1
|
Gutierrez AH, Mazariegos MS, Alemany S, Nevzorova YA, Cubero FJ, Sanz-García C. Tumor progression locus 2 (TPL2): A Cot-plicated progression from inflammation to chronic liver disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166660. [PMID: 36764206 DOI: 10.1016/j.bbadis.2023.166660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/10/2023]
Abstract
The cytoplasmic protein tumor progression locus 2 (TPL2), also known as cancer Osaka thyroid (Cot), or MAP3K8, is thought to have a significant role in a variety of cancers and illnesses and it is a key component in the activation pathway for the expression of inflammatory mediators. Despite the tight connection between inflammation and TPL2, its function has not been extensively studied in chronic liver disease (CLD), a major cause of morbidity and mortality worldwide. Here, we analyze more in detail the significance of TPL2 in CLD to shed light on the pathological and molecular transduction pattern of TPL2 during the progression of CLD. This might result in important advancements and enable progress in the diagnosis and treatment of CLD.
Collapse
Affiliation(s)
- Alejandro H Gutierrez
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Marina S Mazariegos
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Susana Alemany
- Department of Metabolism and Cell Signaling, Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Biomedicine Unit (Unidad Asociada al CSIC), Universidad de Las Palmas de Gran Canaria, 35001 Las Palmas, Spain
| | - Yulia A Nevzorova
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Francisco Javier Cubero
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28029 Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28007 Madrid, Spain
| | - Carlos Sanz-García
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Guimarães LDA, Webber LP, Gaio EJ, Junior DSP, Gonçalves P, Wick MJ, Burr NS, Squarize CH, Castilho RM. Using PDX animal models to identify and stratify adenoid cystic carcinoma patients presenting an enhanced response to HDAC inhibitors. Am J Cancer Res 2023; 13:143-160. [PMID: 36777521 PMCID: PMC9906074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/13/2022] [Indexed: 02/14/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) patients face a highly infiltrative and metastatic disease characterized by poor survival rates and suboptimal response to available therapies. We have previously shown that sensitization of ACC tumors to chemotherapy using histone deacetylase inhibitors (HDACi) constitutes a promising therapeutic strategy to manage tumor growth. Here, we used patient-derived xenografts (PDX) from ACC tumors to evaluate the effects of in vivo administration of the HDAC inhibitor Entinostat combined with Cisplatin over tumor growth. RNA from PDX tumor samples receiving the proposed therapy were analyzed using NanoString technology to identify molecular signatures capable of predicting ACC response to the therapy. We also used an RNAseq dataset from 68 ACC patients to validate the molecular signature identified by the NanoString platform. We found that the administration of Entinostat combined with Cisplatin resulted in a potent tumor growth inhibition (TGI) ranging from 38% to 106% of the original tumor mass. Enhanced response to therapy is consistent with the reactivation of tumor suppressor genes, including SFRP1, and the downregulation of oncogenes like FGF8 and CCR7. Nanostring data from PDX tumors identified a genetic signature capable of predicting tumor response to therapy. We further stratified 68 ACC patients containing RNAseq data accordingly to the activity levels of the identified genetic signature. We found that 23% of all patients exhibit a genetic signature consistent with a high ACC tumor response rate to Entinostat and Cisplatin. Our study provides compelling preclinical data supporting the deployment of a powerful systemic anticancer therapy crafted and explicitly tested for ACC tumors.
