1
|
Liu RA, Wang BY, Chen X, Pu YQ, Zi JJ, Mei W, Zhang YP, Qiu L, Xiong W. Association Study of Pleural Mesothelioma and Oncogenic Simian Virus 40 in the Crocidolite-Contaminated Area of Dayao County, Yunnan Province, Southwest China. Genet Test Mol Biomarkers 2024; 28:189-198. [PMID: 38634609 DOI: 10.1089/gtmb.2023.0532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Background: In Dayao County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, Southwest China, 5% of the surface is scattered with blue asbestos, which has a high incidence of pleural mesothelioma (PMe). Simian virus 40 (SV40) is a small circular double-stranded DNA polyomavirus that can cause malignant transformation of normal cells of various human and animal tissue types and promote tumor growth. In this study, we investigate whether oncogenic SV40 is associated with the occurrence of PMe in the crocidolite-contaminated area of Dayao County, Yunnan Province, Southwest China. Methods: Tumor tissues from 51 patients with PMe (40 of whom had a history of asbestos exposure) and pleural tissues from 12 non-PMe patients (including diseases such as pulmonary maculopathy and pulmonary tuberculosis) were collected. Three pairs of low-contamination risk primers (SVINT, SVfor2, and SVTA1) were used to detect the gene fragment of SV40 large T antigen (T-Ag) by polymerase chain reaction (PCR). The presence of SV40 T-Ag in PMe tumor tissues and PMe cell lines was detected by Western blotting and immunohistochemical staining with SV40-related antibodies (PAb 101 and PAb 416). Results: PCR, Western blotting, and immunohistochemical staining results showed that the Met5A cell line was positive for SV40 and contained the SV40 T-Ag gene and protein. In contrast, the various PMe cell lines NCI-H28, NCI-H2052, and NCI-H2452 were negative for SV40. PCR was negative for all three sets of low-contamination risk primers in 12 non-PMe tissues and 51 PMe tissues. SV40 T-Ag was not detected in 12 non-PMe tissues or 51 PMe tissues by immunohistochemical staining. Conclusion: Our data suggest that the occurrence of PMe in the crocidolite-contaminated area of Yunnan Province may not be related to SV40 infection and that crocidolite exposure may be the main cause of PMe. The Clinical Trial Registration number: 2020-YXLL20.
Collapse
Affiliation(s)
- Ru-Ai Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Clinical Biochemical Testing, Dali University, Dali, China
| | - Bo-Yong Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Clinical Biochemical Testing, Dali University, Dali, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Clinical Biochemical Testing, Dali University, Dali, China
| | - Yuan-Qian Pu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Clinical Biochemical Testing, Dali University, Dali, China
| | - Jia-Ji Zi
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Clinical Biochemical Testing, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| | - Wen Mei
- Department of Pathology, The First People's Hospital of Chuxiong Prefecture, Chuxiong, China
| | - Ye-Pin Zhang
- Department of Pathology, The First People's Hospital of Chuxiong Prefecture, Chuxiong, China
| | - Lu Qiu
- School of Chemistry and Life Sciences, Chuxiong Normal College, Chuxiong, China
| | - Wei Xiong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Clinical Biochemical Testing, Dali University, Dali, China
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali University, Dali, China
| |
Collapse
|
2
|
Sadri Nahand J, Rabiei N, Fathazam R, Taghizadieh M, Ebrahimi MS, Mahjoubin-Tehran M, Bannazadeh Baghi H, Khatami A, Abbasi-Kolli M, Mirzaei HR, Rahimian N, Darvish M, Mirzaei H. Oncogenic viruses and chemoresistance: What do we know? Pharmacol Res 2021; 170:105730. [PMID: 34119621 DOI: 10.1016/j.phrs.2021.105730] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/05/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Chemoresistance is often referred to as a major leading reason for cancer therapy failure, causing cancer relapse and further metastasis. As a result, an urgent need has been raised to reach a full comprehension of chemoresistance-associated molecular pathways, thereby designing new therapy methods. Many of metastatic tumor masses are found to be related with a viral cause. Although combined therapy is perceived as the model role therapy in such cases, chemoresistant features, which is more common in viral carcinogenesis, often get into way of this kind of therapy, minimizing the chance of survival. Some investigations indicate that the infecting virus dominates other leading factors, i.e., genetic alternations and tumor microenvironment, in development of cancer cell chemoresistance. Herein, we have gathered the available evidence on the mechanisms under which oncogenic viruses cause drug-resistance in chemotherapy.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nikta Rabiei
