1
|
Ekram SN, Elemam O, Alandonisi M, Flemban A, Samkari J, Zainuddin HH, Azher Z, Tashkandi E, Mufti A, Khogeer A. Mutational spectrum and profile of breast and ovarian cancer patients in Saudi Arabia's western region: single center experience. Discov Oncol 2025; 16:829. [PMID: 40392379 PMCID: PMC12092876 DOI: 10.1007/s12672-025-02640-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND The incidence of breast cancer (BC) and ovarian cancer (OC) has increased in Saudi Arabia. The western region of Saudi Arabia presents a unique population with distinct genetic backgrounds, making it vital to investigate the prevalence of BC/OC-associated gene mutations in this area. This study aimed to determine the prevalence and mutational profiles of BC and/or OC predisposing genes in the western region of Saudi Arabia, and to characterize the associated phenotypes in individuals carrying these mutations. METHODS We employed next-generation sequencing (NGS) to identify the mutational spectra of 209 Saudi Arabian patients with BC and/or OC from the Western region. RESULTS 51/209 (24.4%) patients had a mutation in one of the BC/OC predisposing genes. Overall, 34, 10, and 7 PV/LPV were identified in BRCA1, BRCA2, and other genes, respectively. Mutations in BRCA1 were predominant and strongly related to high-grade, triple-negative BC. BRCA1 NM_007294.4:c.1140dup p.(Lys381Glufs*3), NM_007294.4:c.5095C > T p.(Arg1699Trp), NM_007294.4:c.4986 + 6 T > C (p.?), NM_007294.4:c.5251C > T p.(Arg1751*), and NM_007294.4:c.5067_5074 + 1del p.(Met1689Ilefs*3) were recurrent with NM_007294.4:c.3217_3218del p.(Gly1073*), NM_007294.4:c.5067_5074 + 1del p.(Met1689Ilefs*3), and NM_007294.4:c.5234del p.(Asn1745Thrfs*20) being novel. The combined frequency of recurrent mutations in BRCA1 was 42%. Concerning BRCA2, we identified a recurrent variant NM_000059.4:c.7480C > T p.(Arg2494*) and two novel variants NM_000059.4:c.643del p.(Glu215Lysfs*15) and NM_000059.4: EXon1-8del. CONCLUSION In our study, we identified a high prevalence of BRCA1/2 variants in the western region of Saudi Arabia, offering novel and important insights specific to this area. We also identified other gene variants, though their impact remains unclear due to the limited sample size. This work represents an important first step in understanding the genetic factors contributing to breast and ovarian cancer in the Western region. It underscores the urgent need for larger studies to comprehensively explore the genetic landscape and better understand how these variants influence cancer risk in this population.
Collapse
Affiliation(s)
- Samar N Ekram
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, 21955, Makkah, Saudi Arabia.
| | - Omima Elemam
- Medical Oncology, Oncology Centre, King Abdullah Medical City, Makkah, Saudi Arabia
- Department of Medical Oncology, Mansoura University, Mansoura, Egypt
| | - Munzir Alandonisi
- Medical Oncology, Oncology Centre, King Abdullah Medical City, Makkah, Saudi Arabia
| | - Arwa Flemban
- Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Jamil Samkari
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Zohor Azher
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, 21955, Makkah, Saudi Arabia
| | - Emad Tashkandi
- College of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmad Mufti
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, 21955, Makkah, Saudi Arabia
| | - Asim Khogeer
- Research Department, The Strategic Ministry Planning Administration, General Directorate of Health Affairs of Makkah Region, Ministry of Health, Makkah, Saudi Arabia
- Medical Genetics Unit, Maternity and Children Hospital, Makkah Healthcare Cluster, Ministry of Health, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Ameho S, Klutstein M. The effect of chronic inflammation on female fertility. Reproduction 2025; 169:e240197. [PMID: 39932461 PMCID: PMC11896653 DOI: 10.1530/rep-24-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 02/13/2025]
Abstract
In brief Chronic inflammation causes serious medical conditions in many organs and tissues, including female fertility. Here we review the current literature, showing that chronic inflammation has a negative impact on oocyte quality, folliculogenesis, hormone production, immune signaling and other processes that affect fertility in females. Abstract Inflammation has key biological roles in the battle against pathogens and additional key processes in development and tissue homeostasis. However, when inflammation becomes chronic, it can become a serious medical concern. Chronic inflammation has been shown to contribute to the etiology and symptoms of serious medical conditions such as ulcerative colitis, cardiovascular diseases, endometriosis and various cancers. One of the less recognized symptoms associated with chronic inflammation is its effect on reproduction, specifically on female fertility. Here we review the current literature, showing that chronic inflammation has a negative impact on oocyte quality, folliculogenesis, hormone production, immune signaling and other processes that affect fertility in females. We discuss several factors involved in the etiology of chronic inflammation and its effect on female fertility. We also discuss possible mechanisms by which these effects may be mediated and how interventions may mitigate the effect of chronic inflammation. Finally, we discuss the notion that in many cases, the effect of chronic inflammation is tightly correlated with and resembles the effect of aging, drawing interesting parallels between these processes, possibly through the effect of aging-associated inflammaging.
Collapse
Affiliation(s)
| | - Michael Klutstein
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
3
|
Fuentes C, Zingales V, Barat JM, Ruiz MJ. Combined Cytotoxic Effects of the Fungicide Azoxystrobin and Common Food-Contaminating Mycotoxins. Foods 2025; 14:1226. [PMID: 40238467 PMCID: PMC11988556 DOI: 10.3390/foods14071226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
This study assessed the cytotoxicity of the individual and combined exposure to the fungicide azoxystrobin (AZX) and the three common mycotoxins found in food: ochratoxin A (OTA), deoxynivalenol (DON), and T-2 toxin. Cytotoxic effects were evaluated using the resazurin and MTT assays in human hepatocarcinoma (HepG2) cells after 24 h of exposure, and the type of interaction between the compounds was determined using the isobologram method. Results showed that T-2 was the most cytotoxic compound, followed by DON, OTA, and AZX. The compound ratios in the mixture were calculated using three sublethal concentrations (IC50/2, IC50/4, and IC50/8) to achieve equal toxicity for each compound. Interaction analysis revealed that the nature of the interaction varied across components and concentrations. The AZX and DON mixture produced an antagonistic effect at all the analyzed effect levels. AZX and OTA or T2 mixtures, and tertiary combinations displayed antagonism at low effect values but additivity at high effect levels. Importantly, the quaternary mixture demonstrated synergism at all the effect levels. These findings highlight that the co-occurrence of fungicides and mycotoxins in food commodities can lead to complex exposure scenarios that may result in combined toxic effects on the organism.
Collapse
Affiliation(s)
- Cristina Fuentes
- University Institute of Food Engineering–FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (V.Z.); (M.-J.R.)
| | - Veronica Zingales
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (V.Z.); (M.-J.R.)
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - José Manuel Barat
- University Institute of Food Engineering–FoodUPV, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain;
| | - María-José Ruiz
- Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain; (V.Z.); (M.-J.R.)
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, Spain
| |
Collapse
|
4
|
Handschin C, Shalhoub H, Mazet A, Guyon C, Dusserre N, Boutet-Robinet E, Oliveira H, Guillermet-Guibert J. Biotechnological advances in 3D modeling of cancer initiation. Examples from pancreatic cancer research and beyond. Biofabrication 2025; 17:022008. [PMID: 40018875 DOI: 10.1088/1758-5090/adb51c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/12/2025] [Indexed: 03/01/2025]
Abstract
In recent years, biofabrication technologies have garnered significant attention within the scientific community for their potential to create advancedin vitrocancer models. While these technologies have been predominantly applied to model advanced stages of cancer, there exists a pressing need to develop pertinent, reproducible, and sensitive 3D models that mimic cancer initiation lesions within their native tissue microenvironment. Such models hold profound relevance for comprehending the intricacies of cancer initiation, to devise novel strategies for early intervention, and/or to conduct sophisticated toxicology assessments of putative carcinogens. Here, we will explain the pivotal factors that must be faithfully recapitulated when constructing these models, with a specific focus on early pancreatic cancer lesions. By synthesizing the current state of research in this field, we will provide insights into recent advances and breakthroughs. Additionally, we will delineate the key technological and biological challenges that necessitate resolution in future endeavors, thereby paving the way for more accurate and insightfulin vitrocancer initiation models.
Collapse
Affiliation(s)
- C Handschin
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - H Shalhoub
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
| | - A Mazet
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - C Guyon
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - N Dusserre
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - E Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - H Oliveira
- Université de Bordeaux, Tissue Bioengineering - BioTis, INSERM U1026, Bordeaux, F-33000, France
- INSERM U1026, ART BioPrint, F-33000 Bordeaux, France
| | - J Guillermet-Guibert
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, 2 av Hubert Curien, Toulouse, France
- Labex Toucan, 2 av Hubert Curien, Toulouse, France
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| |
Collapse
|
5
|
Chen Y, Zhang S, Sun Y, Zou J, Qiu X, Xi H, Xu Y, Li Y, Chen B, Fan J, Zhu M. Bisphenol A impairs oocyte maturation by dysfunction of cumulus cells. Theriogenology 2025; 233:139-146. [PMID: 39615448 DOI: 10.1016/j.theriogenology.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Bisphenol A (BPA) is a well-known environmental endocrine disruptor that has detrimental effects on reproduction. This study aimed to investigate whether BPA exposure could disrupt the function of cumulus cells and influence oocyte maturation and development. Porcine oocytes at the germinal vesicle stage were exposed to BPA for 44 h. The results revealed that BPA exposure led to dysfunction in cumulus cells by inhibiting meiotic division, inducing endoplasmic reticulum stress, and disrupting steroid synthesis. Furthermore, BPA exposure significantly increased reactive oxygen species and caused abnormal distribution of mitochondria in the oocytes. Notably, matured oocytes in the MII stage from the BPA-exposed groups showed significantly reduced development to the blastocyst stage, along with increased autophagy and apoptosis. These findings suggest that cumulus-oocyte complexes are sensitive to BPA exposure during the germinal vesicle stage, and the toxic effects of BPA on cumulus cells can severely inhibit oocyte and parthenogenetic embryos development.