Collapse
Affiliation(s)
- Leticia DA Guimarães
- Laboratory of Epithelial Biology, University of Michigan School of DentistryAnn Arbor, MI, USA,Department of Stomatology, University of São PauloSão Paulo, SP, Brazil
| | - Liana P Webber
- Laboratory of Epithelial Biology, University of Michigan School of DentistryAnn Arbor, MI, USA
| | - Eduardo J Gaio
- Laboratory of Epithelial Biology, University of Michigan School of DentistryAnn Arbor, MI, USA,Department of Periodontology, Federal University of Rio Grande do SulPorto Alegre, RS, Brazil
| | - Decio SP Junior
- Department of Stomatology, University of São PauloSão Paulo, SP, Brazil
| | - Priscila Gonçalves
- Zucker School of Medicine at Hofstra/Northwell, Monter Cancer CenterLake Success, NY, USA
| | - Michael J Wick
- South Texas Accelerated Research TherapeuticsSan Antonio, TX, USA
| | - Nicole S Burr
- Adenoid Cystic Carcinoma Research FoundationNeedham, MA, USA
| | - Cristiane H Squarize
- Laboratory of Epithelial Biology, University of Michigan School of DentistryAnn Arbor, MI, USA,University of Michigan Rogel Cancer Center, University of MichiganAnn Arbor, MI, USA
| | - Rogerio M Castilho
- Laboratory of Epithelial Biology, University of Michigan School of DentistryAnn Arbor, MI, USA,University of Michigan Rogel Cancer Center, University of MichiganAnn Arbor, MI, USA
| |
Collapse
|
3
|
Kelley MB, Geddes TJ, Ochiai M, Lampl NM, Kothmann WW, Fierstein SR, Kent V, DeCicco-Skinner K. Loss of Tpl2 activates compensatory signaling and resistance to EGFR/MET dual inhibition in v-RAS transduced keratinocytes. PLoS One 2022; 17:e0266017. [PMID: 35325006 PMCID: PMC8947257 DOI: 10.1371/journal.pone.0266017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common form of skin cancer in the United States, affecting one million people per year. Patients with aggressive disease have limited treatment options and high mortality, highlighting the need to identify new biomarkers linked to poor clinical outcome. HRAS mutations are found in skin papillomas and cSCCs and increase in frequency when MAP3K family members are inhibited, suggesting a link between blockade of mitogen-activated protein kinase (MAPK) signaling and initiation of RAS-primed cells. Tpl2, a MAP3K gene, can serve as a tumor suppressor gene in cSCC. We have previously shown that upon Tpl2 ablation, mice have heightened sensitivity to aberrant RAS signaling. Tpl2-/- mice display significantly higher numbers of papillomas and cSCCs in two-stage chemical carcinogenesis studies and increased tumorigenicity of keratinocytes expressing oncogenic v-rasHa in nude mouse skin grafts. In part, this is mediated through increased mesenchymal-epithelial transition factor (MET) receptor activity. Epidermal Growth Factor Receptor (EGFR) is reported to be an essential factor for MET-driven carcinogenesis and MET activation may confer resistance to EGFR therapies, suggesting that the concurrent use of both an EGFR inhibitor and a MET inhibitor may show promise in advanced cSCCs. In this study we assessed whether normal or Ras-transformed Tpl2-/- keratinocytes have aberrant EGFR signaling and whether concomitant treatment with EGFR/MET tyrosine kinase inhibitors was more effective than single agents in reducing growth and angiogenic potential of Ras-transformed keratinocytes. Tpl2-/- keratinocytes exhibited increased HER-2 and STAT-3 under basal conditions and elevated p-MET and p-EGFR when transduced with oncogenic RAS. Inhibition of MET by Capmatinib increased p-EGFR in Tpl2-/- keratinocytes and papillomas, and inhibition of EGFR by Gefitinib increased HER2 and HER3 signaling in both genotypes. Treatment of keratinocytes with EGFR and MET inhibitors, in combination, significantly enhanced endothelial tube formation, MMP-9 activity and activation of other RTKs, with more pronounced effects when Tpl2 was ablated. These data indicate that Tpl2 cross-talks with both EGFR and MET signaling pathways. Upon inhibition of EGFR/MET signaling, a myriad of escape mechanisms exists in keratinocytes to overcome targeted drug effects.
