1
|
Moustafine RI, Porfiryeva NN, Nasibullin SF, Sitenkov AY, Sitenkova AV, Timergalieva VR, Kemenova VA. Characterization of Interpolyelectrolyte Complexes Based on Eudragit® RL and Oppositely Charged Eudragit® Polyanions as a Novel Matrix System for Colon-specific Drug Delivery. AAPS PharmSciTech 2025; 26:51. [PMID: 39904965 DOI: 10.1208/s12249-024-03025-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 12/09/2024] [Indexed: 02/06/2025] Open
Abstract
The design of new interpolyelectrolyte complexes (IPEC) between Eudragit® polycation (type RL) and oppositely charged Eudragit® polyanions (types L100-55, L100, S100, FS) was investigated. The formation and chemical composition of novel IPECs between countercharged Eudragit® copolymers was established by gravimetric and elemental analysis. The structure and solid state properties of the synthesized IPEC were investigated comparatively to correspondent physical mixtures pairs of copolymers in similar molar ratio, using Fourier transform infrared (FTIR) spectroscopy and modulated temperature differential scanning calorimetry (mDSC). The binding ratio of a unit molecule of RL with polyanions was found to range between 1.73:1 and 4.19:1 while increasing the percentages of carboxylic groups in their structures from 10% (FS) to 50% (L100-55). As a result of electrostatic interaction between the copolymer chains, the glass transition temperature of the IPEC changed significantly. Considerable pH-sensitive swelling in acidic and neutral media was observed for different type of IPECs. Through evaluation of diffusion-transportation properties of the IPECs, basic mechanisms controlling the delivery of indomethacin were obtained. The results of swelling and release of the model drug from the polycomplex matrices confirm that they have potential to be used in colon-specific drug delivery.
Collapse
Affiliation(s)
- Rouslan I Moustafine
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126, Kazan, Russian Federation.
- Department of Pharmaceutical Research, Central Research Laboratory, Kazan State Medical University, 6/30 Tolstogo Street, 420012, Kazan, Russian Federation.
| | - Natalia N Porfiryeva
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126, Kazan, Russian Federation
| | - Shamil F Nasibullin
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126, Kazan, Russian Federation
| | - Alexander Y Sitenkov
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126, Kazan, Russian Federation
| | - Aleksandra V Sitenkova
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126, Kazan, Russian Federation
| | - Venera R Timergalieva
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126, Kazan, Russian Federation
| | - Vera A Kemenova
- Institute of Pharmacy, Kazan State Medical University, 16 Fatykh Amirkhan Street, 420126, Kazan, Russian Federation
| |
Collapse
|
2
|
Harras MF, Sabour R, Ammar YA, Mehany AB, Farrag AM, Eissa SI. Design synthesis and cytotoxicity studies of some novel indomethacin-based heterocycles as anticancer and apoptosis inducing agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
3
|
Segovia-Mendoza M, Camacho-Camacho C, Rojas-Oviedo I, Prado-Garcia H, Barrera D, Martínez-Reza I, Larrea F, García-Becerra R. An organotin indomethacin derivative inhibits cancer cell proliferation and synergizes the antiproliferative effects of lapatinib in breast cancer cells. Am J Cancer Res 2020; 10:3358-3369. [PMID: 33163275 PMCID: PMC7642663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/30/2020] [Indexed: 06/11/2023] Open
Abstract
It is known that an inflammatory condition in different types of cancer provides a sustained microenvironment that favors tumor growth, invasion, and metastasis. Non-steroidal anti-inflammatory drugs such as indomethacin have demonstrated chemo-preventive, anti-proliferative and cytotoxic effects in a variety of tumors. The aim of this study was to investigate the effects of an organotin indomethacin derivative (OID) on the proliferation of breast and prostate cancer cell lines and the possible mechanisms of action of this compound. Different cancer cell lines were treated in the presence of OID and cell proliferation was measured by quantification of the DNA content, changes in the cell cycle profile and the activation of caspase 3 were evaluated by flow cytometry, interleukin 6 (IL-6) gene expression was evaluated by qPCR and protein expression was analyzed by ELISA and Western blot assays. OID inhibited the cell proliferation of a panel of cancer cell lines in a concentration-dependent manner. Moreover, the addition of OID to lapatinib treatment, targeted therapy for breast cancer, significantly enhanced its antiproliferative response. The effects on cell proliferation of these compounds involved, among others, the induction of apoptosis, the downregulation of IL-6 and a decrease of the MAPK activation pathway. Our results suggest that the use of OID alone or in combination with tyrosine kinase inhibitors could be considered as adjuvants in the treatment of cancer.