Collapse
Affiliation(s)
- Yajie Chen
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Shuang Zhang
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yifan Sun
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Jialun Zou
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Xuan Qiu
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Haotong Xi
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yongnan Xu
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Yinghua Li
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China
| | - Bangzhu Chen
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jianglin Fan
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.
| | - Maobi Zhu
- Guangdong Province Key Laboratory, Southern China Institute of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, China.
| |
Collapse
|
6
|
Vannuccini ML, Della Torre C, Grassi G, Zambonin C, Cotugno P, Leaver MJ, Corsi I. nano-TiO 2 reduces bioavailability and biotransformation responses to crude oil WAF-associated PAHs in the European sea bass Dicentrachus labrax. MARINE POLLUTION BULLETIN 2024; 209:117265. [PMID: 39536376 DOI: 10.1016/j.marpolbul.2024.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The present study investigates the potential interaction between nano‑titanium dioxide (nano-TiO2) and the water accommodated fraction (WAF) of crude oil and associated chemicals on bioavailability and biotransformation responses in the European sea bass (Dicentrarchus labrax). An in vivo (48-h) waterborne exposure with nano-TiO2 (10 mgL-1), crude oil WAF (0.068 gL-1), alone and in combination was performed. Combined exposure significantly reduced levels of polycyclic aromatic hydrocarbons (PAH) in either seawater and fish fillets compared to WAF alone. A significant reduction in the expression of several biotransformation genes (cyp1a, gsta, erβ2, elmod2, abcb1 and abcc1) when nano-TiO2 was combined with WAF was observed in fish liver, compared to WAF alone. EROD and GST enzyme activities were also significantly reduced. Nano-TiO2 can reduce PAHs bioavailability in seawater and biological responses in European sea bass, suggesting a potential safe application of nano-TiO2 for the remediation of crude oil WAF in the marine environment.
Collapse
Affiliation(s)
- M L Vannuccini
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università snc, Viterbo 01100, Italy.
| | - C Della Torre
- Department of Bioscience, University of Milano, Via Celoria 26, 20133 Milano, Italy
| | - G Grassi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy
| | - C Zambonin
- Department of Biosciences, Biotechnology and Environment, University of Bari "Aldo Moro", Via Orabona 4, Bari 70125, Italy
| | - P Cotugno
- Department of Chemistry, University of Bari "Aldo Moro", Via Orabona 4, Bari, 70125, Italy
| | - M J Leaver
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - I Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, Via Mattioli 4, 53100 Siena, Italy.
| |
Collapse
|
7
|
Mahmud F, Sarker DB, Jocelyn JA, Sang QXA. Molecular and Cellular Effects of Microplastics and Nanoplastics: Focus on Inflammation and Senescence. Cells 2024; 13:1788. [PMID: 39513895 PMCID: PMC11545702 DOI: 10.3390/cells13211788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Microplastics and nanoplastics (MNPs) are ubiquitous environmental contaminants. Their prevalence, persistence, and increasing industrial production have led to questions about their long-term impact on human and animal health. This narrative review describes the effects of MNPs on oxidative stress, inflammation, and aging. Exposure to MNPs leads to increased production of reactive oxygen species (ROS) across multiple experimental models, including cell lines, organoids, and animal systems. ROS can cause damage to cellular macromolecules such as DNA, proteins, and lipids. Direct interaction between MNPs and immune cells or an indirect result of oxidative stress-mediated cellular damage may lead to increased production of pro-inflammatory cytokines throughout different MNP-exposure conditions. This inflammatory response is a common feature in the pathogenesis of neurodegenerative, cardiovascular, and other age-related diseases. MNPs also act as cell senescence inducers by promoting mitochondrial dysfunction, impairing autophagy, and activating DNA damage responses, exacerbating cellular aging altogether. Increased senescence of reproductive cells and transfer of MNPs/induced damages from parents to offspring in animals further corroborates the transgenerational health risks of the tiny particles. This review aims to provoke a deeper investigation into the notorious effects these pervasive particles may have on human well-being and longevity.
Collapse
Affiliation(s)
- Faiza Mahmud
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (F.M.); (D.B.S.); (J.A.J.)
| | - Drishty B. Sarker
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (F.M.); (D.B.S.); (J.A.J.)
| | - Jonathan A. Jocelyn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (F.M.); (D.B.S.); (J.A.J.)
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA; (F.M.); (D.B.S.); (J.A.J.)
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306-4380, USA
| |
Collapse
|
8
|
Tezcan G, Yakar N, Hasturk H, Van Dyke TE, Kantarci A. Resolution of chronic inflammation and cancer. Periodontol 2000 2024; 96:229-249. [PMID: 39177291 DOI: 10.1111/prd.12603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Chronic inflammation poses challenges to effective cancer treatment. Although anti-inflammatory therapies have shown short-term benefits, their long-term implications may be unfavorable because they fail to initiate the necessary inflammatory responses. Recent research underscores the promise of specialized pro-resolving mediators, which play a role in modulating the cancer microenvironment by promoting the resolution of initiated inflammatory processes and restoring tissue hemostasis. This review addresses current insights into how inflammation contributes to cancer pathogenesis and explores recent strategies to resolve inflammation associated with cancer.
Collapse
Affiliation(s)
- Gulcin Tezcan
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, Bursa, Turkey
| | - Nil Yakar
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Hatice Hasturk
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Thomas E Van Dyke
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Mukty SA, Hasan R, Bhuia MS, Saha AK, Rahman US, Khatun MM, Bithi SA, Ansari SA, Ansari IA, Islam MT. Assessment of sedative activity of fraxin: In vivo approach along with receptor binding affinity and molecular interaction with GABAergic system. Drug Dev Res 2024; 85:e22250. [PMID: 39154218 DOI: 10.1002/ddr.22250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/17/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
Insomnia is a sleep disorder in which you have trouble falling and/or staying asleep. This research aims to evaluate the sedative effects of fraxin (FX) on sleeping mice induced by thiopental sodium (TS). In addition, a molecular docking study was conducted to investigate the molecular processes underlying these effects. The study used adult male Swiss albino mice and administered FX (10 and 20 mg/kg, i.p.) and diazepam (DZP) (2 mg/kg) either separately or in combination within the different groups to examine their modulatory effects. After a period of 30 min, the mice that had been treated were administered (TS: 20 mg/kg, i.p.) to induce sleep. The onset of sleep for the mice and the length of their sleep were manually recorded. Additionally, a computational analysis was conducted to predict the role of gamma-aminobutyric acid (GABA) receptors in the sleep process and evaluate their pharmacokinetics and toxicity. The outcomes indicated that FX extended the length of sleep and reduced the time it took to fall asleep. When the combined treatment of FX and DZP showed synergistic sedative action. Also, FX had a binding affinity of -7.2 kcal/mol, while DZP showed -8.4 kcal/mol. The pharmacokinetic investigation of FX demonstrated favorable drug-likeness and strong pharmacokinetic characteristics. Ultimately, FX demonstrated a strong sedative impact in the mouse model, likely via interacting with the GABAA receptor pathways.
Collapse
Affiliation(s)
- Sonaly Akter Mukty
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Anik Kumar Saha
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Umme Sadea Rahman
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
| | - Mst Muslima Khatun
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Sumaya Akter Bithi
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd., Gopalganj, Dhaka, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
10
|
Abarikwu SO, Coimbra JLP, Campolina-Silva G, Rocha ST, Costa VV, Lacerda SMSN, Costa GMJ. Acute effects of atrazine on the immunoexpressions of sertoli and germ cells molecular markers, cytokines, chemokines, and sex hormones levels in mice testes and epididymides. CHEMOSPHERE 2024; 363:142852. [PMID: 39019188 DOI: 10.1016/j.chemosphere.2024.142852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Atrazine is currently one of the most commonly used agrochemicals in the United States and elsewhere. Here, we studied the immunoexpression of molecular markers of mammalian testicular functions: androgen receptor (AR), promyelocytic leukemia zinc finger (PLZF), GDNF family receptor alpha-1 (GFRA1), VASA/DDX4 (DEAD-Box Helicase 4) as well as the levels of intratesticular and intra-epididymal estradiol (E2) and dihydrotestosterone (DHT), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukins (IL-1β and IL-6, IL-10) and testicular chemokines (CXCL-1, CCL-2 and CCL3) in BalB/c mice after a sub-acute gavage treatment with a gonado-toxin, atrazine (50 mg/kg body wt.) for three days. We found high numbers of AR immunopositive Sertoli cells and low numbers of GFRA1, PLZF and VASA/DDX4-positive germ cells in the seminiferous tubule regions of the testes. While TNF-α level in the testes fell and remained unchanged in the epididymides, IFN-γ levels in the testes remained constant but increased in the epididymides. E2 and DHT concentrations remained unaltered in the testes but were changed in the epididymides. There were no significant changes in the levels of interleukins in the testis and epididymis. Intratesticular chemokines were also not significantly altered, except for CCL-4, which was increased in the testis. Light microscopy of the epididymis showed detached epithelium and some detached cells in the lumen. It is concluded that atrazine changed the inflammatory status of the gonads and highlighted Sertoli and undifferentiated spermatogonia as important targets for atrazine's toxic effects in the testis of mice. Concerning the epididymis, atrazine altered the epididymal hormonal concentrations and promoted histopathological modifications in its parenchyma.
Collapse
Affiliation(s)
- Sunny O Abarikwu
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria.
| | - John L P Coimbra
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | | | - Samuel Tadeu Rocha
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Vivian Vasconcelos Costa
- Centro de Pesquisa e Desenvolvimento de Fármacos, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Samyra M S N Lacerda
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| | - Guilherme M J Costa
- Laboratório de Biologia Celular, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil
| |
Collapse
|
11
|
Han Y, Lv W, Guo J, Shang Y, Yang F, Zhang X, Xiao K, Zong L, Hu W. Prognostic Significance of Inflammatory and Nutritional Indices for Serous Ovary Cancer. CLIN EXP OBSTET GYN 2024; 51. [DOI: 10.31083/j.ceog5108183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2024]
Abstract
Background: Cancer prognoses have been indicated to be associated with Onodera’s prognostic nutritional index (OPNI), the neutrophil-to-lymphocyte ratio (NLR), the platelet-to-lymphocyte ratio (PLR), and the systemic immune-inflammatory index (SII). We investigated the prognostic value of the OPNI, NLR, PLR, and SII for serous ovary cancer (SOC). Methods: We retrospectively analyzed the cases of 133 patients with SOC treated at our institution from 2014 to 2021. The survival of the patients was assessed utilizing the Kaplan-Meier method to analyze overall survival (OS). Additionally, a multivariate analysis employing the Cox proportional hazard regression model was conducted to identify the independent prognostic factors for SOC. The positive event for the ROC diagnosis is mortality during follow-up. Results: The results revealed the following optimal cut-off points: OPNI, 45.5; NLR, 2.3; PLR, 224.4; and SII, 747.5. A comparative analysis demonstrated significant differences between high- and low-OPNI score groups in the treatment method, tumor stage, lymph node metastasis, albumin, NLR, PLR, and SII; other indicators are not irrelevant. We also observed that the OPNI, NLR, PLR, and SII were related to OS: the OPNI score was positively correlated with OS whereas the NLR, PLR, and SII values were negatively correlated with OS. These results identified the OPNI as the best prognostic indicator for SOC. Conclusions: Our findings demonstrate that the OPNI, NLR, PLR, and SII could be used as predictive and prognostic parameters for SOC.