Collapse
Affiliation(s)
- Mary B. Kelley
- Department of Biology, American University, Washington, DC, United States of America
| | - Taylor J. Geddes
- Department of Biology, American University, Washington, DC, United States of America
| | - Maria Ochiai
- Department of Biology, American University, Washington, DC, United States of America
| | - Noah M. Lampl
- Department of Biology, American University, Washington, DC, United States of America
| | - W. Wade Kothmann
- Department of Biology, American University, Washington, DC, United States of America
| | - Sara R. Fierstein
- Department of Biology, American University, Washington, DC, United States of America
| | - Victoria Kent
- Department of Biology, American University, Washington, DC, United States of America
| | | |
Collapse
|
4
|
Njunge LW, Estania AP, Guo Y, Liu W, Yang L. Tumor progression locus 2 (TPL2) in tumor-promoting Inflammation, Tumorigenesis and Tumor Immunity. Am J Cancer Res 2020; 10:8343-8364. [PMID: 32724474 PMCID: PMC7381748 DOI: 10.7150/thno.45848] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Over the years, tumor progression locus 2 (TPL2) has been identified as an essential modulator of immune responses that conveys inflammatory signals to downstream effectors, subsequently modulating the generation and function of inflammatory cells. TPL2 is also differentially expressed and activated in several cancers, where it is associated with increased inflammation, malignant transformation, angiogenesis, metastasis, poor prognosis and therapy resistance. However, the relationship between TPL2-driven inflammation, tumorigenesis and tumor immunity has not been addressed. Here, we reconcile the function of TPL2-driven inflammation to oncogenic functions such as inflammation, proliferation, apoptosis resistance, angiogenesis, metastasis, immunosuppression and immune evasion. We also address the controversies reported on TPL2 function in tumor-promoting inflammation and tumorigenesis, and highlight the potential role of the TPL2 adaptor function in regulating the mechanisms leading to pro-tumorigenic inflammation and tumor progression. We discuss the therapeutic implications and limitations of targeting TPL2 for cancer treatment. The ideas presented here provide some new insight into cancer pathophysiology that might contribute to the development of more integrative and specific anti-inflammatory and anti-cancer therapeutics.
Collapse
|
5
|
Rogerson C, O'Shaughnessy RFL. Protein kinases involved in epidermal barrier formation: The AKT family and other animals. Exp Dermatol 2019; 27:892-900. [PMID: 29845670 DOI: 10.1111/exd.13696] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Formation of a stratified epidermis is required for the performance of the essential functions of the skin; to act as an outside-in barrier against the access of microorganisms and other external factors, to prevent loss of water and solutes via inside-out barrier functions and to withstand mechanical stresses. Epidermal barrier function is initiated during embryonic development and is then maintained throughout life and restored after injury. A variety of interrelated processes are required for the formation of a stratified epidermis, and how these processes are both temporally and spatially regulated has long been an aspect of dermatological research. In this review, we describe the roles of multiple protein kinases in the regulation of processes required for epidermal barrier formation.
Collapse
Affiliation(s)
- Clare Rogerson
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| | - Ryan F L O'Shaughnessy
- Centre for Cell Biology and Cutaneous Research, Blizard Institute, Queen Mary University of London, London, UK
| |
Collapse
|
6
|
Inhibition of HGF/MET signaling decreases overall tumor burden and blocks malignant conversion in Tpl2-related skin cancer. Oncogenesis 2019; 8:1. [PMID: 30631034 PMCID: PMC6328619 DOI: 10.1038/s41389-018-0109-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/16/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tumor progression locus 2 (Tpl2) is a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family of serine/threonine kinases. Deletion of the Tpl2 gene is associated with a significantly higher number of papillomas and cutaneous squamous cell carcinomas (cSCCs). Overexpression of hepatocyte growth factor (HGF) and its receptor MET is abundant in cSCC and can lead to increased proliferation, migration, invasion or resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. The aim of this study was to address whether the increased tumor burden in Tpl2−/− mice is due to aberrant HGF/MET signaling. C57Bl/6 wild type (WT) and Tpl2−/− mice were subjected to a two-stage chemical carcinogenesis protocol for one year. At the time of promotion half of the mice received 44 mg/kg capmatinib (INC 280), a pharmacological inihibitor of MET, in their diet. Tpl2−/− mice had signficantly higher tumor incidence and overall tumor burden compared to WT mice. Further, carcinogen-intiated Tpl2−/− mice could bypass the need for promotion, as 89% of Tpl2−/− mice given only DMBA developed papillomas. v-rasHa -transduced keratinocytes and SCCs from Tpl2−/− mice revealed an upregulation in HGF and p-MET signaling compared to WT animals. Long-term capmatinib treatment had no adverse effects in mice and capmatinib-fed Tpl2−/− mice had a 60% reduction in overall tumor burden. Further, no tumors from Tpl2−/− mice fed capmatinib underwent malignant conversion. In summary targeting MET may be a potential new strategy to combat cutaneous squamous cell carcinomas that result from dysregulation in MAPK signaling.