Collapse
Affiliation(s)
- Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de MéxicoCoyoacán, Ciudad de México 04510, México
| | - Carlos Camacho-Camacho
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-XochimilcoCalzada del Hueso 1100, Col. Villa Quietud, Coyoacán, Ciudad de México 04960, México
| | - Irma Rojas-Oviedo
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-XochimilcoCalzada del Hueso 1100, Col. Villa Quietud, Coyoacán, Ciudad de México 04960, México
| | - Heriberto Prado-Garcia
- Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío VillegasCalzada de Tlalpan 4502, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, México
| | - David Barrera
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránVasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, México
| | - Isela Martínez-Reza
- Programa de Investigación de Cáncer de Mama y Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoCiudad de México 04510, México
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador ZubiránVasco de Quiroga No. 15, Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, México
| | - Rocío García-Becerra
- Programa de Investigación de Cáncer de Mama y Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de MéxicoCiudad de México 04510, México
| |
Collapse
|
4
|
Kirtonia A, Gala K, Fernandes SG, Pandya G, Pandey AK, Sethi G, Khattar E, Garg M. Repurposing of drugs: An attractive pharmacological strategy for cancer therapeutics. Semin Cancer Biol 2020; 68:258-278. [PMID: 32380233 DOI: 10.1016/j.semcancer.2020.04.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/20/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
Human malignancies are one of the major health-related issues though out the world and anticipated to rise in the future. The development of novel drugs/agents requires a huge amount of cost and time that represents a major challenge for drug discovery. In the last three decades, the number of FDA approved drugs has dropped down and this led to increasing interest in drug reposition or repurposing. The present review focuses on recent concepts and therapeutic opportunities for the utilization of antidiabetics, antibiotics, antifungal, anti-inflammatory, antipsychotic, PDE inhibitors and estrogen receptor antagonist, Antabuse, antiparasitic and cardiovascular agents/drugs as an alternative approach against human malignancies. The repurposing of approved non-cancerous drugs is an effective strategy to develop new therapeutic options for the treatment of cancer patients at an affordable cost in clinics. In the current scenario, most of the countries throughout the globe are unable to meet the medical needs of cancer patients because of the high cost of the available cancerous drugs. Some of these drugs displayed potential anti-cancer activity in preclinic and clinical studies by regulating several key molecular mechanisms and oncogenic pathways in human malignancies. The emerging pieces of evidence indicate that repurposing of drugs is crucial to the faster and cheaper discovery of anti-cancerous drugs.
Collapse
Affiliation(s)
- Anuradha Kirtonia
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India; Equal contribution
| | - Gouri Pandya
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India; Equal contribution
| | - Amit Kumar Pandey
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Haryana, 122413, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem cell Research (AIMMSCR), Amity University Uttar Pradesh, Noida, 201313, India.
| |
Collapse
|
5
|
Seetha A, Devaraj H, Sudhandiran G. Indomethacin and juglone inhibit inflammatory molecules to induce apoptosis in colon cancer cells. J Biochem Mol Toxicol 2020; 34:e22433. [PMID: 31916655 DOI: 10.1002/jbt.22433] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/13/2019] [Accepted: 12/10/2019] [Indexed: 12/13/2022]
Abstract
Colorectal cancer (CRC) is the third most common fatal cancer. Indomethacin, a nonsteroidal anti-inflammatory drug, is known to reduce the occurrence of CRC. This study evaluated the potential anticolon cancer effects of juglone (5-hydroxy-1,4-naphthoquinone) in combination with indomethacin. Human colon adenocarcinoma cells (HT29) were subjected to treatment with indomethacin, juglone, and a combination of both. Morphological analysis, cell cycle regulation, and dual staining using acridine orange and ethidium bromide in control and treated cells revealed the apoptotic potential of these compounds. Bcl2 and inflammatory molecules (tumor necrosis factor-α, nuclear factor kappa B, and Cox-2) were found to be decreased with a concomitant increase in the expression of proapoptotic molecules (Bad, Bax, cytochrome c, and PUMA) as a result of the molecular regulation of Wnt, Notch, and peroxisome proliferator-activated receptor-γ signaling. Treatment with juglone was not as effective as with indomethacin; however, a combination of both was shown to be more effective, suggesting that juglone may be considered for therapeutic intervention of colon cancer.