Collapse
Affiliation(s)
- Yan Han
- Department of Gynecology, Changzhi People's Hospital, The Third Clinical College of Changzhi Medical College, 046000 Changzhi, Shanxi, China
| | - Weiqin Lv
- Department of Gynecology, Yuncheng Central Hospital, The Affiliated Hospital of Shanxi Medical University, 044000 Yuncheng, Shanxi, China
| | - Jianfei Guo
- Department of Gynecology, Changzhi People's Hospital, The Third Clinical College of Changzhi Medical College, 046000 Changzhi, Shanxi, China
| | - Yun Shang
- Department of Gynecology, Yuncheng Central Hospital, The Affiliated Hospital of Shanxi Medical University, 044000 Yuncheng, Shanxi, China
| | - Fan Yang
- Department of Central laboratory, Changzhi People's Hospital, The Third Clinical College of Changzhi Medical College, 046000 Changzhi, Shanxi, China
| | - Xiaomin Zhang
- Department of Central laboratory, Changzhi People's Hospital, The Third Clinical College of Changzhi Medical College, 046000 Changzhi, Shanxi, China
| | - Keyuan Xiao
- Department of Central laboratory, Changzhi People's Hospital, The Third Clinical College of Changzhi Medical College, 046000 Changzhi, Shanxi, China
| | - Liang Zong
- Department of Central laboratory, Changzhi People's Hospital, The Third Clinical College of Changzhi Medical College, 046000 Changzhi, Shanxi, China
- Department of Gastrointestinal Surgery, Changzhi People's Hospital, The Third Clinical College of Changzhi Medical College, 046000 Changzhi, Shanxi, China
| | - Wenqing Hu
- Department of Gastrointestinal Surgery, Changzhi People's Hospital, The Third Clinical College of Changzhi Medical College, 046000 Changzhi, Shanxi, China
| |
Collapse
|
12
|
Chen LW, Chen X, Mo HY, Shan CH, Zhu RP, Gao H, Tao FB. Exploring noninvasive matrices for assessing long-term exposure to phthalates: a scoping review. Front Public Health 2024; 12:1411588. [PMID: 39157530 PMCID: PMC11327007 DOI: 10.3389/fpubh.2024.1411588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
The phthalic acid esters (PAEs) are one class of the most abundant and frequently studied pseudo-persistent organic pollutants. Noninvasive urine is an effective substrate for evaluating PAE exposure, but repeated sampling is needed to overcome this bias. This adds much work to on-site collection and the cost of detection increases exponentially. Therefore, the aim of this study was to conduct a scope review to describe the detection methods and validity of the use of other noninvasive matrices, such as nails and hair, for assessing long-term exposure to PAEs. The PubMed, Web of Science and China National Knowledge Infrastructure (CNKI), electronic databases were searched from 1 January 2000 to 3 April 2024, and 12 studies were included. Nine and three studies used hair and nails, respectively, as noninvasive matrices for detecting PAE exposure. Five articles compared the results of nail or hair and urine tests for validity of the assessment of PAE exposure. The preprocessing and detection methods for these noninvasive samples are also described. The results of this review suggest that, compared with nails, hair may be more suitable as a noninvasive alternative matrix for assessing long-term exposure to PAEs. However, sample handling procedures such as the extraction and purification of compounds from hair are not uniform in various studies; therefore, further exploration and optimization of this process, and additional research evidence to evaluate its effectiveness, are needed to provide a scientific basis for the promotion and application of hair detection methods for assessing long-term PAE exposure levels.
Collapse
Affiliation(s)
- Li-wen Chen
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xin Chen
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hua-yan Mo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chun-han Shan
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ruo-ping Zhu
- Child Healthcare Department, Anhui Hospital Affiliated to Children’s Hospital of Fudan University/Anhui Provincial Children’s Hospital, Hefei, Anhui, China
| | - Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fang-biao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People’s Republic of China, Hefei, Anhui, China
| |
Collapse
|
13
|
Harris MA, Savas P, Virassamy B, O'Malley MMR, Kay J, Mueller SN, Mackay LK, Salgado R, Loi S. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer 2024; 24:554-577. [PMID: 38969810 DOI: 10.1038/s41568-024-00714-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/31/2024] [Indexed: 07/07/2024]
Abstract
The tumour immune microenvironment is shaped by the crosstalk between cancer cells, immune cells, fibroblasts, endothelial cells and other stromal components. Although the immune tumour microenvironment (TME) serves as a source of therapeutic targets, it is also considered a friend or foe to tumour-directed therapies. This is readily illustrated by the importance of T cells in triple-negative breast cancer (TNBC), culminating in the advent of immune checkpoint therapy in combination with cytotoxic chemotherapy as standard of care for both early and advanced-stage TNBC, as well as recent promising signs of efficacy in a subset of hormone receptor-positive disease. In this Review, we discuss the various components of the immune TME in breast cancer and therapies that target or impact the immune TME, as well as the complexity of host physiology.
Collapse
Affiliation(s)
- Michael A Harris
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Peter Savas
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Balaji Virassamy
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Megan M R O'Malley
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Jasmine Kay
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria, Australia
| | - Roberto Salgado
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Department of Pathology, ZAS Ziekenhuizen, Antwerp, Belgium
| | - Sherene Loi
- The Sir Peter MacCallum Department of Medical Oncology, University of Melbourne, Melbourne, Victoria, Australia.
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Acharya TR, Lamichhane P, Jaiswal A, Kaushik N, Kaushik NK, Choi EH. Evaluation of degradation efficacy and toxicity mitigation for 4-nitrophenol using argon and air-mixed argon plasma jets. CHEMOSPHERE 2024; 358:142211. [PMID: 38697573 DOI: 10.1016/j.chemosphere.2024.142211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/05/2024]
Abstract
This paper investigates the effects of argon (Ar) and that of Ar mixed with ambient air (Ar-Air) cold plasma jets (CPJs) on 4-nitrophenol (4-NP) degradation using low input power. The introduction of ambient air into the Ar-Air plasma jet enhances ionization-driven processes during high-voltage discharge by utilizing nitrogen and oxygen molecules from ambient air, resulting in increased reactive oxygen and nitrogen species (RONS) production, which synergistically interacts with argon. This substantial generation of RONS establishes Ar-Air plasma jet as an effective method for treating 4-NP contamination in deionized water (DW). Notably, the Ar-Air plasma jet treatment outperforms that of the Ar jet. It achieves a higher degradation rate of 97.2% and a maximum energy efficiency of 57.3 gkW-1h-1, following a 6-min (min) treatment with 100 mgL-1 4-NP in DW. In contrast, Ar jet treatment yielded a lower degradation rate and an energy efficiency of 75.6% and 47.8 gkW-1h-1, respectively, under identical conditions. Furthermore, the first-order rate coefficient for 4-NP degradation was measured at 0.23 min-1 for the Ar plasma jet and significantly higher at 0.56 min-1 for the Ar-Air plasma jet. Reactive oxygen species, such as hydroxyl radical and ozone, along with energy from excited species and plasma-generated electron transfers, are responsible for CPJ-assisted 4-NP breakdown. In summary, this study examines RONS production from Ar and Ar-Air plasma jets, evaluates their 4-NP removal efficacy, and investigates the biocompatibility of 4-NP that has been degraded after plasma treatment.
Collapse
Affiliation(s)
- Tirtha Raj Acharya
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, Republic of Korea
| | - Prajwal Lamichhane
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, Republic of Korea
| | - Apurva Jaiswal
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, Republic of Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, Republic of Korea
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897 Seoul, Republic of Korea.
| |
Collapse
|
15
|
Turizo-Smith AD, Córdoba-Hernandez S, Mejía-Guarnizo LV, Monroy-Camacho PS, Rodríguez-García JA. Inflammation and cancer: friend or foe? Front Pharmacol 2024; 15:1385479. [PMID: 38799159 PMCID: PMC11117078 DOI: 10.3389/fphar.2024.1385479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic inflammation plays a crucial role in the onset and progression of pathologies like neurodegenerative and cardiovascular diseases, diabetes, and cancer, since tumor development and chronic inflammation are linked, sharing common signaling pathways. At least 20% of breast and colorectal cancers are associated with chronic inflammation triggered by infections, irritants, or autoimmune diseases. Obesity, chronic inflammation, and cancer interconnection underscore the importance of population-based interventions in maintaining healthy body weight, to disrupt this axis. Given that the dietary inflammatory index is correlated with an increased risk of cancer, adopting an anti-inflammatory diet supplemented with nutraceuticals may be useful for cancer prevention. Natural products and their derivatives offer promising antitumor activity with favorable adverse effect profiles; however, the development of natural bioactive drugs is challenging due to their variability and complexity, requiring rigorous research processes. It has been shown that combining anti-inflammatory products, such as non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids, and statins, with plant-derived products demonstrate clinical utility as accessible adjuvants to traditional therapeutic approaches, with known safety profiles. Pharmacological approaches targeting multiple proteins involved in inflammation and cancer pathogenesis emerge as a particularly promising option. Given the systemic and multifactorial nature of inflammation, comprehensive strategies are essential for long term success in cancer therapy. To gain insights into carcinogenic phenomena and discover diagnostic or clinically relevant biomarkers, is pivotal to understand genetic variability, environmental exposure, dietary habits, and TME composition, to establish therapeutic approaches based on molecular and genetic analysis. Furthermore, the use of endocannabinoid, cannabinoid, and prostamide-type compounds as potential therapeutic targets or biomarkers requires further investigation. This review aims to elucidate the role of specific etiological agents and mediators contributing to persistent inflammatory reactions in tumor development. It explores potential therapeutic strategies for cancer treatment, emphasizing the urgent need for cost-effective approaches to address cancer-associated inflammation.
Collapse
Affiliation(s)
- Andrés David Turizo-Smith
- Doctorado en Oncología, Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
- Semillero de Investigación en Cannabis y Derivados (SICAD), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Samantha Córdoba-Hernandez
- Semillero de Investigación en Cannabis y Derivados (SICAD), Universidad Nacional de Colombia, Bogotá, Colombia
| | - Lidy Vannessa Mejía-Guarnizo
- Facultad de Ciencias, Maestría en Ciencias, Microbiología, Universidad Nacional de Colombia, Bogotá, Colombia
- Grupo de investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | | |
Collapse
|
16
|
Meng M, Yang Y, Song L, Peng J, Li S, Gao Z, Bu Y, Gao J. Association between urinary phthalates and phthalate metabolites and cancer risk: A systematic review and meta-analysis. Heliyon 2024; 10:e29684. [PMID: 38665549 PMCID: PMC11044039 DOI: 10.1016/j.heliyon.2024.e29684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Phthalates, widely utilized in industrial products, are classified as endocrine-disrupting chemicals (EDCs). Although certain phthalate and their metabolites have been implicated in cancer development, the reported findings have exhibited inconsistencies. Therefore, we conducted the comprehensive literature search to assess the association between phthalate and their metabolites and cancer risk by identifying original studies measuring phthalates or their metabolites and reporting their correlation with cancer until July 4, 2023. The Odds Ratios (ORs) and corresponding 95% confidence intervals (CIs) were extracted and analyzed to estimate the risk. Pooled data from eleven studies, including 3101 cancer patients and 6858 controls, were analyzed using a fixed- or random-effects model based on heterogeneity tests. When comparing extreme categories of different phthalates and their metabolites, we observed a significant association between urinary phthalates and phthalate metabolites (MEHHP, MECPP, DBP and MBzP) and cancer risk. The findings of our meta-analysis reinforce the existing evidence that urinary phthalates and phthalate metabolites is strongly associated with cancer development. Further investigations are warranted to elucidate the underlying mechanisms of this association. These results may offer novel insights into cancer development.
