1
|
Solar M, Grayck MR, McCarthy WC, Zheng L, Lacayo OA, Sherlock LG, Zhou R, Orlicky DJ, Wright CJ. Absence of IκBβ/NFκB signaling does not attenuate acetaminophen-induced hepatic injury. Anat Rec (Hoboken) 2025; 308:1251-1264. [PMID: 36426684 PMCID: PMC10209348 DOI: 10.1002/ar.25126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
Acetaminophen (N-acetyl-p-aminophenol [APAP]) toxicity is a common cause of acute liver failure. Innate immune signaling and specifically NFκB activation play a complex role in mediating the hepatic response to toxic APAP exposures. While inflammatory innate immune responses contribute to APAP-induced injury, these same pathways play a role in regeneration and repair. Previous studies have shown that attenuating IκBβ/NFκB signaling downstream of TLR4 activation can limit injury, but whether this pathway contributes to APAP-induced hepatic injury is unknown. We hypothesized that the absence of IκBβ/NFκB signaling in the setting of toxic APAP exposure would attenuate APAP-induced hepatic injury. To test this, we exposed adult male WT and IκBβ-/- mice to APAP (280 mg/kg, IP) and evaluated liver histology at early (2-24 hr) and late (48-72 hr) time points. Furthermore, we interrogated the hepatic expression of NFκB inflammatory (Cxcl1, Tnf, Il1b, Il6, Ptgs2, and Ccl2), anti-inflammatory (Il10, Tnfaip3, and Nfkbia), and Nrf2/antioxidant (Gclc, Hmox, and Nqo1) target genes previously demonstrated to play a role in APAP-induced injury. Conflicting with our hypothesis, we found that hepatic injury was similar in WT and IκBβ-/- mice. Acutely, the induced expression of some target genes was similar in WT and IκBβ-/- mice (Tnfaip3, Nfkbia, and Gclc), while others were either not induced (Cxcl1, Tnf, Ptgs2, and Il10) or significantly attenuated (Ccl2) in IκBβ-/- mice. At later time points, APAP-induced hepatic expression of Il1b, Il6, and Gclc was significantly attenuated in IκBβ-/- mice. Based on these findings, the therapeutic potential of targeting IκBβ/NFκB signaling to treat toxic APAP-induced hepatic injury is likely limited.
Collapse
Affiliation(s)
- Mack Solar
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Maya R. Grayck
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - William C. McCarthy
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Lijun Zheng
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Oscar A. Lacayo
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Laura G. Sherlock
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Ruby Zhou
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - David J. Orlicky
- Dept of Pathology, University of Colorado Anschutz School of Medicine, Aurora, CO
| | - Clyde J. Wright
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| |
Collapse
|
2
|
English J, Son JM, Cardamone MD, Lee C, Perissi V. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res 2020; 161:105161. [PMID: 32846213 PMCID: PMC7755734 DOI: 10.1016/j.phrs.2020.105161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02115, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Valentina Perissi
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Chowdhury AR, Zielonka J, Kalyanaraman B, Hartley RC, Murphy MP, Avadhani NG. Mitochondria-targeted paraquat and metformin mediate ROS production to induce multiple pathways of retrograde signaling: A dose-dependent phenomenon. Redox Biol 2020; 36:101606. [PMID: 32604037 PMCID: PMC7327929 DOI: 10.1016/j.redox.2020.101606] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 01/12/2023] Open
Abstract
The mitochondrial electron transport chain is a major source of reactive oxygen species (ROS) and is also a target of ROS, with an implied role in the stabilization of hypoxia-inducible factor (HIF) and induction of the AMPK pathway. Here we used varying doses of two agents, Mito-Paraquat and Mito-Metformin, that have been conjugated to cationic triphenylphosphonium (TPP+) moiety to selectively target them to the mitochondrial matrix compartment, thereby resulting in the site-specific generation of ROS within mitochondria. These agents primarily induce superoxide (O2•-) production by acting on complex I. In Raw264.7 macrophages, C2C12 skeletal myocytes, and HCT116 adenocarcinoma cells, we show that mitochondria-targeted oxidants can induce ROS (O2•- and H2O2). In all three cell lines tested, the mitochondria-targeted agents disrupted membrane potential and activated calcineurin and the Cn-dependent retrograde signaling pathway. Hypoxic culture conditions also induced Cn activation and HIF1α activation in a temporally regulated manner, with the former appearing at shorter exposure times. Together, our results indicate that mitochondrial oxidant-induced retrograde signaling is driven by disruption of membrane potential and activation of Ca2+/Cn pathway and is independent of ROS-induced HIF1α or AMPK pathways.