Collapse
|
7
|
Pyo JS, Park MJ, Kim CN. TPL2 expression is correlated with distant metastasis and poor prognosis in colorectal cancer. Hum Pathol 2018; 79:50-56. [DOI: 10.1016/j.humpath.2018.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/25/2018] [Accepted: 05/04/2018] [Indexed: 12/28/2022]
|
8
|
Simulated microgravity triggers epithelial mesenchymal transition in human keratinocytes. Sci Rep 2017; 7:538. [PMID: 28373722 PMCID: PMC5428850 DOI: 10.1038/s41598-017-00602-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/07/2017] [Indexed: 01/24/2023] Open
Abstract
The microgravitational environment is known to affect the cellular behaviour inducing modulation of gene expression and enzymatic activities, epigenetic modifications and alterations of the structural organization. Simulated microgravity, obtained in the laboratory setting through the use of a Random Positioning Machine (RPM), represents a well recognized and useful tool for the experimental studies of the cellular adaptations and molecular changes in response to weightlessness. Short exposure of cultured human keratinocytes to the RPM microgravity influences the cellular circadian clock oscillation. Therefore, here we searched for changes on the regenerative ability and response to tissue damage of human epidermal cells through the analysis of the effects of the simulated microgravity on the re-epithelialization phase of the repair and wound healing process. Combining morphological, biochemical and molecular approaches, we found that the simulated microgravity exposure of human keratinocytes promotes a migratory behavior and triggers the epithelial-mesenchymal transition (EMT) through expression of the typical EMT transcription factors and markers, such as Snail1, Snail2 and ZEB2, metalloproteases, mesenchymal adhesion molecules and cytoskeletal components.
Collapse
|
9
|
Lee JH, Lee JH, Lee SH, Do SI, Cho SD, Forslund O, Inn KS, Lee JS, Deng FM, Melamed J, Jung JU, Jeong JH. TPL2 Is an Oncogenic Driver in Keratocanthoma and Squamous Cell Carcinoma. Cancer Res 2016; 76:6712-6722. [DOI: 10.1158/0008-5472.can-15-3274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/09/2016] [Accepted: 06/27/2016] [Indexed: 11/16/2022]
|
10
|
Lee HW, Choi HY, Joo KM, Nam DH. Tumor progression locus 2 (Tpl2) kinase as a novel therapeutic target for cancer: double-sided effects of Tpl2 on cancer. Int J Mol Sci 2015; 16:4471-91. [PMID: 25723737 PMCID: PMC4394431 DOI: 10.3390/ijms16034471] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/15/2015] [Accepted: 02/15/2015] [Indexed: 12/14/2022] Open
Abstract
Tumor progression locus 2 (Tpl2) is a mitogen-activated protein kinase (MAPK) kinase kinase (MAP3K) that conveys various intra- and extra-cellular stimuli to effector proteins of cells provoking adequate adoptive responses. Recent studies have elucidated that Tpl2 is an indispensable signal transducer as an MAP3K family member in diverse signaling pathways that regulate cell proliferation, survival, and death. Since tumorigenesis results from dysregulation of cellular proliferation, differentiation, and apoptosis, Tpl2 participates in many decisive molecular processes of tumor development and progression. Moreover, Tpl2 is closely associated with cytokine release of inflammatory cells, which has crucial effects on not only tumor cells but also tumor microenvironments. These critical roles of Tpl2 in human cancers make it an attractive anti-cancer therapeutic target. However, Tpl2 contradictorily works as a tumor suppressor in some cancers. The double-sided effects of Tpl2 originate from the specific upstream and downstream signaling environment of each tumor, since Tpl2 interacts with various signaling components. This review summarizes recent studies concerning the possible roles of Tpl2 in human cancers and considers its possibility as a therapeutic target, against which novel anti-cancer agents could be developed.