Collapse
Affiliation(s)
- Meng Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Yao Yang
- Department of Pharmacy, The General Hospital of Western Theater Command of PLA, Chengdu, China
| | - Liang Song
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Jian Peng
- Biobank Center, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shenglong Li
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
| | - Zhengjun Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, China
- Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing, China
| | - Junwei Gao
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| |
Collapse
|
17
|
Santiago MSA, Avellar MCW, Perobelli JE. Could the gut microbiota be capable of making individuals more or less susceptible to environmental toxicants? Toxicology 2024; 503:153751. [PMID: 38354972 DOI: 10.1016/j.tox.2024.153751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Environmental toxicants are chemical substances capable to impair environmental quality and exert adverse effects on humans and other animals. The main routes of exposure to these pollutants are through the respiratory tract, skin, and oral ingestion. When ingested orally, they will encounter trillions of microorganisms that live in a community - the gut microbiota (GM). While pollutants can disrupt the GM balance, GM plays an essential role in the metabolism and bioavailability of these chemical compounds. Under physiological conditions, strategies used by the GM for metabolism and/or excretion of xenobiotics include reductive and hydrolytic transformations, lyase and functional group transfer reactions, and enzyme-mediated functional transformations. Simultaneously, the host performs metabolic processes based mainly on conjugation, oxidation, and hydrolysis reactions. Thus, due to the broad variety of bacterial enzymes present in GM, the repertoire of microbial transformations of chemicals is considered a key component of the machinery involved in the metabolism of pollutants in humans and other mammals. Among pollutants, metals deserve special attention once contamination by metals is a worldwide problem, and their adverse effects can be observed even at very low concentrations due to their toxic properties. In this review, bidirectional interaction between lead, arsenic, cadmium, and mercury and the host organism and its GM will be discussed given the most recent literature, presenting an analysis of the ability of GM to alter the host organism's susceptibility to the toxic effects of heavy metals, as well as evaluating the extent to which interventions targeting the microbiota could be potential initiatives to mitigate the adverse effects resulting from poisoning by heavy metals. This study is the first to highlight the overlap between some of the bacteria found to be altered by metal exposure and the bacteria that also aid the host organism in the metabolism of these metals. This could be a key factor to determine the beneficial species able to minimize the toxicity of metals in future therapeutic approaches.
Collapse
Affiliation(s)
- Marcella S A Santiago
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil
| | - Maria Christina W Avellar
- Department of Pharmacology, Universidade Federal de São Paulo - Escola Paulista de Medicina, Três de Maio, 100, São Paulo, SP 04044-020, Brazil
| | - Juliana E Perobelli
- Laboratory of Experimental Toxicology - LATOEX, Universidade Federal de São Paulo, Instituto do Mar, Carvalho de Mendonça, 144, Santos, SP 11070-100, Brazil.
| |
Collapse
|
18
|
JIN T, ZHOU Q, SHEN J, ZHANG Z, LIAN X. Caffeic acid 3,4-dihydroxyphenethyl ester prevents colorectal cancer through inhibition of multiple cancer-promoting signal pathways in 1,2-Dimethylhydrazine/dextran sodium sulphate mouse model. J TRADIT CHIN MED 2024; 44:70-77. [PMID: 38213241 PMCID: PMC10774738 DOI: 10.19852/j.cnki.jtcm.20231204.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 11/17/2022] [Indexed: 01/13/2024]
Abstract
OBJECTIVE To elucidate the potential feature and mechanism of the caffeic acid 3,4-dihydroxyphenethyl ester (CADPE) molecule, which can prevent colorectal cancer (CRC) in the 1,2-Dimethylhydrazine (DMH)/dextran sodium sulphate (DSS)-induced mouse model. METHODS Institute of cancer research (ICR) male mice were injected with 20 mg/kg DMH for a week. After that, 2% DSS was administered in the drinking water for another 7 d. The CADPE treatment was given to the DMH/DSS induced male mice at three different periods until their sacrifice. Histopathological examination was used for observing the CRC development at colonic mucosa. Immunohistochemistry (IHC), blood cells smearing and crypt damage scoring methods were used for investigating the anti-inflammation feature of CADPE related to CRC. The reversing targets searching method was applied with artificial intelligence (AI), computer-aided drug designing (CADD) and Ingenuity Pathway Analysis (IPA) techniques for predicting the potential targets and mechanism of CADPE highly related to CRC. RESULTS The data indicated that CADPE inhibited CRC tumor development in the colitis-associated DMH/DSS induced mouse model after giving the early treatment. CADPE also impeded the acute inflammation by decreasing the infiltration of neutrophils significantly during the initial stage of CRC development. Finally, our data showed that CADPE prevented CRC by blocking active sites of three pivotal protein targets including epidermal growth factor receptor (EGFR), extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) in two major cancer development pathways. CONCLUSIONS CADPE effectively prevented CRC at early stage of tumor germination in the DMH/DSS mouse model highly likely due to its anti-acute inflammation characteristic and the ability of blocking EGFR, ERK and mTOR activities in two highly related CRC developing pathways.
Collapse
Affiliation(s)
- Tao JIN
- 1 College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian ZHOU
- 1 College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jichen SHEN
- 2 Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhizhong ZHANG
- 3 Ocean College, Zhoushan Campus of Zhejiang University, Zhoushan 316021, China
| | - Xiaoyuan LIAN
- 4 College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
19
|
Tang C, Guo X, Li Y, Yi Y, Tang Z, Zhang Q, Luo B, Chen K, Liang K, Li G. Cryptotanshinone Inhibits Bladder Cancer Cell Malignant Progression in a Lipopolysaccharide-Induced Inflammatory Microenvironment through NLRP3 Inhibition. Mediators Inflamm 2024; 2024:8828367. [PMID: 39144184 PMCID: PMC11324363 DOI: 10.1155/2024/8828367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/08/2023] [Accepted: 01/11/2024] [Indexed: 08/16/2024] Open
Abstract
Background Bladder cancer (BC) is one of the most common malignancies of the urogenital system. This study assessed the nucleotide-binding oligomerization domain and leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) in BC as well as the effects of cryptotanshinone on changes in BC malignant behaviors and NLRP3 expression under a lipopolysaccharide (LPS)-induced inflammatory microenvironment. Methods BC tissue specimens from 62 patients were collected for immunohistochemical detection of NLRP3 protein. BC and normal urothelial cell lines were cultured for the detection of NLRP3 mRNA and protein. Then, BC cells were pretreated with LPS to mimic the inflammatory tumor microenvironment. Next, these cells were incubated with a low or high dose of cryptotanshinone to assess its effects on tumor cell malignant behaviors as well as transfected with NLRP3 cDNA to confirm the role of NLRP3 in BC cells in vitro. Results High NLRP3 expression was associated with larger tumor diameters (>2 cm), muscle invasion, and metastasis. The levels of NLRP3 mRNA and protein were greater in BC cells than in normal urothelial cells. LPS pretreatment significantly promoted NLRP3 and inflammatory cytokine expression in BC cells, and induced cell viability, migration, and invasion. However, cryptotanshinone was able to reduce the LPS-induced increase of NLRP3 and inflammatory cytokine expression as well as the BC cell malignant progression. NLRP3 overexpression using NLRP3 cDNA further promoted BC cell malignant progression after LPS stimulation and reversed cryptotanshinone-reduced LPS-induced BC cell malignant behaviors. Conclusion NLRP3 might possess oncogenic activity in BC, and the antitumor activity of cryptotanshinone in BC in vitro might be related to its inhibition of NLRP3 expression.
Collapse
Affiliation(s)
- Chenye Tang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314000, China
| | - Xiao Guo
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314000, China
| | - Yu Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yongxiang Yi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiling Tang
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314000, China
| | - Qihui Zhang
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314000, China
| | - Bairu Luo
- Department of Clinical Pathology, Jiaxing Master Degree Cultivation Base, Zhejiang Chinese Medical University, Jiaxing 314001, China
| | - Kean Chen
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314000, China
| | - Ke Liang
- Department of Urology, The First People's Hospital of Pinghu, Jiaxing 314299, China
| | - Gang Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| |
Collapse
|
20
|
Abarikwu SO, Mgbudom-Okah CJ, Ndufeiya-Kumasi LC, Monye VE, Aruoren O, Ezim OE, Omeodu SI, Charles IA. Influence of triazines and lipopolysaccharide coexposure on inflammatory response and histopathological changes in the testis and liver of BalB/c mice. Heliyon 2024; 10:e24431. [PMID: 38293467 PMCID: PMC10826326 DOI: 10.1016/j.heliyon.2024.e24431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Background Triazines are environmental active chemicals that have been reported to alter the inflammatory status of the gonads. We tested the anti-inflammatory effect of the triazines (atrazine; ATZ, simazine; SMZ and cyanazine; CYZ) on the testis and compared it with the more classical liver model that has substantial populations of resident macrophages comparable to the testis. Methods BalB/c mice were treated with 25 mg/kg ATZ, SMZ and CYZ for 30 days and injected with lipopolysaccharide (0.5 mg/kg i.p.) 6 h before sacrifice. Myeloperoxidase activity and nitric oxide level in the testis and liver homogenates were determined by spectrophotometry whereas tumor necrosis factor-alpha and interleukin-6 concentrations were evaluated by immunoassay. Haematoxylin and eosin stained sections of the tissues were observed using a light microscope. Results Myeloperoxidase activity, nitric oxide, tumor necrosis factor-alpha, and interleukin-6 levels were decreased in the liver and testis of the triazines co-treated animals. SMZ has the most potent inhibitory effect and ATZ the least effect on inflammatory mediators in both tissues. Microscopic evaluation showed loss of inflammatory cells in the inter-tubular areas of the testis and few patchy masses of infiltrating inflammatory cells around the central vein of the liver. Conclusion Triazines inhibit the levels of inflammatory mediators in the testis and liver of mice. The anti-inflammatory effect of triazines in a lipopolysaccharide-induced inflammation model was established in this study.