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fathazam
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, School of Medicine, Center for Women's Health Research Zahra, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Ebrahimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - AliReza Khatami
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasi-Kolli
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Maryam Darvish
- Department of Medical Biotechnology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Sridharan S, Taylor-Just A, Bonner JC. Osteopontin mRNA expression by rat mesothelial cells exposed to multi-walled carbon nanotubes as a potential biomarker of chronic neoplastic transformation in vitro. Toxicol In Vitro 2021; 73:105126. [PMID: 33652123 PMCID: PMC8085121 DOI: 10.1016/j.tiv.2021.105126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/27/2021] [Accepted: 02/23/2021] [Indexed: 11/26/2022]
Abstract
Mesothelioma is a cancer of the lung pleura primarily associated with inhalation of asbestos fibers. Multi-walled carbon nanotubes (MWCNTs) are engineered nanomaterials that pose a potential risk for mesothelioma due to properties that are similar to asbestos. Inhaled MWCNTs migrate to the pleura in rodents and some types cause mesothelioma. Like asbestos, there is a diversity of MWCNT types. We investigated the neoplastic potential of tangled (tMWCNT) versus rigid (rMWCNT) after chronic exposure using serial passages of rat mesothelial cells in vitro. Normal rat mesothelial (NRM2) cells were exposed to tMWCNTs or rMWCNTs for 45 weeks over 85 passages to determine if exposure resulted in transformation to a neoplastic phenotype. Rat mesothelioma (ME1) cells were used as a positive control. Osteopontin (OPN) mRNA was assayed as a biomarker of transformation by real time quantitative polymerase chain reaction (qPCR) and transformation was determined by a cell invasion assay. Exposure to rMWCNTs, but not tMWCNTs, resulted in transformation of NRM2 cells into an invasive phenotype that was similar to ME1 cells. Moreover, exposure of NRM2 cells to rMWCNTs increased OPN mRNA that correlated with cellular transformation. These data suggest that OPN is a potential biomarker that should be further investigated to screen the carcinogenicity of MWCNTs in vitro.
Collapse
Affiliation(s)
- Sreepradha Sridharan
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Alexia Taylor-Just
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - James C Bonner
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
4
|
Liu Z, Liu X, Li W, Luo Q, Liu J, Wang D. Anti-colon cancer activity tracking isolation of peptide from ginseng leaves and potential mechanisms evaluation in vitro and in vivo. J Pept Sci 2021; 27:e3297. [PMID: 33462944 DOI: 10.1002/psc.3297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/05/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022]
Abstract
The ginseng has been used for over hundred years, in the belief of promoting longevity. However, the anticancer activity of ginseng leaf peptide (GP) has been never explored. In current study, we isolated the GPs and explored the anti-colon cancer activity in vitro and in vivo. MTT results showed that the GP-1 (GP-1~FKEHGY) performed most antiproliferative activity against colon cancer CT-26 cells with an IC50 of 86.4 ± 9.46 μM (48 h). Further study indicated that GP-1 activated the caspases, regulated the p53/murine double minute 2 (MDM2) state, and induced the CT-26 cells apoptosis in a mitochondrial pathway. Meanwhile, the GP-1 arrested the CT-26 cells in G0/G1 phase accompanied with cyclin expression regulation. In addition, GP-1 significantly suppressed the tumor growth and induced the tumor cells apoptosis in vivo. Notably, the GP-1 would be a potential anti-colon cancer candidate.