Collapse
Affiliation(s)
- Hye Won Lee
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
| | - Han Yong Choi
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
| | - Kyeung Min Joo
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
- Department of Anatomy and Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
| | - Do-Hyun Nam
- Department of Neurosurgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 135-710 Seoul, Korea.
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, 135-710 Seoul, Korea.
| |
Collapse
|
11
|
Hope C, Ollar SJ, Heninger E, Hebron E, Jensen JL, Kim J, Maroulakou I, Miyamoto S, Leith C, Yang DT, Callander N, Hematti P, Chesi M, Bergsagel PL, Asimakopoulos F. TPL2 kinase regulates the inflammatory milieu of the myeloma niche. Blood 2014; 123:3305-15. [PMID: 24723682 PMCID: PMC4046426 DOI: 10.1182/blood-2014-02-554071] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/07/2014] [Indexed: 02/06/2023] Open
Abstract
Targeted modulation of microenvironmental regulatory pathways may be essential to control myeloma and other genetically/clonally heterogeneous cancers. Here we report that human myeloma-associated monocytes/macrophages (MAM), but not myeloma plasma cells, constitute the predominant source of interleukin-1β (IL-1β), IL-10, and tumor necrosis factor-α at diagnosis, whereas IL-6 originates from stromal cells and macrophages. To dissect MAM activation/cytokine pathways, we analyzed Toll-like receptor (TLR) expression in human myeloma CD14(+) cells. We observed coregulation of TLR2 and TLR6 expression correlating with local processing of versican, a proteoglycan TLR2/6 agonist linked to carcinoma progression. Versican has not been mechanistically implicated in myeloma pathogenesis. We hypothesized that the most readily accessible target in the versican-TLR2/6 pathway would be the mitogen-activated protein 3 (MAP3) kinase, TPL2 (Cot/MAP3K8). Ablation of Tpl2 in the genetically engineered in vivo myeloma model, Vκ*MYC, led to prolonged disease latency associated with plasma cell growth defect. Tpl2 loss abrogated the "inflammatory switch" in MAM within nascent myeloma lesions and licensed macrophage repolarization in established tumors. MYC activation/expression in plasma cells was independent of Tpl2 activity. Pharmacologic TPL2 inhibition in human monocytes led to dose-dependent attenuation of IL-1β induction/secretion in response to TLR2 stimulation. Our results highlight a TLR2/6-dependent TPL2 pathway as novel therapeutic target acting nonautonomously through macrophages to control myeloma progression.
Collapse
Affiliation(s)
- Chelsea Hope
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Samuel J Ollar
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Erika Heninger
- University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Ellen Hebron
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Jeffrey L Jensen
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Jaehyup Kim
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Ioanna Maroulakou
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Shigeki Miyamoto
- University of Wisconsin Carbone Cancer Center, Madison, WI; Department of Oncology, University of Wisconsin-Madison, Madison, WI
| | - Catherine Leith
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI; and
| | - David T Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI; and
| | - Natalie Callander
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI
| | - Peiman Hematti
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI
| | | | | | - Fotis Asimakopoulos
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI; University of Wisconsin Carbone Cancer Center, Madison, WI
| |
Collapse
|