Collapse
Affiliation(s)
- Sunny O. Abarikwu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | | | | - Vivian E. Monye
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Oke Aruoren
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Ogechukwu E. Ezim
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Stephen I. Omeodu
- Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | | |
Collapse
|
21
|
Jumes J, Jaques H, Dalla Vecchia M, Ferreira M, Orrutéa J, Machado M, Mezoni M, da Silva R, Almeida R, Rech D, Kawassaki A, Panis C. Occupational exposure to pesticides deregulates systemic cortisol levels in women with breast cancer and correlates with poor prognosis features. Braz J Med Biol Res 2024; 57:e13060. [PMID: 38265341 PMCID: PMC10802260 DOI: 10.1590/1414-431x2023e13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Pesticides have been pointed out as hormone disruptors and may significantly affect the prognosis of hormone-dependent diseases such as breast cancer (BC). Here, we investigated the impact of occupational pesticide exposure on systemic cortisol levels in female rural workers diagnosed with BC. Occupational exposure was assessed by interviews with a standardized questionnaire. Plasma samples (112 from pesticide-exposed women and 77 from unexposed women) were collected in the afternoon, outside the physiological cortisol peak, and analyzed by a chemiluminescent paramagnetic immunoassay for the quantitative determination of cortisol levels in serum and plasma. The results from both groups were categorized according to patients' clinicopathological and exposure data. BC pesticide-exposed women presented higher levels of cortisol than the unexposed. Higher cortisol levels were also detected in the exposed group with more aggressive disease (triple-negative BC), with tumors over 2 cm, with lymph node metastases, and with high risk of disease recurrence and death. These findings demonstrated that there is an association between pesticide exposure and BC that affected cortisol levels and correlated to poor disease prognosis.
Collapse
Affiliation(s)
- J.J. Jumes
- Laboratório de Biologia Tumoral, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
- Programa de Ciências da Saúde Aplicadas, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
| | - H.S. Jaques
- Laboratório de Biologia Tumoral, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
| | - M.F. Dalla Vecchia
- Laboratório de Biologia Tumoral, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
| | - M.O. Ferreira
- Laboratório de Biologia Tumoral, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
- Programa de Ciências da Saúde Aplicadas, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
| | - J.F.G. Orrutéa
- Laboratório de Biologia Tumoral, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
| | - M.G. Machado
- Laboratório de Biologia Tumoral, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
| | - M.F. Mezoni
- Laboratório de Biologia Tumoral, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
- Programa de Ciências da Saúde Aplicadas, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
| | - R.G.S. da Silva
- Laboratório de Biologia Tumoral, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
- Programa de Ciências da Saúde Aplicadas, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
| | - R.F. Almeida
- Laboratório de Biologia Tumoral, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
| | - D. Rech
- Laboratório de Biologia Tumoral, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
- Programa de Ciências da Saúde Aplicadas, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
- Hospital de Câncer de Francisco Beltrão, CEONC, Francisco Beltrão, PR, Brasil
| | - A.C.B. Kawassaki
- Laboratório de Biologia Tumoral, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
- Programa de Ciências da Saúde Aplicadas, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
| | - C. Panis
- Laboratório de Biologia Tumoral, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
- Programa de Ciências da Saúde Aplicadas, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, PR, Brasil
| |
Collapse
|
22
|
Maddalon A, Pierzchalski A, Krause JL, Bauer M, Finckh S, Brack W, Zenclussen AC, Marinovich M, Corsini E, Krauss M, Herberth G. Impact of chemical mixtures from wastewater treatment plant effluents on human immune cell activation: An effect-based analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167495. [PMID: 37804965 DOI: 10.1016/j.scitotenv.2023.167495] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Humans are exposed to many different chemicals on a daily basis, mostly as chemical mixtures, usually from food, consumer products and the environment. Wastewater treatment plant effluent contains mixtures of chemicals that have been discarded or excreted by humans and not removed by water treatment. These effluents contribute directly to water pollution, they are used in agriculture and may affect human health. The possible effect of such chemical mixtures on the immune system has not been characterized. OBJECTIVE The aim of this study was to investigate the effect of extracts obtained from four European wastewater treatment plant effluents on human primary immune cell activation. METHODS Immune cells were exposed to the effluent extracts and modulation of cell activation was performed by multi-parameter flow cytometry. Messenger-RNA (mRNA) expression of genes related to immune system and hormone receptors was measured by RT-PCR. RESULTS The exposure of immune cells to these extracts, containing 339 detected chemicals, significantly reduced the activation of human lymphocytes, mainly affecting T helper and mucosal-associated invariant T cells. In addition, basophil activation was also altered upon mixture exposure. Concerning mRNA expression, we observed that 12 transcripts were down-regulated by at least one extract while 11 were up-regulated. Correlation analyses between the analyzed immune parameters and the concentration of chemicals in the WWTP extracts, highlighted the most immunomodulatory chemicals. DISCUSSION Our results suggest that the mixture of chemicals present in the effluents of wastewater treatment plants could be considered as immunosuppressive, due to their ability to interfere with the activation of immune cells, a process of utmost importance for the functionality of the immune system. The combined approach of immune effect-based analysis and chemical content analysis used in our study provides a useful tool for investigating the effect of environmental mixtures on the human immune response.
Collapse
Affiliation(s)
- Ambra Maddalon
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Arkadiusz Pierzchalski
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jannike Lea Krause
- Schwiete Laboratory for Microbiota and Inflammation, German Rheumatism Research (DRFZ), Centre-a Leibniz Institute, Berlin, Germany
| | - Mario Bauer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Saskia Finckh
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Werner Brack
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Department of Evolutionary Ecology and Environmental Toxicology, Faculty of Biological Sciences, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Perinatal Immunology Research Group, Medical Faculty, Saxonian Incubator for Clinical Translation (SIKT), University of Leipzig, Germany
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Via Balzaretti 9, 20133 Milan, Italy
| | - Martin Krauss
- Department of Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Gunda Herberth
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| |
Collapse
|
23
|
Heidari H, Lawrence DA. Climate Stressors and Physiological Dysregulations: Mechanistic Connections to Pathologies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 21:28. [PMID: 38248493 PMCID: PMC10815632 DOI: 10.3390/ijerph21010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
This review delves into the complex relationship between environmental factors, their mechanistic cellular and molecular effects, and their significant impact on human health. Climate change is fueled by industrialization and the emission of greenhouse gases and leads to a range of effects, such as the redistribution of disease vectors, higher risks of disease transmission, and shifts in disease patterns. Rising temperatures pose risks to both food supplies and respiratory health. The hypothesis addressed is that environmental stressors including a spectrum of chemical and pathogen exposures as well as physical and psychological influences collectively impact genetics, metabolism, and cellular functions affecting physical and mental health. The objective is to report the mechanistic associations linking environment and health. As environmental stressors intensify, a surge in health conditions, spanning from allergies to neurodegenerative diseases, becomes evident; however, linkage to genetic-altered proteomics is more hidden. Investigations positing that environmental stressors cause mitochondrial dysfunction, metabolic syndrome, and oxidative stress, which affect missense variants and neuro- and immuno-disorders, are reported. These disruptions to homeostasis with dyslipidemia and misfolded and aggregated proteins increase susceptibility to cancers, infections, and autoimmune diseases. Proposed interventions, such as vitamin B supplements and antioxidants, target oxidative stress and may aid mitochondrial respiration and immune balance. The mechanistic interconnections of environmental stressors and disruptions in health need to be unraveled to develop strategies to protect public health.
Collapse
Affiliation(s)
- Hajar Heidari
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY 12144, USA;
| | - David A. Lawrence
- Department of Biomedical Sciences, University at Albany School of Public Health, Rensselaer, NY 12144, USA;
- Department of Environmental Health Sciences, University at Albany School of Public Health, Rensselaer, NY 12144, USA
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| |
Collapse
|
24
|
Peinado FM, Olivas-Martínez A, Lendínez I, Iribarne-Durán LM, León J, Fernández MF, Sotelo R, Vela-Soria F, Olea N, Freire C, Ocón-Hernández O, Artacho-Cordón F. Expression Profiles of Genes Related to Development and Progression of Endometriosis and Their Association with Paraben and Benzophenone Exposure. Int J Mol Sci 2023; 24:16678. [PMID: 38069001 PMCID: PMC10706360 DOI: 10.3390/ijms242316678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Increasing evidence has been published over recent years on the implication of endocrine-disrupting chemicals (EDCs), including parabens and benzophenones in the pathogenesis and pathophysiology of endometriosis. However, to the best of our knowledge, no study has been published on the ways in which exposure to EDCs might affect cell-signaling pathways related to endometriosis. We aimed to describe the endometriotic tissue expression profile of a panel of 23 genes related to crucial cell-signaling pathways for the development and progression of endometriosis (cell adhesion, invasion/migration, inflammation, angiogenesis, and cell proliferation/hormone stimulation) and explore its relationship with the exposure of patients to parabens (PBs) and benzophenones (BPs). This cross-sectional study included a subsample of 33 women with endometriosis from the EndEA study, measuring their endometriotic tissue expressions of 23 genes, while urinary concentrations of methyl-, ethyl-, propyl-, butyl-paraben, benzophenone-1, benzophenone-3, and 4-hydroxybenzophenone were determined in 22 women. Spearman's correlations test and linear and logistic regression analyses were performed. The expression of 52.2% of studied genes was observed in >75% of endometriotic tissue samples and the expression of 17.4% (n = 4) of them in 50-75%. Exposure to certain PB and BP congeners was positively associated with the expression of key genes for the development and proliferation of endometriosis. Genes related to the development and progression of endometriosis were expressed in most endometriotic tissue samples studied, suggesting that exposure of women to PBs and BPs may be associated with the altered expression profile of genes related to cellular pathways involved in the development of endometriosis.
Collapse
Affiliation(s)
- Francisco M. Peinado
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
| | - Alicia Olivas-Martínez
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
| | | | - Luz M. Iribarne-Durán
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
| | - Josefa León
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Digestive Medicine Unit, San Cecilio University Hospital, 18012 Granada, Spain
- CIBER Hepatic and Digestive Diseases (CIBEREHD), 28029 Madrid, Spain
| | - Mariana F. Fernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Centre for Biomedical Research, University of Granada, 18016 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
| | - Rafael Sotelo
- Gynecology and Obstetrics Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Fernando Vela-Soria
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
| | - Nicolás Olea
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
- Nuclear Medicine Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Carmen Freire
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Legal Medicine, Toxicology and Physical Anthropology Department, University of Granada, 18071 Granada, Spain
| | - Olga Ocón-Hernández
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- Gynecology and Obstetrics Unit, San Cecilio University Hospital, 18016 Granada, Spain
| | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.O.-M.); (N.O.); (O.O.-H.)
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
| |
Collapse
|
25
|
Abarikwu SO, Ezim OE, Ikeji CN, Farombi EO. Atrazine: cytotoxicity, oxidative stress, apoptosis, testicular effects and chemopreventive Interventions. FRONTIERS IN TOXICOLOGY 2023; 5:1246708. [PMID: 37876981 PMCID: PMC10590919 DOI: 10.3389/ftox.2023.1246708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Atrazine (ATZ) is an environmental pollutant that interferes with several aspects of mammalian cellular processes including germ cell development, immunological, reproductive and neurological functions. At the level of human exposure, ATZ reduces sperm count and contribute to infertility in men. ATZ also induces morphological changes similar to apoptosis and initiates mitochondria-dependent cell death in several experimental models. When in vitro experimental models are exposed to ATZ, they are faced with increased levels of reactive oxygen species (ROS), cytotoxicity and decreased growth rate at dosages that may vary with cell types. This results in differing cytotoxic responses that are influenced by the nature of target cells, assay types and concentrations of ATZ. However, oxidative stress could play salient role in the observed cellular and genetic toxicity and apoptosis-like effects which could be abrogated by antioxidant vitamins and flavonoids, including vitamin E, quercetin, kolaviron, myricetin and bioactive extractives with antioxidant effects. This review focuses on the differential responses of cell types to ATZ toxicity, testicular effects of ATZ in both in vitro and in vivo models and chemopreventive strategies, so as to highlight the current state of the art on the toxicological outcomes of ATZ exposure in several experimental model systems.