Collapse
Affiliation(s)
- Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Xiaolei Liu
- Department of Clinical Laboratory, Dongying People's Hospital, Dongying, Shandong, 257091, China
| | - Wei Li
- Department of Clinical Laboratory, Dongying People's Hospital, Dongying, Shandong, 257091, China
| | - Qiang Luo
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518071, China
| | - Jie Liu
- State Key Laboratory of Respiratory Disease for Allergy at Shenzhen University, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, Guangdong, 518071, China
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital, Changchun, Jilin, 130021, China
| |
Collapse
|
5
|
Fan X, McLaughlin C, Robinson C, Ravasini J, Schelch K, Johnson T, van Zandwijk N, Reid G, George AM. Zeolites ameliorate asbestos toxicity in a transgenic model of malignant mesothelioma. FASEB Bioadv 2019; 1:550-560. [PMID: 32123850 PMCID: PMC6996371 DOI: 10.1096/fba.2019-00040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/07/2019] [Accepted: 07/25/2019] [Indexed: 12/22/2022] Open
Abstract
Malignant mesothelioma (MM) is an almost invariably fatal cancer caused by asbestos exposure. The toxicity of asbestos fibers is related to their physicochemical properties and the generation of free radicals. We set up a pilot study to investigate the potential of the zeolite clinoptilolite to counteract the asbestos carcinogenesis by preventing the generation of reactive nitrogen and oxygen radicals. In cell culture experiments, clinoptilolite prevented asbestos-induced cell death, reactive oxygen species production, DNA degradation, and overexpression of genes known to be up-regulated by asbestos. In an asbestos-induced transgenic mouse model of MM, mice were injected intraperitoneal injections with blue asbestos, with or without clinoptilolite, and monitored for 30 weeks. By the end of the trial all 13 mice injected with asbestos alone had reached humane end points, whereas only 7 of 29 mice receiving crocidolite and clinoptilolite reached a similar stage of disease. Post-mortem examination revealed pinpoint mesothelioma-like tumors in affected mice, and the absence of tumor formation in surviving mice. Interestingly, the macrophage clearance system, which was largely suppressed in asbestos-treated mice, exhibited evidence of increased phagocytosis in mice treated with asbestos and clinoptilolite. Our study suggests that inhibiting the asbestos-induced generation of reactive oxygen species and stimulating the macrophage system may represent a pathway to amelioration of asbestos-induced toxicity. Additional studies are warranted to explore the underlying mechanisms responsible for our observations.
Collapse
Affiliation(s)
- Xiyong Fan
- School of Life SciencesUniversity of Technology SydneyBroadwayNSWAustralia
| | - Chris McLaughlin
- School of Life SciencesUniversity of Technology SydneyBroadwayNSWAustralia
| | - Cleo Robinson
- School of Biomedical SciencesUniversity of Western Australia (M503)CrawleyWAAustralia
- Molecular Anatomical Pathology, PathWest Laboratory MedicineQEII Medical CentreNedlandsWAAustralia
| | - Jason Ravasini
- School of Life SciencesUniversity of Technology SydneyBroadwayNSWAustralia
| | - Karin Schelch
- Asbestos Diseases Research InstituteUniversity of SydneySydneyNSWAustralia
- Faculty of MedicineUniversity of SydneySydneyNSWAustralia
- Institute of Cancer Research, Department of Medicine IMedical University of ViennaViennaAustria
| | - Thomas Johnson
- Asbestos Diseases Research InstituteUniversity of SydneySydneyNSWAustralia
- Faculty of MedicineUniversity of SydneySydneyNSWAustralia
| | - Nico van Zandwijk
- Asbestos Diseases Research InstituteUniversity of SydneySydneyNSWAustralia
| | - Glen Reid
- School of Life SciencesUniversity of Technology SydneyBroadwayNSWAustralia
- Asbestos Diseases Research InstituteUniversity of SydneySydneyNSWAustralia
- Faculty of MedicineUniversity of SydneySydneyNSWAustralia
- Present address:
Department of PathologyUniversity of OtagoDunedinNew Zealand
| | - Anthony M. George
- School of Life SciencesUniversity of Technology SydneyBroadwayNSWAustralia
| |
Collapse
|
6
|
Ishida T, Fujihara N, Nishimura T, Funabashi H, Hirota R, Ikeda T, Kuroda A. Live-cell imaging of macrophage phagocytosis of asbestos fibers under fluorescence microscopy. Genes Environ 2019; 41:14. [PMID: 31178942 PMCID: PMC6549298 DOI: 10.1186/s41021-019-0129-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/05/2019] [Indexed: 11/10/2022] Open
Abstract