Collapse
Affiliation(s)
- Anindya Roy Chowdhury
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Michael P Murphy
- MRC-Mitochondrial Biology Unit, University of Cambridge, Hills Road, Cambridge, CB2 OXY, UK
| | - Narayan G Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Urooj T, Wasim B, Mushtaq S, Shah SNN, Shah M. Cancer Cell-derived Secretory Factors in Breast Cancer-associated Lung Metastasis: Their Mechanism and Future Prospects. Curr Cancer Drug Targets 2020; 20:168-186. [PMID: 31858911 PMCID: PMC7516334 DOI: 10.2174/1568009620666191220151856] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
In Breast cancer, Lung is the second most common site of metastasis after the bone. Various factors are responsible for Lung metastasis occurring secondary to Breast cancer. Cancer cellderived secretory factors are commonly known as 'Cancer Secretomes'. They exhibit a prompt role in the mechanism of Breast cancer lung metastasis. They are also major constituents of hostassociated tumor microenvironment. Through cross-talk between cancer cells and the extracellular matrix components, cancer cell-derived extracellular matrix components (CCECs) such as hyaluronan, collagens, laminin and fibronectin cause ECM remodeling at the primary site (breast) of cancer. However, at the secondary site (lung), tenascin C, periostin and lysyl oxidase, along with pro-metastatic molecules Coco and GALNT14, contribute to the formation of pre-metastatic niche (PMN) by promoting ECM remodeling and lung metastatic cells colonization. Cancer cell-derived secretory factors by inducing cancer cell proliferation at the primary site, their invasion through the tissues and vessels and early colonization of metastatic cells in the PMN, potentiate the mechanism of Lung metastasis in Breast cancer. On the basis of biochemical structure, these secretory factors are broadly classified into proteins and non-proteins. This is the first review that has highlighted the role of cancer cell-derived secretory factors in Breast cancer Lung metastasis (BCLM). It also enumerates various researches that have been conducted to date in breast cancer cell lines and animal models that depict the prompt role of various types of cancer cell-derived secretory factors involved in the process of Breast cancer lung metastasis. In the future, by therapeutically targeting these cancer driven molecules, this specific type of organ-tropic metastasis in breast cancer can be successfully treated.
Collapse
Affiliation(s)
- Tabinda Urooj
- Anatomy Department, Ziauddin University, Clifton Karachi, Sindh, Pakistan
| | - Bushra Wasim
- Anatomy Department, Ziauddin University, Clifton Karachi, Sindh, Pakistan
| | - Shamim Mushtaq
- Biochemistry Department, Ziauddin University, Clifton Karachi, Sindh, Pakistan
| | | | - Muzna Shah
- Anatomy Department, Ziauddin University, Clifton Karachi, Sindh, Pakistan
| |
Collapse
|
5
|
Guha M, Srinivasan S, Johnson FB, Ruthel G, Guja K, Garcia-Diaz M, Kaufman BA, Glineburg MR, Fang J, Nakagawa H, Basha J, Kundu T, Avadhani NG. hnRNPA2 mediated acetylation reduces telomere length in response to mitochondrial dysfunction. PLoS One 2018; 13:e0206897. [PMID: 30427907 PMCID: PMC6241121 DOI: 10.1371/journal.pone.0206897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 10/22/2018] [Indexed: 11/19/2022] Open
Abstract
Telomeres protect against chromosomal damage. Accelerated telomere loss has been associated with premature aging syndromes such as Werner's syndrome and Dyskeratosis Congenita, while, progressive telomere loss activates a DNA damage response leading to chromosomal instability, typically observed in cancer cells and senescent cells. Therefore, identifying mechanisms of telomere length maintenance is critical for understanding human pathologies. In this paper we demonstrate that mitochondrial dysfunction plays a causal role in telomere shortening. Furthermore, hnRNPA2, a mitochondrial stress responsive lysine acetyltransferase (KAT) acetylates telomere histone H4at lysine 8 of (H4K8) and this acetylation is associated with telomere attrition. Cells containing dysfunctional mitochondria have higher telomere H4K8 acetylation and shorter telomeres independent of cell proliferation rates. Ectopic expression of KAT mutant hnRNPA2 rescued telomere length possibly due to impaired H4K8 acetylation coupled with inability to activate telomerase expression. The phenotypic outcome of telomere shortening in immortalized cells included chromosomal instability (end-fusions) and telomerase activation, typical of an oncogenic transformation; while in non-telomerase expressing fibroblasts, mitochondrial dysfunction induced-telomere attrition resulted in senescence. Our findings provide a mechanistic association between dysfunctional mitochondria and telomere loss and therefore describe a novel epigenetic signal for telomere length maintenance.
