From the Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Vaishali I Parekh
- From the Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Sucharitha Iyer
- From the Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Sunita K Agarwal
- From the Metabolic Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
47
|
Vavougios GD, Solenov EI, Hatzoglou C, Baturina GS, Katkova LE, Molyvdas PA, Gourgoulianis KI, Zarogiannis SG. Computational genomic analysis of PARK7 interactome reveals high BBS1 gene expression as a prognostic factor favoring survival in malignant pleural mesothelioma. Am J Physiol Lung Cell Mol Physiol 2015; 309:L677-86. [PMID: 26254420 DOI: 10.1152/ajplung.00051.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 08/03/2015] [Indexed: 01/04/2023] Open
Abstract
The aim of our study was to assess the differential gene expression of Parkinson protein 7 (PARK7) interactome in malignant pleural mesothelioma (MPM) using data mining techniques to identify novel candidate genes that may play a role in the pathogenicity of MPM. We constructed the PARK7 interactome using the ConsensusPathDB database. We then interrogated the Oncomine Cancer Microarray database using the Gordon Mesothelioma Study, for differential gene expression of the PARK7 interactome. In ConsensusPathDB, 38 protein interactors of PARK7 were identified. In the Gordon Mesothelioma Study, 34 of them were assessed out of which SUMO1, UBC3, KIAA0101, HDAC2, DAXX, RBBP4, BBS1, NONO, RBBP7, HTRA2, and STUB1 were significantly overexpressed whereas TRAF6 and MTA2 were significantly underexpressed in MPM patients (network 2). Furthermore, Kaplan-Meier analysis revealed that MPM patients with high BBS1 expression had a median overall survival of 16.5 vs. 8.7 mo of those that had low expression. For validation purposes, we performed a meta-analysis in Oncomine database in five sarcoma datasets. Eight network 2 genes (KIAA0101, HDAC2, SUMO1, RBBP4, NONO, RBBP7, HTRA2, and MTA2) were significantly differentially expressed in an array of 18 different sarcoma types. Finally, Gene Ontology annotation enrichment analysis revealed significant roles of the PARK7 interactome in NuRD, CHD, and SWI/SNF protein complexes. In conclusion, we identified 13 novel genes differentially expressed in MPM, never reported before. Among them, BBS1 emerged as a novel predictor of overall survival in MPM. Finally, we identified that PARK7 interactome is involved in novel pathways pertinent in MPM disease.
Collapse
Affiliation(s)
- Georgios D Vavougios
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Evgeniy I Solenov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia; and
| | - Chrissi Hatzoglou
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece; Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | - Galina S Baturina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Liubov E Katkova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Paschalis Adam Molyvdas
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| | | | - Sotirios G Zarogiannis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece; Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, Greece
| |
Collapse
|
48
|
Zhu Z, Zhao X, Zhao L, Yang H, Liu L, Li J, Wu J, Yang F, Huang G, Liu J. p54nrb/NONO regulates lipid metabolism and breast cancer growth through SREBP-1A. Oncogene 2015; 35:1399-410. [DOI: 10.1038/onc.2015.197] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/16/2015] [Accepted: 03/16/2015] [Indexed: 12/21/2022]
|
49
|
Chaoui A, Kavo A, Baral V, Watanabe Y, Lecerf L, Colley A, Mendoza-Londono R, Pingault V, Bondurand N. Subnuclear re-localization of SOX10 and p54NRB correlates with a unique neurological phenotype associated with SOX10 missense mutations. Hum Mol Genet 2015; 24:4933-47. [PMID: 26060192 DOI: 10.1093/hmg/ddv215] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/04/2015] [Indexed: 11/12/2022] Open
Abstract
SOX10 is a transcription factor with well-known functions in neural crest and oligodendrocyte development. Mutations in SOX10 were first associated with Waardenburg-Hirschsprung disease (WS4; deafness, pigmentation defects and intestinal aganglionosis). However, variable phenotypes that extend beyond the WS4 definition are now reported. The neurological phenotypes associated with some truncating mutations are suggested to be the result of escape from the nonsense-mediated mRNA decay pathway; but, to date, no mechanism has been suggested for missense mutations, of which approximately 20 have now been reported, with about half of the latter shown to be redistributed to nuclear bodies of undetermined nature and function in vitro. Here, we report that p54NRB, which plays a crucial role in the regulation of gene expression during many cellular processes including differentiation, interacts synergistically with SOX10 to regulate several target genes. Interestingly, this paraspeckle protein, as well as two other members of the Drosophila behavior human splicing (DBHS) protein family, co-localize with SOX10 mutants in nuclear bodies, suggesting the possible paraspeckle nature of these foci or re-localization of the DBHS members to other subnuclear compartments. Remarkably, the co-transfection of wild-type and mutant SOX10 constructs led to the sequestration of wild-type protein in mutant-induced foci. In contrast to mutants presenting with additional cytoplasmic re-localization, those exclusively found in the nucleus alter synergistic activity between SOX10 and p54NRB. We propose that such a dominant negative effect may contribute to or be at the origin of the unique progressive and severe neurological phenotype observed in affected patients.
Collapse
Affiliation(s)
- Asma Chaoui
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Anthula Kavo
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Viviane Baral
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Yuli Watanabe
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Laure Lecerf
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Alison Colley
- Department of Clinical Genetics, Liverpool Hospital, Australia and
| | - Roberto Mendoza-Londono
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children and University of Toronto, Toronto, Canada
| | - Veronique Pingault
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France
| | - Nadege Bondurand
- INSERM, U955, Equipe 6, 51 Avenue du Maréchal de Lattre de Tassigny, F-94000 Créteil, France, Université Paris-Est, UPEC, F-94000 Créteil, France, DHU Ageing-Thorax-Vessel-Blood, F-94000 Créteil, France,
| |
Collapse
|
50
|
Niebler S, Schubert T, Hunziker EB, Bosserhoff AK. Activating enhancer binding protein 2 epsilon (AP-2ε)-deficient mice exhibit increased matrix metalloproteinase 13 expression and progressive osteoarthritis development. Arthritis Res Ther 2015; 17:119. [PMID: 25964075 PMCID: PMC4453098 DOI: 10.1186/s13075-015-0648-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/05/2015] [Indexed: 01/15/2023] Open
Abstract
Introduction The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e−/−) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e−/− mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice. Methods Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e−/− mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels. Results Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e−/− mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e−/− cartilage explants. OA progression was significantly enhanced in the Tfap2e−/− mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e−/− articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT. Conclusions We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.
Collapse
Affiliation(s)
- Stephan Niebler
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse17, 91054, Erlangen, Germany. .,Institute of Pathology, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Thomas Schubert
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054, Erlangen, Germany.
| | - Ernst B Hunziker
- Department of Orthopedic Surgery, University Hospital of Bern, Murtenstrasse 35, 3010, Bern, Switzerland.
| | - Anja K Bosserhoff
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse17, 91054, Erlangen, Germany.
| |
Collapse
|