Background Frustrated phagocytosis occurs when an asbestos fiber > 10 μm in length is engulfed imperfectly by a macrophage, and it is believed to be associated with chromosomal instability. Few studies have focused on dynamic cellular imaging to assess the toxicity of hazardous inorganic materials such as asbestos. One reason for this is the relative lack of fluorescent probes available to facilitate experimental visualization of inorganic materials. We recently developed asbestos-specific fluorescent probes based on asbestos-binding proteins, and achieved efficient fluorescent labeling of asbestos. Results Live-cell imaging with fluorescent asbestos probes was successfully utilized to dynamically analyze asbestos phagocytosis. The fluorescently labeled asbestos fibers were phagocytosed by RAW 264.7 macrophages. Internalized fibers of < 5 μm in length were visualized clearly via overlaid phase contrast and fluorescence microscopy images, but they were not clearly depicted using phase contrast images alone. Approximately 60% of the cells had phagocytosed asbestos fibers after 2 h, but over 96% of cells remained alive even 24 h after the addition of asbestos fibers. Immediate cell death was only observed when an asbestos fiber was physically pulled from a cell by an external force. Notably, at 24 h after the addition of asbestos fibers an approximately 4-fold increase in the number of binucleated cells was observed. Monitoring of individual cell divisions of cells that had phagocytosed asbestos suggested that binucleated cells were formed via the inhibition of cell separation, by asbestos fibers of > 10 μm in length that were localized in the proximity of the intercellular bridge. Conclusions Fluorescently labeled asbestos facilitated visualization of the dynamic biological processes that occur during and after the internalization of asbestos fibers, and indicated that (i) frustrated phagocytosis itself does not lead to immediate cell death unless the asbestos fiber is physically pulled from the cell by an external force, and (ii) macrophages that have phagocytosed asbestos can divide but sometimes the resulting daughter cells fuse, leading to the formation of a binucleated cell. This fusion only seemed to occur when a comparatively long asbestos fiber (> 10 μm) was shared by two daughter cells.
Collapse
Affiliation(s)
- Takenori Ishida
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8530 Japan
| | - Nobutoshi Fujihara
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8530 Japan
| | - Tomoki Nishimura
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8530 Japan
| | - Hisakage Funabashi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8530 Japan
| | - Ryuichi Hirota
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8530 Japan
| | - Takeshi Ikeda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8530 Japan
| | - Akio Kuroda
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi Hiroshima, Hiroshima, 739-8530 Japan
| |
Collapse
|
7
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
8
|
Zhou D, Quan Z, Wang J. Current status of malignant mesothelioma with liver involvement in China: A brief report and review of the literature. Intractable Rare Dis Res 2018; 7:112-119. [PMID: 29862153 PMCID: PMC5982618 DOI: 10.5582/irdr.2018.01052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Primary and secondary intrahepatic malignant mesothelioma (PIHMM & SIHMM) caused by Peritoneal mesothelioma (PM) are extremely rare tumors and their clinicopathological characteristics remain unclear. The current study presented a case of a 63-year-old female with PIHMM and a literature review of Chinese case reports of SIHMM and PIHMM was performed. The patient received curative left hemihepatectomy because of a 5.5 × 5.0 × 4.0 cm mass occupying the II, III and the lateral portion of the IV segments and meanwhile tightly infiltrating the diaphragm (yellow arrow) was also observed. The pathological diagnosis was epithelial type PIHMM. Immunohistochemistry revealed that the tumor was positive for Calretinin, CK5/6, WT-1 and D2-40(N). The literature review included 11 studies and 6 case reports with a total of 293 PM patients accompanied with 31 SIHMM cases and then 3 case reports of PIHMM. SIHMM and PIHMM are extremely rare, easy to misdiagnose malignant tumors. Immunohistochemistry should be performed strictly in accordance with guidelines, which is crucial for pathological diagnosis. Comprehensive treatment of surgery combined with chemotherapy are mainstream methods for SIHMM and PIHMM. Also, exact survival data should be carefully explored so that objective evaluation of the efficacy of the treatment could be achieved.