Collapse
Affiliation(s)
- Manti Guha
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Satish Srinivasan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - F. Bradley Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Gordon Ruthel
- Penn Vet Imaging Core, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Kip Guja
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States of America
| | - Brett A. Kaufman
- Vascular Medicine Institute, University of Pittsburg, Pittsburgh, PA United States of America
| | - M. Rebecca Glineburg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - JiKang Fang
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Hiroshi Nakagawa
- Department of Gastroenterology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Jeelan Basha
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Tapas Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Narayan G. Avadhani
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
- * E-mail:
| |
Collapse
|
6
|
Wei Y, Chen L, Xu H, Xie C, Zhou Y, Zhou F. Mitochondrial Dysfunctions Regulated Radioresistance through Mitochondria-to-Nucleus Retrograde Signaling Pathway of NF-κB/PI3K/AKT2/mTOR. Radiat Res 2018; 190:204-215. [PMID: 29863983 DOI: 10.1667/rr15021.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We investigated the relationship between significantly different genes of the mitochondria-to-nucleus retrograde signaling pathway (RTG) in H1299 ρ0 cells (mtDNA depleted cell) and compared their radiosensitivity to that of parental ρ+ cells, to determine the possible intervention targets of radiosensitization. ρ0 cells were depleted of mitochondrial DNA by chronic culturing in ethidium bromide at low concentration. Radiosensitivity was analyzed using clonogenic assay. Western blot was used to analyze the cell cycle-related proteins, serine/threonine kinase ataxia telangiectasia mutant (ATM), ataxia telangiectasia and Rad3-related protein (ATR) and cyclin B1 (CCNB1). The γ-H2AX foci were detected using confocal fluorescence microscopy. RNA samples were hybridized using the Agilent human genome expression microarray. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used for Gene Ontology (GO) Consortium and pathway annotations of differentially expressed genes, respectively. The H1299 ρ0 cells were found to be more radioresistant than ρ+ cells. The ATP production of H1299 ρ0 cells was lower than that of the ρ+ cells before or after irradiation. Both H1299 ρ0 and ρ+ cells had higher ROS levels after irradiation, however, the radiation-induced ROS production in ρ0 cells was significantly lower than in ρ+ cells. In addition, the percentage of apoptosis in H1299 ρ0 cells was lower than in ρ+ cells after 6 Gy irradiation. As for the cell cycle and DNA damage response-related proteins ATM, ATR and CCNB1, the expression levels in ρ0 cells were significantly higher than in ρ+ cells, and there were less γ-H2AX foci in the ρ0 than ρ+ cells after irradiation. Furthermore, the results of the human genome expression microarray demonstrated that the phosphorylated protein levels of the NF-κB/PI3K/AKT2/mTOR signaling pathway were increased after 6 Gy irradiation and were decreased after treatment with the AKT2-specific inhibitor MK-2206 combined with radiation in H1299 ρ0 cells. MK-2206 treatment also led to an increase in pro-apoptotic proteins. In conclusion, these results demonstrate that mtDNA depletion might activate the mitochondria-to-nucleus retrograde signaling pathway of NF-κB/PI3K/AKT2/mTOR and induce radioresistance in H1299 ρ0 cells by evoking mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Yuehua Wei
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,d Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lulu Chen
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,d Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hui Xu
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Conghua Xie
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yunfeng Zhou
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Fuxiang Zhou
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
7
|
Simulation of Cellular Energy Restriction in Quiescence (ERiQ)-A Theoretical Model for Aging. BIOLOGY 2017; 6:biology6040044. [PMID: 29231906 PMCID: PMC5745449 DOI: 10.3390/biology6040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/08/2017] [Accepted: 12/09/2017] [Indexed: 02/07/2023]
Abstract
Cellular responses to energy stress involve activation of pro-survival signaling nodes, compensation in regulatory pathways and adaptations in organelle function. Specifically, energy restriction in quiescent cells (ERiQ) through energetic perturbations causes adaptive changes in response to reduced ATP, NAD+ and NADP levels in a regulatory network spanned by AKT, NF-κB, p53 and mTOR. Based on the experimental ERiQ platform, we have constructed a minimalistic theoretical model consisting of feedback motifs that enable investigation of stress-signaling pathways. The computer simulations reveal responses to acute energetic perturbations, promoting cellular survival and recovery to homeostasis. We speculated that the very same stress mechanisms are activated during aging in post-mitotic cells. To test this hypothesis, we modified the model to be deficient in protein damage clearance and demonstrate the formation of energy stress. Contrasting the network’s pro-survival role in acute energetic challenges, conflicting responses in aging disrupt mitochondrial maintenance and contribute to a lockstep progression of decline when chronically activated. The model was analyzed by a local sensitivity analysis with respect to lifespan and makes predictions consistent with inhibitory and gain-of-function experiments in aging.