Collapse
Affiliation(s)
- Sunny O. Abarikwu
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Ogechukwu E. Ezim
- Reproductive Biology and Molecular Toxicology Research Group, Department of Biochemistry, University of Port Harcourt, Choba, Nigeria
| | - Cynthia N. Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ebenezer O. Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
26
|
Somu P, Basavegowda N, Gomez LA, Jayaprakash HV, Puneetha GK, Yadav AK, Paul S, Baek KH. Crossroad between the Heat Shock Protein and Inflammation Pathway in Acquiring Drug Resistance: A Possible Target for Future Cancer Therapeutics. Biomedicines 2023; 11:2639. [PMID: 37893013 PMCID: PMC10604354 DOI: 10.3390/biomedicines11102639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/29/2023] Open
Abstract
The development of multidrug resistance (MDR) against chemotherapeutic agents has become a major impediment in cancer therapy. Understanding the underlying mechanism behind MDR can guide future treatment for cancer with better therapeutic outcomes. Recent studies evidenced that crossroads interaction between the heat shock proteins (HSP) and inflammatory responses under the tumor microenvironment plays a pivotal role in modulating drug responsiveness and drug resistance through a complex cytological process. This review aims to investigate the interrelationship between inflammation and HSP in acquiring multiple drug resistance and investigate strategies to overcome the drug resistance to improve the efficacy of cancer treatment. HSP plays a dual regulatory effect as an immunosuppressive and immunostimulatory agent, involving the simultaneous blockade of multiple signaling pathways in acquiring MDR. For example, HSP27 shows biological effects on monocytes by causing IL10 and TNFα secretion and blocking monocyte differentiation to normal dendritic cells and tumor-associated macrophages to promote cancer progression and chemoresistance. Thus, the HSP function and immune-checkpoint release modalities provide a therapeutic target for a therapeutically beneficial approach for enhancing anti-tumor immune responses. The interconnection between inflammation and HSP, along with the tumor microenvironment in acquiring drug resistance, has become crucial for rationalizing the effect of HSP immunomodulatory activity with immune checkpoint blockade. This relationship can overcome drug resistance and assist in the development of novel combinatorial cancer immunotherapy in fighting cancer with decreasing mortality rates.
Collapse
Affiliation(s)
- Prathap Somu
- Department of Biotechnology and Chemical Engineering, School of Civil & Chemical Engineering, Manipal University Jaipur, Dehmi Kalan, Jaipur 303007, India;
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| | - Levin Anbu Gomez
- Department of Biotechnology, School of Agriculture and Bioscience, Karunya Institute of Technology and Sciences (Deemed-to-be University), Karunya Nagar, Coimbatore 641114, India;
| | | | | | - Akhilesh Kumar Yadav
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung 413310, Taiwan;
| | - Subhankar Paul
- Structural Biology and Nanomedicine Laboratory, Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela 769008, India
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38451, Republic of Korea;
| |
Collapse
|
27
|
Renzelli V, Gallo M, Morviducci L, Marino G, Ragni A, Tuveri E, Faggiano A, Mazzilli R, Natalicchio A, Zatelli MC, Montagnani M, Fogli S, Giuffrida D, Argentiero A, Danesi R, D’Oronzo S, Gori S, Franchina T, Russo A, Monami M, Sciacca L, Cinieri S, Colao A, Avogaro A, Di Cianni G, Giorgino F, Silvestris N. Polybrominated Diphenyl Ethers (PBDEs) and Human Health: Effects on Metabolism, Diabetes and Cancer. Cancers (Basel) 2023; 15:4237. [PMID: 37686512 PMCID: PMC10486428 DOI: 10.3390/cancers15174237] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/10/2023] Open
Abstract
There is increasing evidence of the role of endocrine disruptors (EDs) derived from commonly employed compounds for manufacturing and processing in altering hormonal signaling and function. Due to their prolonged half-life and persistence, EDs can usually be found not only in industrial products but also in households and in the environment, creating the premises for long-lasting exposure. Polybrominated diphenyl ethers (PBDEs) are common EDs used in industrial products such as flame retardants, and recent studies are increasingly showing that they may interfere with both metabolic and oncogenic pathways. In this article, a multidisciplinary panel of experts of the Italian Association of Medical Diabetologists (AMD), the Italian Society of Diabetology (SID), the Italian Association of Medical Oncology (AIOM), the Italian Society of Endocrinology (SIE) and the Italian Society of Pharmacology (SIF) provides a review on the potential role of PBDEs in human health and disease, exploring both molecular and clinical aspects and focusing on metabolic and oncogenic pathways.
Collapse
Affiliation(s)
- Valerio Renzelli
- Italian Association of Clinical Diabetologists, 00192 Rome, Italy;
| | - Marco Gallo
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, 15121 Alessandria, Italy;
| | - Lelio Morviducci
- Diabetology and Nutrition Unit, Department of Medical Specialities, ASL Roma 1, S. Spirito Hospital, 00193 Rome, Italy;
| | - Giampiero Marino
- Internal Medicine Department, Ospedale dei Castelli, Asl Roma 6, 00040 Ariccia, Italy;
| | - Alberto Ragni
- Endocrinology and Metabolic Diseases Unit, AO SS Antonio e Biagio e Cesare Arrigo of Alessandria, 15121 Alessandria, Italy;
| | - Enzo Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, 09016 Iglesias, Italy;
| | - Antongiulio Faggiano
- Endocrinology Unit, Department of Clinical & Molecular Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (R.M.)
| | - Rossella Mazzilli
- Endocrinology Unit, Department of Clinical & Molecular Medicine, Sant’Andrea Hospital, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (R.M.)
| | - Annalisa Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy; (A.N.); (F.G.)
| | - Maria Chiara Zatelli
- Section of Endocrinology, Geriatrics and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Monica Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Stefano Fogli
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.F.); (R.D.)
| | - Dario Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, 95029 Catania, Italy;
| | - Antonella Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (S.F.); (R.D.)
| | - Stella D’Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Stefania Gori
- Oncologia Medica, IRCCS Ospedale Don Calabria-Sacro Cuore di Negrar, 37024 Verona, Italy;
| | - Tindara Franchina
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (T.F.); (N.S.)
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, 90133 Palermo, Italy;
| | - Matteo Monami
- Diabetology, Careggi University Hospital, University of Florence, 50134 Florence, Italy;
| | - Laura Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, 95124 Catania, Italy;
| | - Saverio Cinieri
- Medical Oncology Division, Breast Unit, Senatore Antonio Perrino Hospital, ASL Brindisi, 72100 Brindisi, Italy;
| | - Annamaria Colao
- Endocrinology, Diabetology and Andrology Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80138 Naples, Italy;
- UNESCO Chair, Education for Health and Sustainable Development, Federico II University, 80131 Naples, Italy
| | - Angelo Avogaro
- Department of Medicine, Section of Diabetes and Metabolic Diseases, University of Padova, 35122 Padova, Italy;
| | | | - Francesco Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, 70121 Bari, Italy; (A.N.); (F.G.)
| | - Nicola Silvestris
- Medical Oncology Unit, Department of Human Pathology “G. Barresi”, University of Messina, 98122 Messina, Italy; (T.F.); (N.S.)
| |
Collapse
|
28
|
Wei D, Wang L, Xu Q, Wang J, Shi J, Ma C, Geng J, Zhao M, Liu X, Hou J, Huo W, Li L, Jing T, Wang C, Mao Z. Exposure to herbicides mixtures in relation to type 2 diabetes mellitus among Chinese rural population: Results from different statistical models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 261:115109. [PMID: 37300918 DOI: 10.1016/j.ecoenv.2023.115109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Although it has been reported that herbicides exposure is related to adverse outcomes, available evidence on the associations of quantitatively measured herbicides with type 2 diabetes mellitus (T2DM) and prediabetes is still scant. Furthermore, the effects of herbicides mixtures on T2DM and prediabetes remain unclear among the Chinese rural population. AIMS To assess the associations of plasma herbicides with T2DM and prediabetes among the Chinese rural population. METHODS A total of 2626 participants were enrolled from the Henan Rural Cohort Study. Plasma herbicides were measured with gas chromatography coupled to triple quadrupole tandem mass spectrometry. Generalized linear regression analysis was employed to assess the associations of a single herbicide with T2DM, prediabetes, as well as indicators of glucose metabolism. In addition, the quantile g-computation and environmental risk score (ERS) structured by adaptive elastic net (AENET), and Bayesian kernel machine regression (BKMR) were used to estimate the effects of herbicides mixtures on T2DM and prediabetes. RESULTS After adjusting for covariates, positive associations of atrazine, ametryn, and oxadiazon with the increased odds of T2DM were obtained. As for prediabetes, each 1-fold increase in ln-transformed oxadiazon was related to 8.4% (95% confidence interval (CI): 1.033, 1.138) higher odds of prediabetes. In addition, several herbicides were significantly related to fasting plasma glucose, fasting insulin, and HOMA2-IR (false discovery rates adjusted P value < 0.05). Furthermore, the quantile g-computation analysis showed that one quartile increase in multiple herbicides was associated with T2DM (OR (odds ratio): 1.099, 95%CI: 1.043, 1.158), and oxadiazon was assigned the largest positive weight, followed by atrazine. In addition, the ERS calculated by the selected herbicides from AENET were found to be associated with T2DM and prediabetes, and the corresponding ORs and 95%CIs were 1.133 (1.108, 1.159) and 1.065 (1.016, 1.116), respectively. The BKMR analysis indicated a positive association between mixtures of herbicides exposure and the risk of T2DM. CONCLUSIONS Exposure to mixtures of herbicides was associated with an increased risk of T2DM among Chinese rural population, indicating that the impact of herbicides exposure on diabetes should be paid attention to and measures should be taken to avoid herbicides mixtures exposure.