Collapse
Affiliation(s)
- Alagesan Seetha
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, India
| | - Halagowder Devaraj
- Department of Zoology, University of Madras, Guindy Campus, Chennai, India
| | | |
Collapse
|
6
|
Farrag AM. Synthesis and Biological Evaluation of Novel Indomethacin Derivatives as Potential Anti-Colon Cancer Agents. Arch Pharm (Weinheim) 2016; 349:904-914. [PMID: 27862196 DOI: 10.1002/ardp.201600238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 12/29/2022]
Abstract
The molecular structure of indomethacin was used as a starting scaffold for the synthesis of 20 novel analogs and to study their effects on the proliferation of three human colon cancer cell lines, HCT-116, HT-29, and Caco-2, by MTT assay. The synthesized indomethacin analogs were characterized on the basis of IR, 1 H NMR, 13 C NMR, mass spectral data, and elemental analysis results. Cytotoxicity assay results showed that the indomethacin amide analog 2 was the most potent anticancer agent (IC50 = 0.78, 0.09, and 0.0127 μg/mL) against the three colon cancer cell lines, respectively, being more potent than the standard 5-fluorouracil (IC50 = 1.8, 0.75, and 5.45 μg/mL). Interestingly, the indomethacin oxazin analog 3 and the indomethacin amide analog 8 displayed very potent anticancer activity against the HCT-116 cell line with IC50 = 0.421 and 0.27 μg/mL, respectively, much better than the reference (IC50 = 1.8 μg/mL). Additionally, analogs 3, 4b, 11, 12c, and 13a exhibited excellent antitumor activity against Caco-2 cells, with IC50 ranging from 1.5 to 4.5 μg/mL. Furthermore, analogs 2 and 8 were additionally examined for their effect on the cell cycle of HCT-116 and HT-29 cells, respectively, using flow cytometric analysis. Analog 2 arrested the cell cycle of HT-29 cells at the S phase, while 8 was found to arrest the cell cycle of HCT-116 cells at the G0/G1 phase.
Collapse
Affiliation(s)
- Amel Mostafa Farrag
- Pharmaceutical Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
7
|
Rigas B, Tsioulias GJ. The evolving role of nonsteroidal anti-inflammatory drugs in colon cancer prevention: a cause for optimism. J Pharmacol Exp Ther 2015; 353:2-8. [PMID: 25589413 PMCID: PMC4366757 DOI: 10.1124/jpet.114.220806] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/13/2015] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is a serious yet preventable disease. The low acceptance and cost of colonoscopy as a screening method or CRC make chemoprevention an important option. Nonsteroidal anti-inflammatory drugs (NSAIDs), not currently recommended for CRC prevention, have the potential to evolve into the agents of choice for this indication. Here, we discuss the promise and challenge of NSAIDs for this chemopreventive application.Multiple epidemiologic studies, randomized clinical trials (RCTs) of sporadic colorectal polyp recurrence, RCTs in patients with hereditary colorectal cancer syndromes, and pooled analyses of cardiovascular-prevention RCTs linked to cancer outcomes have firmly established the ability of conventional NSAIDs to prevent CRC. NSAIDs, however, are seriously limited by their toxicity,which can become cumulative with their long-term administration for chemoprevention, whereas drug interactions in vulnerable elderly patients compound their safety. Newer, chemically modified NSAIDs offer the hope of enhanced efficacy and safety.Recent work also indicates that targeting earlier stages of colorectal carcinogenesis, such as the lower complexity aberrant crypt foci, is a promising approach that may only require relatively short use of chemopreventive agents. Drug combination approaches exemplified by sulindac plus difluoromethylornithine appear very efficacious. Identification of those at risk or most likely to benefit from a given intervention using predictive biomarkers may usher in personalized chemoprevention. Agents that offer simultaneous chemoprevention of diseases in addition to CRC, e.g., cardiovascular and/or neurodegenerative diseases,may have a much greater potential for a broad clinical application.