Collapse
|
8
|
Srinivasan S, Guha M, Kashina A, Avadhani NG. Mitochondrial dysfunction and mitochondrial dynamics-The cancer connection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:602-614. [PMID: 28104365 DOI: 10.1016/j.bbabio.2017.01.004] [Citation(s) in RCA: 286] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 02/07/2023]
Abstract
Mitochondrial dysfunction is a hallmark of many diseases. The retrograde signaling initiated by dysfunctional mitochondria can bring about global changes in gene expression that alters cell morphology and function. Typically, this is attributed to disruption of important mitochondrial functions, such as ATP production, integration of metabolism, calcium homeostasis and regulation of apoptosis. Recent studies showed that in addition to these factors, mitochondrial dynamics might play an important role in stress signaling. Normal mitochondria are highly dynamic organelles whose size, shape and network are controlled by cell physiology. Defective mitochondrial dynamics play important roles in human diseases. Mitochondrial DNA defects and defective mitochondrial function have been reported in many cancers. Recent studies show that increased mitochondrial fission is a pro-tumorigenic phenotype. In this paper, we have explored the current understanding of the role of mitochondrial dynamics in pathologies. We present new data on mitochondrial dynamics and dysfunction to illustrate a causal link between mitochondrial DNA defects, excessive fission, mitochondrial retrograde signaling and cancer progression. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux.
Collapse
Affiliation(s)
- Satish Srinivasan
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States
| | - Manti Guha
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States
| | - Anna Kashina
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States
| | - Narayan G Avadhani
- The Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, #189E, Philadelphia, PA 19104, United States.
| |
Collapse
|
9
|
HnRNPA2 is a novel histone acetyltransferase that mediates mitochondrial stress-induced nuclear gene expression. Cell Discov 2016; 2:16045. [PMID: 27990297 PMCID: PMC5148442 DOI: 10.1038/celldisc.2016.45] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022] Open
Abstract
Reduced mitochondrial DNA copy number, mitochondrial DNA mutations or disruption of
electron transfer chain complexes induce mitochondria-to-nucleus retrograde signaling,
which induces global change in nuclear gene expression ultimately contributing to various
human pathologies including cancer. Recent studies suggest that these mitochondrial
changes cause transcriptional reprogramming of nuclear genes although the mechanism of
this cross talk remains unclear. Here, we provide evidence that mitochondria-to-nucleus
retrograde signaling regulates chromatin acetylation and alters nuclear gene expression
through the heterogeneous ribonucleoprotein A2 (hnRNAP2). These processes are reversed
when mitochondrial DNA content is restored to near normal cell levels. We show that the
mitochondrial stress-induced transcription coactivator hnRNAP2 acetylates Lys 8 of H4
through an intrinsic histone lysine acetyltransferase (KAT) activity with Arg 48 and Arg
50 of hnRNAP2 being essential for acetyl-CoA binding and acetyltransferase activity. H4K8
acetylation at the mitochondrial stress-responsive promoters by hnRNAP2 is essential for
transcriptional activation. We found that the previously described mitochondria-to-nucleus
retrograde signaling-mediated transformation of C2C12 cells caused an increased expression
of genes involved in various oncogenic processes, which is retarded in hnRNAP2 silenced or
hnRNAP2 KAT mutant cells. Taken together, these data show that altered gene expression by
mitochondria-to-nucleus retrograde signaling involves a novel hnRNAP2-dependent epigenetic
mechanism that may have a role in cancer and other pathologies.