Collapse
Affiliation(s)
- Dandan Wei
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Lulu Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qingqing Xu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Juan Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiayu Shi
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Cuicui Ma
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jintian Geng
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Mengzhen Zhao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Wenqian Huo
- Department of Occupational and Environmental Health Sciences, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Linlin Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Tao Jing
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, Henan, PR China.
| |
Collapse
|
29
|
De Caroli Vizioli B, Silva da Silva G, Ferreira de Medeiros J, Montagner CC. Atrazine and its degradation products in drinking water source and supply: Risk assessment for environmental and human health in Campinas, Brazil. CHEMOSPHERE 2023:139289. [PMID: 37348619 DOI: 10.1016/j.chemosphere.2023.139289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/07/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Atrazine is a broad-spectrum herbicide widely used worldwide to control grassy and broadleaf weeds. Atrazine's popularity is attributable to its cost-effectiveness and reliable performance. Relatedly, it is also an important micropollutant with a potential negative impact on biodiversity and human health. Atrazine has long been regularly detected in several environmental compartments, and its widespread use has resulted in ubiquitous and unpreventable contamination. Among pesticides sold in Brazil, atrazine has remained among the top-ranked active ingredients for the last several years. Thus, this study aimed to evaluate the occurrence of atrazine and three degradation products (hydroxyatrazine, desisopropylatrazine, and desethylatrazine) in surface water (Capivari and Atibaia rivers) and treated water, monthly sampling from two drinking water treatment plants in Campinas (São Paulo, Brazil). An analytical method using solid-phase extraction (SPE) and liquid chromatography tandem mass spectrometry (LC-MS/MS) was developed to determine target compounds simultaneously. The method presented instrument quantification limits from 0.5 to 4.0 ng mL-1 and recovery values from 80 to 112%, with a maximum relative standard deviation of 6%. All analytes had a detection frequency of 100% from 2 to 2744 ng L-1. Statistical analysis showed no analyte removal after conventional water treatment. Also, the Capivari River showed greater analyte concentration than the Atibaia River. Performed risk assessments according to current Brazilian standards showed no human and environmental health risks. However, other risk assessment approaches may indicate potential risks, advocating for further research and ongoing surveillance.
Collapse
Affiliation(s)
- Beatriz De Caroli Vizioli
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Giulia Silva da Silva
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Jéssyca Ferreira de Medeiros
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Cassiana Carolina Montagner
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, Campinas, SP, 13083-970, Brazil.
| |
Collapse
|
30
|
Anwar F, Naqvi S, Shams S, Sheikh RA, Al-Abbasi FA, Asseri AH, Baig MR, Kumar V. Nanomedicines: intervention in inflammatory pathways of cancer. Inflammopharmacology 2023; 31:1199-1221. [PMID: 37060398 PMCID: PMC10105366 DOI: 10.1007/s10787-023-01217-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Inflammation is a complex defense process that maintains tissue homeostasis. However, this complex cascade, if lasts long, may contribute to pathogenesis of several diseases. Chronic inflammation has been exhaustively studied in the last few decades, for its contribution in development and progression of cancer. The intrinsic limitations of conventional anti-inflammatory and anti-cancer therapies triggered the development of nanomedicines for more effective and safer therapies. Targeting inflammation and tumor cells by nanoparticles, encapsulated with active therapeutic agents, offers a promising outcome with patient survival. Considerable technological success has been achieved in this field through exploitation of tumor microenvironment, and recognition of molecules overexpressed on endothelial cells or macrophages, through enhanced vascular permeability, or by rendering biomimetic approach to nanoparticles. This review focusses on the inflammatory pathways in progression of a tumor, and advancement in nanotechnologies targeting these pathways. We also aim to identify the gaps that hinder the successful clinical translation of nanotherapeutics with further clinical studies that will allow oncologist to precisely identify the patients who may be benefited from nanotherapy at time when promotion or progression of tumor initiates. It is postulated that the nanomedicines, in near future, will shift the paradigm of cancer treatment and improve patient survival.
Collapse
Affiliation(s)
- Firoz Anwar
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| | - Salma Naqvi
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Saiba Shams
- School of Pharmaceutical Education & Research, (Deemed to be University), New Delhi, 110062, India
| | - Ryan Adnan Sheikh
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Amer H Asseri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Mirza Rafi Baig
- Department of Clinical Pharmacy & Pharmacotherapeutics. Dubai Pharmacy College for Girls, Po Box 19099, Dubai, United Arab Emirates
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences, Sam Higginbottom Institute of Agriculture, Technology & Sciences, Allahabad, Uttar Pradesh, India.
| |
Collapse
|
31
|
Peinado FM, Iribarne-Durán LM, Artacho-Cordón F. Human Exposure to Bisphenols, Parabens, and Benzophenones, and Its Relationship with the Inflammatory Response: A Systematic Review. Int J Mol Sci 2023; 24:ijms24087325. [PMID: 37108488 PMCID: PMC10139086 DOI: 10.3390/ijms24087325] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Bisphenols, parabens (PBs), and benzophenones (BPs) are widely used environmental chemicals that have been linked to several adverse health effects due to their endocrine disrupting properties. However, the cellular pathways through which these chemicals lead to adverse outcomes in humans are still unclear, suggesting some evidence that inflammation might play a key role. Thus, the aim of this study was to summarize the current evidence on the relationship between human exposure to these chemicals and levels of inflammatory biomarkers. A systematic review of peer-reviewed original research studies published up to February 2023 was conducted using the MEDLINE, Web of Science, and Scopus databases. A total of 20 articles met the inclusion/exclusion criteria. Most of the reviewed studies reported significant associations between any of the selected chemicals (mainly bisphenol A) and some pro-inflammatory biomarkers (including C-reactive protein and interleukin 6, among others). Taken together, this systematic review has identified consistent positive associations between human exposure to some chemicals and levels of pro-inflammatory biomarkers, with very few studies exploring the associations between PBs and/or BPs and inflammation. Therefore, a larger number of studies are required to get a better understanding on the mechanisms of action underlying bisphenols, PBs, and BPs and the critical role that inflammation could play.
Collapse
Affiliation(s)
| | | | - Francisco Artacho-Cordón
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain
- CIBER Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Radiology and Physical Medicine Department, University of Granada, 18016 Granada, Spain
| |
Collapse
|
32
|
A View on Uterine Leiomyoma Genesis through the Prism of Genetic, Epigenetic and Cellular Heterogeneity. Int J Mol Sci 2023; 24:ijms24065752. [PMID: 36982825 PMCID: PMC10056617 DOI: 10.3390/ijms24065752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Uterine leiomyomas (ULs), frequent benign tumours of the female reproductive tract, are associated with a range of symptoms and significant morbidity. Despite extensive research, there is no consensus on essential points of UL initiation and development. The main reason for this is a pronounced inter- and intratumoral heterogeneity resulting from diverse and complicated mechanisms underlying UL pathobiology. In this review, we comprehensively analyse risk and protective factors for UL development, UL cellular composition, hormonal and paracrine signalling, epigenetic regulation and genetic abnormalities. We conclude the need to carefully update the concept of UL genesis in light of the current data. Staying within the framework of the existing hypotheses, we introduce a possible timeline for UL development and the associated key events—from potential prerequisites to the beginning of UL formation and the onset of driver and passenger changes.
Collapse
|
33
|
Lamkin DM, Chen S, Bradshaw KP, Xu S, Faull KF, Sloan EK, Cole SW. Low-dose exposure to PBDE disrupts genomic integrity and innate immunity in mammary tissue. Front Genet 2022; 13:904607. [PMID: 36035174 PMCID: PMC9413140 DOI: 10.3389/fgene.2022.904607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
The low-dose mixture hypothesis of carcinogenesis proposes that exposure to an environmental chemical that is not individually oncogenic may nonetheless be capable of enabling carcinogenesis when it acts in concert with other factors. A class of ubiquitous environmental chemicals that are hypothesized to potentially function in this low-dose capacity are synthesized polybrominated diphenyl ethers (PBDEs). PBDEs can affect correlates of carcinogenesis that include genomic instability and inflammation. However, the effect of low-dose PBDE exposure on such correlates in mammary tissue has not been examined. In the present study, low-dose long-term (16 weeks) administration of PBDE to mice modulated transcriptomic indicators of genomic integrity and innate immunity in normal mammary tissue. PBDE increased transcriptome signatures for the Nuclear Factor Erythroid 2 Like 2 (NFE2L2) response to oxidative stress and decreased signatures for non-homologous end joining DNA repair (NHEJ). PBDE also decreased transcriptome signatures for the cyclic GMP-AMP Synthase - Stimulator of Interferon Genes (cGAS-STING) response, decreased indication of Interferon Stimulated Gene Factor 3 (ISGF3) and Nuclear Factor Kappa B (NF-κB) transcription factor activity, and increased digital cytometry estimates of immature dendritic cells (DCs) in mammary tissue. Replication of the PBDE exposure protocol in mice susceptible to mammary carcinogenesis resulted in greater tumor development. The results support the notion that ongoing exposure to low levels of PBDE can disrupt facets of genomic integrity and innate immunity in mammary tissue. Such effects affirm that synthesized PBDEs are a class of environmental chemicals that reasonably fit the low-dose mixture hypothesis.
Collapse
Affiliation(s)
- Donald M. Lamkin
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Donald M. Lamkin,
| | - Shiuan Chen
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, United States
| | - Karen P. Bradshaw
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Neuroscience, Stanford University School of Medicine, Stanford, CA, United States
| | - Shili Xu
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Crump Institute for Molecular Imaging, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kym F. Faull
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Pasarow Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Erica K. Sloan
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
- Division of Cancer Surgery, Peter MacCallum Cancer Centre-Victorian Comprehensive Cancer Centre, Melbourne, VIC, Austalia
| | - Steve W. Cole
- Norman Cousins Center for PNI, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, United States
- Division of Hematology-Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
34
|
Potential Pro-Tumorigenic Effect of Bisphenol A in Breast Cancer via Altering the Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14123021. [PMID: 35740686 PMCID: PMC9221131 DOI: 10.3390/cancers14123021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Bisphenol A (BPA) is primarily used to produce polycarbonate plastics, such as water bottles. Exposure to BPA has been shown to increase the growth of breast cancer cells that depend on estrogen for growth due to its ability to mimic estrogen. More recent studies have suggested that BPA also affects the cellular and non-cellular components that compose tumor microenvironments (TMEs), namely the environment around a tumor, thereby potentially promoting breast cancer growth via altering the TME. The TME plays an essential role in cancer development and promotion. Therefore, it is crucial to understand the effect of BPA on breast TMEs to assess its role in the risk of breast cancer adequately. This review examines the potential effects of BPA on immune cells, fibroblasts, extracellular matrices, and adipocytes to highlight their roles in mediating the carcinogenic effect of BPA, and thereby proposes considerations for the risk assessment of BPA exposure. Abstract BPA, a chemical used in the preparation of polycarbonate plastics, is an endocrine disruptor. Exposure to BPA has been suggested to be a risk factor for breast cancer because of its potential to induce estrogen receptor signaling in breast cancer cells. More recently, it has been recognized that BPA also binds to the G protein-coupled estrogen receptor and other nuclear receptors, in addition to estrogen receptors, and acts on immune cells, adipocytes, and fibroblasts, potentially modulating the TME. The TME significantly impacts the behavior of cancer cells. Therefore, understanding how BPA affects stromal components in breast cancer is imperative to adequately assess the association between exposure to BPA and the risk of breast cancer. This review examines the effects of BPA on stromal components of tumors to highlight their potential role in the carcinogenic effect of BPA. As a result, I propose considerations for the risk assessment of BPA exposure and studies needed to improve understanding of the TME-mediated, breast cancer-promoting effect of BPA.