Collapse
Affiliation(s)
- Basil Rigas
- Department of Medicine, Stony Brook University, Stony Brook, NY, USA. basil.rigas@stonybrookmedicine
| | | |
Collapse
|
8
|
Wong CC, Cheng KW, Papayannis I, Mattheolabakis G, Huang L, Xie G, Ouyang N, Rigas B. Phospho-NSAIDs have enhanced efficacy in mice lacking plasma carboxylesterase: implications for their clinical pharmacology. Pharm Res 2014; 32:1663-75. [PMID: 25392229 DOI: 10.1007/s11095-014-1565-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 10/28/2014] [Indexed: 12/31/2022]
Abstract
PURPOSE The purpose of the study was to evaluate the metabolism, pharmacokinetics and efficacy of phospho-NSAIDs in Ces1c-knockout mice. METHODS Hydrolysis of phospho-NSAIDs by Ces1c was investigated using Ces1c-overexpressing cells. The rate of phospho-NSAID hydrolysis was compared between wild-type, Ces1c+/- and Ces1c-/- mouse plasma in vitro, and the effect of plasma Ces1c on the cytotoxicity of phospho-NSAIDs was evaluated. Pharmacokinetics of phospho-sulindac was examined in wild-type and Ces1c-/- mice. The impact of Ces1c on the efficacy of phospho-sulindac was investigated using lung and pancreatic cancer models in vivo. RESULTS Phospho-NSAIDs were extensively hydrolyzed in Ces1c-overexpressing cells. Phospho-NSAID hydrolysis in wild-type mouse plasma was 6-530-fold higher than that in the plasma of Ces1c-/- mice. Ces1c-expressing wild-type mouse serum attenuated the in vitro cytotoxicity of phospho-NSAIDs towards cancer cells. Pharmacokinetic studies of phospho-sulindac using wild-type and Ces1c-/- mice demonstrated 2-fold less inactivation of phospho-sulindac in the latter. Phospho-sulindac was 2-fold more efficacious in inhibiting the growth of lung and pancreatic carcinoma in Ces1c -/- mice, as compared to wild-type mice. CONCLUSIONS Our results indicate that intact phospho-NSAIDs are the pharmacologically active entities and phospho-NSAIDs are expected to be more efficacious in humans than in rodents due to their differential expression of carboxylesterases.
Collapse
Affiliation(s)
- Chi C Wong
- Division of Cancer Prevention, Department of Medicine, Stony Brook University, HSC, T-17 Room 080, Stony Brook, NY, 11794-8173, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Galmarini CM, Tredan O, Galmarini FC. Concomitant resistance and early-breast cancer: should we change treatment strategies? Cancer Metastasis Rev 2013; 33:271-83. [DOI: 10.1007/s10555-013-9449-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Xie G, Zhou D, Cheng KW, Wong CC, Rigas B. Comparative in vitro metabolism of phospho-tyrosol-indomethacin by mice, rats and humans. Biochem Pharmacol 2013; 85:1195-202. [PMID: 23399640 DOI: 10.1016/j.bcp.2013.01.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 02/09/2023]
Abstract
Phospho-tyrosol-indomethacin (PTI; MPI 621), a novel anti-cancer agent, is more potent and safer than conventional indomethacin. Here, we show that PTI was extensively metabolized in vitro and in vivo. PTI was rapidly hydrolyzed by carboxylesterases to generate indomethacin as its major metabolite in the liver microsomes and rats. PTI additionally undergoes cytochromes P450 (CYP)-mediated hydroxylation at its tyrosol moiety and O-demethylation at its indomethacin moiety. Of the five major human CYPs, CYP3A4 and CYP2D6 catalyze the hydroxylation and O-demethylation reactions of PTI, respectively; whereas CYP1A2, 2C9 and 2C19 are inactive towards PTI. In contrast to PTI, indomethacin is primarily O-demethylated by CYP2C9, which prefers acidic substrates. The hydrolyzed and O-demethylated metabolites of PTI are further glucuronidated and sulfated, facilitating drug elimination and detoxification. We observed substantial inter-species differences in the metabolic rates of PTI. Among the liver microsomes from various species, PTI was the most rapidly hydrolyzed, hydroxylated and O-demethylated in mouse, human and rat liver microsomes, respectively. These results reflect the differential expression patterns of carboxylesterase and CYP isoforms among these species. Of the human microsomes from various tissues, PTI underwent more rapid carboxylesterase- and CYP-catalyzed reactions in liver and intestine microsomes than in kidney and lung microsomes. Together, our results establish the metabolic pathways of PTI, reveal significant inter-species differences in its metabolism, and provide insights into the underlying biochemical mechanisms.
Collapse
Affiliation(s)
- Gang Xie
- Division of Cancer Prevention, Department of Medicine, Stony Brook University, HSC, T17-080, Stony Brook, NY 11794, USA.
| | | | | | | | | |
Collapse
|