Collapse
|
10
|
Spotlight on the relevance of mtDNA in cancer. Clin Transl Oncol 2016; 19:409-418. [PMID: 27778302 DOI: 10.1007/s12094-016-1561-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/06/2016] [Indexed: 02/06/2023]
Abstract
The potential role of the mitochondrial genome has recently attracted interest because of its high mutation frequency in tumors. Different aspects of mtDNA make it relevant for cancer's biology, such as it encodes a limited but essential number of genes for OXPHOS biogenesis, it is particularly susceptible to mutations, and its copy number can vary. Moreover, most ROS in mitochondria are produced by the electron transport chain. These characteristics place the mtDNA in the center of multiple signaling pathways, known as mitochondrial retrograde signaling, which modifies numerous key processes in cancer. Cybrid studies support that mtDNA mutations are relevant and exert their effect through a modification of OXPHOS function and ROS production. However, there is still much controversy regarding the clinical relevance of mtDNA mutations. New studies should focus more on OXPHOS dysfunction associated with a specific mutational signature rather than the presence of mutations in the mtDNA.
Collapse
|
11
|
Chowdhury AR, Long A, Fuchs SY, Rustgi A, Avadhani NG. Mitochondrial stress-induced p53 attenuates HIF-1α activity by physical association and enhanced ubiquitination. Oncogene 2016; 36:397-409. [PMID: 27345397 PMCID: PMC5192009 DOI: 10.1038/onc.2016.211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 03/22/2016] [Accepted: 04/26/2016] [Indexed: 12/17/2022]
Abstract
Retrograde signaling is a mechanism by which mitochondrial dysfunction is communicated to the nucleus for inducing a metabolic shift essential for cell survival. Previously we showed that partial mtDNA depletion in different cell types induced mitochondrial retrograde signaling pathway (MtRS) involving Ca+2 sensitive Calcineurin (Cn) activation as an immediate upstream event of stress response. In multiple cell types, this stress signaling was shown to induce tumorigenic phenotypes in immortalized cells. In this study we show that MtRS also induces p53 expression which was abrogated by Ca2+ chelators and shRNA mediated knock down of CnAβ mRNA. Mitochondrial dysfunction induced by mitochondrial ionophore, carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and other respiratory inhibitors, which perturb the transmembrane potential, were equally efficient in inducing the expression of p53 and downregulation of MDM2. Stress-induced p53 physically interacted with HIF-1α and attenuated the latter’s binding to promoter DNA motifs. Additionally, p53 promoted ubiquitination and degradation of HIF-1α in partial mtDNA depleted cells. The mtDNA depleted cells, with inhibited HIF-1α, showed upregulation of glycolytic pathway genes, glucose transporter 1–4 (Glut1–4), phosphoglycerate kinase 1 (PGK1) and Glucokinase (GSK) but not of prolyl hydroxylase (PHD) isoforms. For the first time we show that p53 is induced as part of MtRS and it renders HIF-1α inactive by physical interaction. In this respect our results show that MtRS induces tumor growth independent of HIF-1α pathway.
Collapse
Affiliation(s)
- A Roy Chowdhury
- Department of Biomedical Sciences and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Long
- Division of Gastroenterology, Department of Medicine and Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - S Y Fuchs
- Department of Biomedical Sciences and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Rustgi
- Division of Gastroenterology, Department of Medicine and Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - N G Avadhani
- Department of Biomedical Sciences and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Szumiel I. From radioresistance to radiosensitivity: In vitro evolution of L5178Y lymphoma. Int J Radiat Biol 2015; 91:465-71. [PMID: 25651039 DOI: 10.3109/09553002.2014.996263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE To discuss the possible reasons for the loss of tumourigenicity and the acquisition of new phenotypic features (among them, sensitivity to X and UVC radiations) as a result of in vitro cultivation of L5178Y lymphoma cells. RESULTS Ten years ago the phenotypic differences between LY-R (original L5178Y maintained in vivo and examined in vitro) and LY-S lines were reviewed in detail by the author. The loss of tumourigenicity of LY-R cells upon in vitro cultivation accompanying the acquirement of the LY-S phenotype had been described earlier by Beer et al. (1983). In spite of their common origin, the sublines were shown to differ in their relative sensitivity to a number of DNA damaging agents and in numerous other features. Here, selected differences between LY-R and LY-S lines are briefly reviewed. It is proposed that Wallace's concept (2010a) that mitochondria are the interface between environmental conditions and the genome may explain the LY-R-LY-S conversion under prolonged in vitro cultivation. CONCLUSION The differences between the LY lines were probably of epigenetic rather than genetic character. The properties of LY-R cells changed as a result of exposure to an oxic in vitro milieu. The changes could be preconditioned by heteroplasmy and the selection of cells endowed with mitochondria best fitted to a high oxygen-low carbon dioxide environment.