Collapse
Affiliation(s)
| | - Zhiwei Quan
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Address correspondence to:Drs. Jiandong Wang and Zhiwei Quan, Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China. E-mail: (Wang JD) zhiwquan@163. com (Quan ZW)
| | - Jiandong Wang
- Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Address correspondence to:Drs. Jiandong Wang and Zhiwei Quan, Department of General Surgery, XinHua Hospital, Shanghai Jiao Tong University, School of Medicine, 1665 Kongjiang Road, Yangpu District, Shanghai 200092, China. E-mail: (Wang JD) zhiwquan@163. com (Quan ZW)
| |
Collapse
|
9
|
Gilani SNS, Mehta A, Garcia-Fadrique A, Rowaiye B, Jenei V, Dayal S, Chandrakumaran K, Carr N, Mohamed F, Cecil T, Moran B. Outcomes of cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for peritoneal mesothelioma and predictors of survival. Int J Hyperthermia 2018; 34:578-584. [PMID: 29431036 DOI: 10.1080/02656736.2018.1434902] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) benefits selected patients with peritoneal mesothelioma. We present the outcomes of this treatment strategy in a UK peritoneal malignancy national referral centre. METHODS Observational retrospective analysis of data prospectively collected in a dedicated peritoneal malignancy database between March 1998 and January 2016. RESULTS Of 1586 patients treated for peritoneal malignancy, 76 (4.8%) underwent surgery for peritoneal mesothelioma. Median age was 49 years (range 21-73 years). 34 patients (45%) were female. Of the 76 patients, 39 (51%) had low grade histological subtypes (mostly multicystic mesothelioma), and 37 (49%) had diffuse malignant peritoneal mesothelioma (DMPM; mostly epithelioid mesothelioma). Complete cytoreduction was achieved in 52 patients (68%) and maximal tumour debulking (MTD) was performed in 20 patients (26%); the remaining 4 patients (5%) underwent a laparotomy with biopsy only. HIPEC was administered in 67 patients (88%). Median overall (OS) and disease-free survival (DFS) after CRS was 97.8 (80.2-115.4) and 58.8 (47.4-70.3) months, respectively. After complete cytoreduction, 100% overall survival was observed amongst patients with low-grade disease. Ki-67 proliferation index was significantly associated with survival outcomes after complete cytoreduction for DMPM and was an independent predictor of decreased survival. CONCLUSION With adequate patient selection (guided by histological classification and Ki-67 proliferation index) and complete cytoreduction with HIPEC, satisfactory outcomes can be achieved in selected patients with peritoneal mesothelioma.
Collapse
Affiliation(s)
- Syeda Nadia Shah Gilani
- a Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital , Basingstoke , UK
| | - Akash Mehta
- a Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital , Basingstoke , UK
| | - Alfonso Garcia-Fadrique
- b Department of General and Digestive Surgery , Valencia Oncology Institute Foundation , Valencia , Spain
| | - Babatunde Rowaiye
- a Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital , Basingstoke , UK
| | - Veronika Jenei
- c Cancer Sciences Unit , University of Southampton School of Medicine , Southampton , UK
| | - Sanjeev Dayal
- a Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital , Basingstoke , UK
| | - Kandiah Chandrakumaran
- a Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital , Basingstoke , UK
| | - Norman Carr
- a Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital , Basingstoke , UK
| | - Faheez Mohamed
- a Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital , Basingstoke , UK
| | - Tom Cecil
- a Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital , Basingstoke , UK
| | - Brendan Moran
- a Peritoneal Malignancy Institute, Basingstoke and North Hampshire Hospital , Basingstoke , UK
| |
Collapse
|
10
|
SFRP Tumour Suppressor Genes Are Potential Plasma-Based Epigenetic Biomarkers for Malignant Pleural Mesothelioma. DISEASE MARKERS 2017; 2017:2536187. [PMID: 29386699 PMCID: PMC5745727 DOI: 10.1155/2017/2536187] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/16/2017] [Indexed: 12/31/2022]
Abstract
Malignant pleural mesothelioma (MPM) is associated with asbestos exposure. Asbestos can induce chronic inflammation which in turn can lead to silencing of tumour suppressor genes. Wnt signaling pathway can be affected by chronic inflammation and is aberrantly activated in many cancers including colon and MPM. SFRP genes are antagonists of Wnt pathway, and SFRPs are potential tumour suppressors in colon, gastric, breast, ovarian, and lung cancers and mesothelioma. This study investigated the expression and DNA methylation of SFRP genes in MPM cells lines with and without demethylation treatment. Sixty-six patient FFPE samples were analysed and have showed methylation of SFRP2 (56%) and SFRP5 (70%) in MPM. SFRP2 and SFRP5 tumour-suppressive activity in eleven MPM lines was confirmed, and long-term asbestos exposure led to reduced expression of the SFRP1 and SFRP2 genes in the mesothelium (MeT-5A) via epigenetic alterations. Finally, DNA methylation of SFRPs is detectable in MPM patient plasma samples, with methylated SFRP2 and SFRP5 showing a tendency towards greater abundance in patients. These data suggested that SFRP genes have tumour-suppresive activity in MPM and that methylated DNA from SFRP gene promoters has the potential to serve as a biomarker for MPM patient plasma.