Collapse
Affiliation(s)
- Irena Szumiel
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology , Warsaw , Poland
| |
Collapse
|
13
|
Mitochondrial dysfunction in cancer chemoresistance. Biochem Pharmacol 2014; 92:62-72. [DOI: 10.1016/j.bcp.2014.07.027] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/19/2022]
|
14
|
Arbini AA, Guerra F, Greco M, Marra E, Gandee L, Xiao G, Lotan Y, Gasparre G, Hsieh JT, Moro L. Mitochondrial DNA depletion sensitizes cancer cells to PARP inhibitors by translational and post-translational repression of BRCA2. Oncogenesis 2013; 2:e82. [PMID: 24336406 PMCID: PMC3940862 DOI: 10.1038/oncsis.2013.45] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 09/25/2013] [Accepted: 10/29/2013] [Indexed: 12/15/2022] Open
Abstract
Previous studies have shown that pharmacologic inhibition of poly (ADP-ribose) polymerase (PARP), a nuclear protein that is crucial in signaling single-strand DNA breaks, is synthetically lethal to cancer cells from patients with genetic deficiency in the DNA repair proteins BRCA1 and BRCA2. Herein, we demonstrate that depletion of the mitochondrial genome (mtDNA) in breast, prostate and thyroid transformed cells resulted in elevated steady-state cytosolic calcium concentration and activation of calcineurin/PI3-kinase/AKT signaling leading to upregulation of miR-1245 and the ubiquitin ligase Skp2, two potent negative regulators of the tumor suppressor protein BRCA2, thus resulting in BRCA2 protein depletion, severe reduction in homologous recombination (HR) and increased sensitivity to the PARP inhibitor rucaparib. Treatment of mtDNA-depleted cells with the PI3-kinase inhibitor LY294002, the calmodulin antagonist W-7, the calcineurin inhibitor FK506, the calcium chelator BAPTA-AM, or suppression of AKT activity by AKT small-interfering RNA (siRNA) enhanced BRCA2 protein levels as well as HR. Decreasing the intracellular calcium levels using BAPTA, or direct reconstitution of BRCA2 protein levels either by recombinant expression or by small molecule inhibition of both Skp2 and miR-1245 restored sensitivity to rucaparib to wild-type levels. Furthermore, by studying prostate tissue specimens from prostate carcinoma patients we found a direct correlation between the presence of mtDNA large deletions and loss of BRCA2 protein in vivo, suggesting that mtDNA status may serve as a marker to predict therapeutic efficacy to PARP inhibitors. In summary, our results uncover a novel mechanism by which mtDNA depletion restrains HR, and highlight the role of mtDNA in regulating sensitivity to PARP inhibitors in transformed cells.
Collapse
Affiliation(s)
- A A Arbini
- Department of Pathology, New York University Medical Center, New York, NY, USA
| | - F Guerra
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - M Greco
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - E Marra
- Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy
| | - L Gandee
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - G Xiao
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Y Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - G Gasparre
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - J-T Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - L Moro
- 1] Department of Pathology, New York University Medical Center, New York, NY, USA [2] Institute of Biomembranes and Bioenergetics, National Research Council, Bari, Italy [3] Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
15
|
Guaragnella N, Ždralević M, Lattanzio P, Marzulli D, Pracheil T, Liu Z, Passarella S, Marra E, Giannattasio S. Yeast growth in raffinose results in resistance to acetic-acid induced programmed cell death mostly due to the activation of the mitochondrial retrograde pathway. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2765-2774. [PMID: 23906793 DOI: 10.1016/j.bbamcr.2013.07.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/27/2013] [Accepted: 07/19/2013] [Indexed: 12/22/2022]
Abstract
In order to investigate whether and how a modification of mitochondrial metabolism can affect yeast sensitivity to programmed cell death (PCD) induced by acetic acid (AA-PCD), yeast cells were grown on raffinose, as a sole carbon source, which, differently from glucose, favours mitochondrial respiration. We found that, differently from glucose-grown cells, raffinose-grown cells were mostly resistant to AA-PCD and that this was due to the activation of mitochondrial retrograde (RTG) response, which increased with time, as revealed by the up-regulation of the peroxisomal isoform of citrate synthase and isocitrate dehydrogenase isoform 1, RTG pathway target genes. Accordingly, the deletion of RTG2 and RTG3, a positive regulator and a transcription factor of the RTG pathway, resulted in AA-PCD, as shown by TUNEL assay. Neither deletion in raffinose-grown cells of HAP4, encoding the positive regulatory subunit of the Hap2,3,4,5 complex nor constitutive activation of the RTG pathway in glucose-grown cells due to deletion of MKS1, a negative regulator of RTG pathway, had effect on yeast AA-PCD. The RTG pathway was found to be activated in yeast cells containing mitochondria, in which membrane potential was measured, capable to consume oxygen in a manner stimulated by the uncoupler CCCP and inhibited by the respiratory chain inhibitor antimycin A. AA-PCD resistance in raffinose-grown cells occurs with a decrease in both ROS production and cytochrome c release as compared to glucose-grown cells en route to AA-PCD.
Collapse
Affiliation(s)
| | - Maša Ždralević
- CNR, Istituto di Biomembrane e Bioenergetica, Via Amendola 165/a, 70126 Bari, Italy
| | - Paolo Lattanzio
- CNR, Istituto di Biomembrane e Bioenergetica, Via Amendola 165/a, 70126 Bari, Italy
| | - Domenico Marzulli
- CNR, Istituto di Biomembrane e Bioenergetica, Via Amendola 165/a, 70126 Bari, Italy
| | - Tammy Pracheil
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Salvatore Passarella
- Dipartimento di Medicina e Scienze per la Salute, Università del Molise, Via de Sanctis, 86100 Campobasso, Italy
| | - Ersilia Marra
- CNR, Istituto di Biomembrane e Bioenergetica, Via Amendola 165/a, 70126 Bari, Italy
| | - Sergio Giannattasio
- CNR, Istituto di Biomembrane e Bioenergetica, Via Amendola 165/a, 70126 Bari, Italy.
| |
Collapse
|
16
|
Guha M, Srinivasan S, Ruthel G, Kashina AK, Carstens RP, Mendoza A, Khanna C, Van Winkle T, Avadhani NG. Mitochondrial retrograde signaling induces epithelial-mesenchymal transition and generates breast cancer stem cells. Oncogene 2013; 33:5238-50. [PMID: 24186204 DOI: 10.1038/onc.2013.467] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/23/2013] [Accepted: 09/13/2013] [Indexed: 12/14/2022]
Abstract
Metastatic breast tumors undergo epithelial-to-mesenchymal transition (EMT), which renders them resistant to therapies targeted to the primary cancers. The mechanistic link between mtDNA (mitochondrial DNA) reduction, often seen in breast cancer patients, and EMT is unknown. We demonstrate that reducing mtDNA content in human mammary epithelial cells (hMECs) activates Calcineurin (Cn)-dependent mitochondrial retrograde signaling pathway, which induces EMT-like reprogramming to fibroblastic morphology, loss of cell polarity, contact inhibition and acquired migratory and invasive phenotype. Notably, mtDNA reduction generates breast cancer stem cells. In addition to retrograde signaling markers, there is an induction of mesenchymal genes but loss of epithelial markers in these cells. The changes are reversed by either restoring the mtDNA content or knockdown of CnAα mRNA, indicating the causal role of retrograde signaling in EMT. Our results point to a new therapeutic strategy for metastatic breast cancers targeted to the mitochondrial retrograde signaling pathway for abrogating EMT and attenuating cancer stem cells, which evade conventional therapies. We report a novel regulatory mechanism by which low mtDNA content generates EMT and cancer stem cells in hMECs.