Collapse
|
11
|
Zhang T, Lv L, Huang Y, Ren X, Shi Q. Chromosome nondisjunction during bipolar mitoses of binucleated intermediates promote aneuploidy formation along with multipolar mitoses rather than chromosome loss in micronuclei induced by asbestos. Oncotarget 2017; 8:11030-11041. [PMID: 28038458 PMCID: PMC5355243 DOI: 10.18632/oncotarget.14212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022] Open
Abstract
Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei.
Collapse
Affiliation(s)
- Tianwei Zhang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Lei Lv
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Yun Huang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Xiaohui Ren
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Qinghua Shi
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, Anhui, China.,Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
| |
Collapse
|
12
|
Robinson C, Dick IM, Wise MJ, Holloway A, Diyagama D, Robinson BWS, Creaney J, Lake RA. Consistent gene expression profiles in MexTAg transgenic mouse and wild type mouse asbestos-induced mesothelioma. BMC Cancer 2015; 15:983. [PMID: 26680231 PMCID: PMC4683914 DOI: 10.1186/s12885-015-1953-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/23/2015] [Indexed: 02/08/2023] Open
Abstract
Background The MexTAg transgenic mouse model of mesothelioma replicates many aspects of human mesothelioma, including induction by asbestos, pathogenicity and response to cytotoxic chemotherapy, despite high levels of the SV40 large T Antigen (TAg) in the mesothelial compartment. This model enables analysis of the molecular events associated with asbestos induced mesothelioma and is utilised here to investigate the molecular dynamics of tumours induced in these mice, using gene expression patterns as a read out. Methods Gene expression of MexTAg mesothelioma cell lines bearing a high or low number of copies of the TAg transgene were compared to wild type mouse mesotheliomas and normal mouse mesothelial cells using Affymetrix microarray. These data were then compared to a similar published human microarray study using the same platform. Results The main expression differences between transgenic mouse and wild type mouse mesotheliomas occurred for genes involved in cell cycle regulation and DNA replication, as would be expected from overexpression of the TAg oncogene. Quantitative PCR confirmed that E2F and E2F regulated genes were significantly more upregulated in MexTAg mesotheliomas and MexTAg mesothelial cells compared to wild type mesotheliomas. Like human mesothelioma, both MexTAg and wild type mesotheliomas had more genes underexpressed than overexpressed compared to normal mouse mesothelial cells. Most notably, the cdkn2 locus was deleted in the wild type mouse mesotheliomas, consistent with 80 % human mesotheliomas, however, this region was not deleted in MexTAg mesotheliomas. Regardless of the presence of TAg, all mouse mesotheliomas had a highly concordant set of deregulated genes compared to normal mesothelial cells that overlapped with the deregulated genes between human mesotheliomas and mesothelial cells. Conclusions This investigation demonstrates that the MexTAg mesotheliomas are comparable with wild type mouse mesotheliomas in their representation of human mesothelioma at the molecular level, with some key gene expression differences that are attributable to the TAg transgene expression. Of particular note, MexTAg mesothelioma development was not dependent on cdkn2 deletion. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1953-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cleo Robinson
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, M503, Harry Perkins Institute for Medical Research, QQ Block, QEII Medical Centre, Nedlands, Perth, 6009, Western Australia, Australia. .,Anatomical Pathology, PathWest Laboratory Medicine, J Block, QEII Medical Centre, Hospital Ave, Nedlands, Perth, 6009, Western Australia, Australia. .,Present address: Anatomical Pathology, PathWest Laboratory Medicine, J Block, QEII Medical Centre, Hospital Ave, Nedlands, Perth, 6009, Western Australia, Australia.
| | - Ian M Dick
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, M503, Harry Perkins Institute for Medical Research, QQ Block, QEII Medical Centre, Nedlands, Perth, 6009, Western Australia, Australia.
| | - Michael J Wise
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, Perth, 6008, Western Australia, Australia.
| | - Andrew Holloway
- Peter MacCallum Institute for Cancer Research, St. Andrew's Place, Melbourne, 3002, Victoria, Australia.
| | - Dileepa Diyagama
- Peter MacCallum Institute for Cancer Research, St. Andrew's Place, Melbourne, 3002, Victoria, Australia.
| | - Bruce W S Robinson
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, M503, Harry Perkins Institute for Medical Research, QQ Block, QEII Medical Centre, Nedlands, Perth, 6009, Western Australia, Australia.
| | - Jenette Creaney
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, M503, Harry Perkins Institute for Medical Research, QQ Block, QEII Medical Centre, Nedlands, Perth, 6009, Western Australia, Australia.
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, School of Medicine and Pharmacology, University of Western Australia, M503, Harry Perkins Institute for Medical Research, QQ Block, QEII Medical Centre, Nedlands, Perth, 6009, Western Australia, Australia.
| |
Collapse
|
13
|
Stamou K, Tsamis D, Pallas N, Samanta E, Courcoutsakis N, Prassopoulos P, Tentes AA. Treating peritoneal mesothelioma with cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. A case series and review of the literature. Int J Hyperthermia 2015; 31:850-6. [PMID: 26382910 DOI: 10.3109/02656736.2015.1075071] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Encouraging results on survival of patients with malignant peritoneal mesothelioma have been shown with the use of cytoreductive surgery and perioperative intraperitoneal chemotherapy. This study explores the impact of aggressive surgical treatment on overall survival of peritoneal mesothelioma. METHODS This is a retrospective analysis of prospectively collected clinical data of all patients with diagnosis of malignant peritoneal mesothelioma treated in a designated referral centre in Greece. All patients were offered cytoreductive surgery and intraperitoneal chemotherapy. Patient's characteristics, operative reports, pathology reports, and discharge summaries were stored in an electronic database and later reviewed and analysed. RESULTS Cytoreduction for peritoneal mesothelioma was performed on 20 patients (15 men and 5 women) with a mean age of 59.4 years (SD 16.1). Mean peritoneal cancer index was 16.1 (SD 10.4) and the median completeness of cytoreduction score was 2 (range 1-2). Mean overall survival was 46.8 months (SE 4.03) with a mean of 21.4 and median of 18 months of follow-up. Disease-specific survival was 100% for the observed period. Univariate analysis showed the completeness of cytoreduction as the only possible predictor of survival. A median of 10 (range 4-14) peritonectomy procedures were performed per patient. Median hospital stay was 14 (range 10-57 days). Grade III and IV complications occurred post-operatively in 5 patients (25%). Two patients died in the post-operative period of pulmonary embolism and myocardial infarction. CONCLUSION Cytoreductive surgery with HIPEC has proved the most effective treatment even when taking account of the cost of significant morbidity.