Collapse
Affiliation(s)
- M Guha
- Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, Philadelphia, PA, USA
| | - S Srinivasan
- Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, Philadelphia, PA, USA
| | - G Ruthel
- Penn Vet Imaging Core, School of Veterinary Medicine, Philadelphia, PA, USA
| | - A K Kashina
- Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, Philadelphia, PA, USA
| | - R P Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Mendoza
- Tumor and Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - C Khanna
- Tumor and Metastasis Biology Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - T Van Winkle
- Department of Pathobiology, School of Veterinary Medicine, Philadelphia, PA, USA
| | - N G Avadhani
- Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
17
|
Guaragnella N, Palermo V, Galli A, Moro L, Mazzoni C, Giannattasio S. The expanding role of yeast in cancer research and diagnosis: insights into the function of the oncosuppressors p53 and BRCA1/2. FEMS Yeast Res 2013; 14:2-16. [PMID: 24103154 DOI: 10.1111/1567-1364.12094] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/26/2013] [Accepted: 09/12/2013] [Indexed: 12/16/2022] Open
Abstract
When the glucose supply is high, despite the presence of oxygen, Saccharomyces cerevisiae uses fermentation as its main metabolic pathway and switches to oxidative metabolism only when this carbon source is limited. There are similarities between glucose-induced repression of oxidative metabolism of yeast and metabolic reprogramming of tumor cells. The glucose-induced repression of oxidative metabolism is regulated by oncogene homologues in yeast, such as RAS and Sch9p, the yeast homologue of Akt. Yeast also undergoes an apoptosis-like programmed cell death process sharing several features with mammalian apoptosis, including oxidative stress and a major role played by mitochondria. Evasion of apoptosis and sustained proliferative signaling are hallmarks of cancer. This, together with the possibility of heterologous expression of human genes in yeast, has allowed new insights to be obtained into the function of mammalian oncogenes/oncosuppressors. Here, we elaborate on the similarities between tumor and yeast cells underpinning the use of this model organism in cancer research. We also review the achievements obtained through heterologous expression in yeast of p53, BRCA1, and BRCA2, which are among the best-known cancer-susceptibility genes, with the aim of understanding their role in tumorigenesis. Yeast-cell-based functional assays for cancer genetic testing will also be dealt with.
Collapse
|
18
|
Guha M, Avadhani NG. Mitochondrial retrograde signaling at the crossroads of tumor bioenergetics, genetics and epigenetics. Mitochondrion 2013; 13:577-91. [PMID: 24004957 DOI: 10.1016/j.mito.2013.08.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 08/20/2013] [Accepted: 08/27/2013] [Indexed: 12/25/2022]
Abstract
Mitochondria play a central role not only in energy production but also in the integration of metabolic pathways as well as signals for apoptosis and autophagy. It is becoming increasingly apparent that mitochondria in mammalian cells play critical roles in the initiation and propagation of various signaling cascades. In particular, mitochondrial metabolic and respiratory states and status on mitochondrial genetic instability are communicated to the nucleus as an adaptive response through retrograde signaling. Each mammalian cell contains multiple copies of the mitochondrial genome (mtDNA). A reduction in mtDNA copy number has been reported in various human pathological conditions such as diabetes, obesity, neurodegenerative disorders, aging and cancer. Reduction in mtDNA copy number disrupts mitochondrial membrane potential (Δψm) resulting in dysfunctional mitochondria. Dysfunctional mitochondria trigger retrograde signaling and communicate their changing metabolic and functional state to the nucleus as an adaptive response resulting in an altered nuclear gene expression profile and altered cell physiology and morphology. In this review, we provide an overview of the various modes of mitochondrial retrograde signaling focusing particularly on the Ca(2+)/Calcineurin mediated retrograde signaling. We discuss the contribution of the key factors of the pathway such as Calcineurin, IGF1 receptor, Akt kinase and HnRNPA2 in the propagation of signaling and their role in modulating genetic and epigenetic changes favoring cellular reprogramming towards tumorigenesis.
Collapse
Affiliation(s)
- Manti Guha
- Department of Animal Biology and the Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | | |
Collapse
|
19
|
Haynes CM, Fiorese CJ, Lin YF. Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell Biol 2013; 23:311-8. [PMID: 23489877 DOI: 10.1016/j.tcb.2013.02.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/27/2013] [Accepted: 02/11/2013] [Indexed: 12/21/2022]
Abstract
During development and cellular differentiation, tissue- and cell-specific programs mediate mitochondrial biogenesis to meet physiological needs. However, environmental and disease-associated factors can perturb mitochondrial activities, requiring cells to adapt to protect mitochondria and maintain cellular homeostasis. Several mitochondrion-to-nucleus signaling pathways, or retrograde responses, have been described, but the mechanisms by which mitochondrial stress or dysfunction is sensed to coordinate precisely the appropriate response has only recently begun to be understood. Recent studies of the mitochondrial unfolded-protein response (UPRmt) indicate that the cell monitors mitochondrial protein import efficiency as an indicator of mitochondrial function. Here, we review how the cell evaluates mitochondrial function and regulates transcriptional induction of the UPRmt, adapts protein-synthesis rates and activates mitochondrial autophagy to promote mitochondrial function and cell survival during stress.
Collapse
Affiliation(s)
- Cole M Haynes
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|