Collapse
Affiliation(s)
| | - Dimitrios Tsamis
- a Department of Surgical Oncology , Metropolitan Hospital , Athens , Greece
| | - Nikolaos Pallas
- a Department of Surgical Oncology , Metropolitan Hospital , Athens , Greece
| | - Evangelia Samanta
- b Department of Anaesthesiology , Metropolitan Hospital , Athens , Greece , and
| | | | | | | |
Collapse
|
14
|
Establishment of immortalized murine mesothelial cells and a novel mesothelioma cell line. In Vitro Cell Dev Biol Anim 2015; 51:714-21. [PMID: 25877069 PMCID: PMC4539351 DOI: 10.1007/s11626-015-9885-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/02/2015] [Indexed: 12/02/2022]
Abstract
Mesothelial cells are susceptible to asbestos fiber-induced cytotoxicity and on longer time scales to transformation; the resulting mesothelioma is a highly aggressive neoplasm that is considered as incurable at the present time Zucali et al. (Cancer Treatment Reviews 37:543–558, 2011). Only few murine cell culture models of immortalized mesothelial cells and mesothelioma cell lines exist to date. We generated SV40-immortalized cell lines derived from wild-type (WT) and neurofibromatosis 2 (merlin) heterozygote (Nf2+/−) mice, both on a commonly used genetic background, C57Bl/6J. All immortalized mesothelial clones consistently grow in DMEM supplemented with fetal bovine serum. Cells can be passaged for more than 40 times without any signs of morphological changes or a decrease in proliferation rate. The tumor suppressor gene NF2 is one of the most frequently mutated genes in human mesothelioma, but its detailed function is still unknown. Thus, these genotypically distinct cell lines likely relevant for malignant mesothelioma formation are expected to serve as useful in vitro models, in particular to compare with in vivo studies in mice of the same genotype. Furthermore, we generated a novel murine mesothelioma cell line RN5 originating from an Nf2+/− mouse subjected to repeated crocidolite exposure. RN5 cells are highly tumorigenic.
Collapse
|
15
|
Marcello MA, Malandrino P, Almeida JFM, Martins MB, Cunha LL, Bufalo NE, Pellegriti G, Ward LS. The influence of the environment on the development of thyroid tumors: a new appraisal. Endocr Relat Cancer 2014; 21:T235-54. [PMID: 24948559 DOI: 10.1530/erc-14-0131] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most epidemiological studies concerning differentiated thyroid cancers (DTC) indicate an increasing incidence over the last two decades. This increase might be partially explained by the better access to health services worldwide, but clinicopathological analyses do not fully support this hypothesis, indicating that there are carcinogenetic factors behind this noticeable increasing incidence. Although we have undoubtedly understood the biology and molecular pathways underlying thyroid carcinogenesis in a better way, we have made very little progresses in identifying a risk profile for DTC, and our knowledge of risk factors is very similar to what we knew 30-40 years ago. In addition to ionizing radiation exposure, the most documented and established risk factor for DTC, we also investigated the role of other factors, including eating habits, tobacco smoking, living in a volcanic area, xenobiotics, and viruses, which could be involved in thyroid carcinogenesis, thus, contributing to the increase in DTC incidence rates observed.
Collapse
Affiliation(s)
- M A Marcello
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - P Malandrino
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - J F M Almeida
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - M B Martins
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - L L Cunha
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - N E Bufalo
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - G Pellegriti
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| | - L S Ward
- Laboratory of Cancer Molecular Genetics (Gemoca)Faculty of Medical Sciences, University of Campinas (FCM-Unicamp), Rua Tessalia Vieira de Camargo, 126, Barao Geraldo, Campinas, Sao Paulo, 13083-887, BrazilEndocrinologyDepartment of Clinical and Molecular Biomedicine, Garibaldi-Nesima Medical Center, University of Catania, Catania, Italy
| |
Collapse
|
16
|
The role of key genes and pathways involved in the tumorigenesis of Malignant Mesothelioma. Biochim Biophys Acta Rev Cancer 2014; 1845:232-47. [PMID: 24491449 DOI: 10.1016/j.bbcan.2014.01.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/20/2014] [Accepted: 01/24/2014] [Indexed: 12/14/2022]
Abstract
Malignant Mesothelioma (MM) is a very aggressive cancer with low survival rates and often diagnosed at an advanced stage. Several players have been implicated in the development of this cancer, such as asbestos, erionite and the simian virus 40 (SV40). Here, we have reviewed the involvement of erionite, SV40, as well as, the role of several genes (p16(INK4a), p14(ARF), NF2, LATS2, SAV, CTNNB1 and among others), the pathways (RAS, PI3K, Wnt, BCL and Hippo), and their respective roles in the development of MM.
Collapse
|