Collapse
|
35
|
Yousefsani BS, Salimi A, Imani F, Ramezani M, Shirani K, Seydi E, Pourahmad J. Risperidone Toxicity on Human Blood Lymphocytes in Nano molar Concentrations. Drug Res (Stuttg) 2022; 72:343-349. [PMID: 35605969 DOI: 10.1055/a-1830-8701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Risperidone is an atypical antipsychotic drug used for the pharmacotherapy of psychiatric disorders. Some reports indicate that risperidone is toxic to various systems of the body, including the immune system. This study evaluated the toxicity effect of risperidone on human blood lymphocytes. To achieve this aim, lymphocytes were isolated using Ficoll paque plus. The results showed that risperidone (12, 24 and 48 nM) causes toxicity in human blood lymphocytes by increasing the level of intracellular reactive oxygen species (ROS), damage to lysosomal membrane, the collapse of the mitochondrial membrane potential (MMP), and increased extracellular oxidized glutathione (GSSG). Also, exposure of human blood lymphocytes to risperidone is associated with a decrease in intracellular glutathione (GSH) levels. Finally, it could be concluded that oxidative stress is one of the mechanisms of risperidone-induced toxicity in human blood lymphocytes.
Collapse
Affiliation(s)
- Bahareh Sadat Yousefsani
- Research Institute for Islamic and Complementary Medicine, Iran University of Medical Sciences, Tehran, Iran.,School of Persian Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Salimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farnaz Imani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Ramezani
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kobra Shirani
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran.,Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Heindel JJ, Howard S, Agay-Shay K, Arrebola JP, Audouze K, Babin PJ, Barouki R, Bansal A, Blanc E, Cave MC, Chatterjee S, Chevalier N, Choudhury M, Collier D, Connolly L, Coumoul X, Garruti G, Gilbertson M, Hoepner LA, Holloway AC, Howell G, Kassotis CD, Kay MK, Kim MJ, Lagadic-Gossmann D, Langouet S, Legrand A, Li Z, Le Mentec H, Lind L, Monica Lind P, Lustig RH, Martin-Chouly C, Munic Kos V, Podechard N, Roepke TA, Sargis RM, Starling A, Tomlinson CR, Touma C, Vondracek J, Vom Saal F, Blumberg B. Obesity II: Establishing causal links between chemical exposures and obesity. Biochem Pharmacol 2022; 199:115015. [PMID: 35395240 PMCID: PMC9124454 DOI: 10.1016/j.bcp.2022.115015] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a multifactorial disease with both genetic and environmental components. The prevailing view is that obesity results from an imbalance between energy intake and expenditure caused by overeating and insufficient exercise. We describe another environmental element that can alter the balance between energy intake and energy expenditure: obesogens. Obesogens are a subset of environmental chemicals that act as endocrine disruptors affecting metabolic endpoints. The obesogen hypothesis posits that exposure to endocrine disruptors and other chemicals can alter the development and function of the adipose tissue, liver, pancreas, gastrointestinal tract, and brain, thus changing the set point for control of metabolism. Obesogens can determine how much food is needed to maintain homeostasis and thereby increase the susceptibility to obesity. The most sensitive time for obesogen action is in utero and early childhood, in part via epigenetic programming that can be transmitted to future generations. This review explores the evidence supporting the obesogen hypothesis and highlights knowledge gaps that have prevented widespread acceptance as a contributor to the obesity pandemic. Critically, the obesogen hypothesis changes the narrative from curing obesity to preventing obesity.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA.
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, USA
| | - Keren Agay-Shay
- Health and Environment Research (HER) Lab, The Azrieli Faculty of Medicine, Bar Ilan University, Israel
| | - Juan P Arrebola
- Department of Preventive Medicine and Public Health University of Granada, Granada, Spain
| | - Karine Audouze
- Department of Systems Biology and Bioinformatics, University of Paris, INSERM, T3S, Paris France
| | - Patrick J Babin
- Department of Life and Health Sciences, University of Bordeaux, INSERM, Pessac France
| | - Robert Barouki
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Etienne Blanc
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, USA
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, USA
| | - Nicolas Chevalier
- Obstetrics and Gynecology, University of Cote d'Azur, Cote d'Azur, France
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Lisa Connolly
- The Institute for Global Food Security, School of Biological Sciences, Queen's University, Belfast, Northern Ireland, UK
| | - Xavier Coumoul
- Department of Biochemistry, University of Paris, INSERM, T3S, 75006 Paris, France
| | - Gabriella Garruti
- Department of Endocrinology, University of Bari "Aldo Moro," Bari, Italy
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland
| | - Lori A Hoepner
- Department of Environmental and Occupational Health Sciences, School of Public Health, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA
| | - Alison C Holloway
- McMaster University, Department of Obstetrics and Gynecology, Hamilton, Ontario, CA, USA
| | - George Howell
- Center for Environmental Health Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Christopher D Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, USA
| | - Mathew K Kay
- College of Pharmacy, Texas A&M University, College Station, TX 77843, USA
| | - Min Ji Kim
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | | | - Sophie Langouet
- Univ Rennes, INSERM EHESP, IRSET UMR_5S 1085, 35000 Rennes, France
| | - Antoine Legrand
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Zhuorui Li
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Helene Le Mentec
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Lars Lind
- Clinical Epidemiology, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - P Monica Lind
- Occupational and Environmental Medicine, Department of Medical Sciences, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California San Francisco, CA 94143, USA
| | | | - Vesna Munic Kos
- Department of Physiology and Pharmacology, Karolinska Institute, Solna, Sweden
| | - Normand Podechard
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Troy A Roepke
- Department of Animal Science, School of Environmental and Biological Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Robert M Sargis
- Division of Endocrinology, Diabetes and Metabolism, The University of Illinois at Chicago, Chicago, Il 60612, USA
| | - Anne Starling
- Department of Epidemiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Charbel Touma
- Sorbonne Paris Nord University, Bobigny, INSERM U1124 (T3S), Paris, France
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Frederick Vom Saal
- Division of Biological Sciences, The University of Missouri, Columbia, MO 65211, USA
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
37
|
Zhao C, Cai Z. Three-dimensional quantitative mass spectrometry imaging in complex system: From subcellular to whole organism. MASS SPECTROMETRY REVIEWS 2022; 41:469-487. [PMID: 33300181 DOI: 10.1002/mas.21674] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/13/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
Mass spectrometry imaging (MSI) has been applied for label-free three-dimensional (3D) imaging from position array across the whole organism, which provides high-dimensional quantitative data of inorganic or organic compounds that may play an important role in the regulation of cellular signaling, including metals, metabolites, lipids, drugs, peptides, and proteins. While MSI is suitable for investigation of the spatial distribution of molecules, it has a limitation with visualization and quantification of multiple molecules. 3D-MSI, however, can be applied toward exploring metabolic pathway as well as the interactions of lipid-protein, protein-protein, and metal-protein in complex systems from subcellular to the whole organism through an untargeted methodology. In this review, we highlight the methods and applications of MS-based 3D imaging to address the complexity of molecular interaction from nano- to micrometer lateral resolution, with particular focus on: (a) common and hybrid 3D-MSI techniques; (b) quantitative MSI methodology, including the methods using a stable isotope labeling internal standard (SILIS) and SILIS-free approaches with tissue extinction coefficient or virtual calibration; (c) reconstruction of the 3D organ; (d) application of 3D-MSI for biomarker screening and environmental toxicological research. 3D-MSI quantitative analysis provides accurate spatial information and quantitative variation of biomolecules, which may be valuable for the exploration of the molecular mechanism of the disease progresses and toxicological assessment of environmental pollutants in the whole organism. Additionally, we also discuss the challenges and perspectives on the future of 3D quantitative MSI.
Collapse
Affiliation(s)
- Chao Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| |
Collapse
|
38
|
Xia Y, Ge M, Xia L, Shan G, Qian H. CTSV (cathepsin V) promotes bladder cancer progression by increasing NF-κB activity. Bioengineered 2022; 13:10180-10190. [PMID: 35443863 PMCID: PMC9162008 DOI: 10.1080/21655979.2022.2061278] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation is positively associated with the development of urinary bladder cancer. However, its detailed regulatory mechanism remains elusive. The quantitative real-time polymerase chain reaction was used to measure mRNA levels of relative genes. The protein levels were monitored by western blotting. Cell proliferation and viability were evaluated by the cell counting Kit 8 (CCK8) and colony formation assays, respectively. The dual-luciferase reporter assay was performed to assay the transcriptional activity. In vivo experiments were implemented in nude mice as well. The TCGA database analysis suggested that the aberrant expression of cathepsin V (CTSV) was related to a poor outcome in bladder cancer patients. CTSV boosted the inflammation reaction, which facilitated the development of bladder cancer. The overexpression of CTSV increased the proliferation and viability of bladder cancer cells. On the contrary, the deletion of CTSV significantly inhibited the proliferation and viability of bladder cancer cells. The tumor repression resulting from CTSV deficiency in vitro was also verified in vivo. Moreover, multiple cancer-associated luciferase screening showed that the overexpression of CTSV triggered the inflammatory signaling pathway, which could be restored by introducing the NF-κB inhibitor. CTSV is upregulated and promotes proliferation through the NF-κB pathway in bladder cancer and may be a potential target in inflammation-associated bladder cancer.
Collapse
Affiliation(s)
- Yue Xia
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Minghuan Ge
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ling Xia
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Guang Shan
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huijun Qian
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
39
|
Li Y, Wang J, Wang H, Zhang S, Wei Y, Liu S. The Interplay Between Inflammation and Stromal Components in Pancreatic Cancer. Front Immunol 2022; 13:850093. [PMID: 35493517 PMCID: PMC9046560 DOI: 10.3389/fimmu.2022.850093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Inflammation involves interactions between various immune cells, inflammatory cells, chemokines and cytokines in pancreatic cancer. Cancer cells as well as surrounding stromal and inflammatory cells establish an inflammatory tumor microenvironment (TME). Inflammation is closely associated with immunity. Meanwhile, immune cells are involved in both inflammation and immune response. Tumor-promoting inflammation and tumor-suppressive immunity are two main characteristics of the tumor microenvironment in pancreatic cancer. Yet, the mechanism of inflammation and immune response in pancreatic cancer development is still unclear due to the dual role of some cytokines and the complicated crosstalk between tumor and stromal components in TME. In this review, we outline the principal cytokines and stromal cells in the pancreatic TME that are involved in the tumor-promoting and immunosuppressive effects of inflammation, and discuss the interaction between inflammation and stromal components in pancreatic cancer progression. Moreover, the clinical approaches based on targeting TME in pancreatic cancer are also summarized. Defining the mechanisms of interplay between inflammation and stromal components will be essential for further development of anti-cancer therapies.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haiyan Wang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shaoqiang Zhang
- Department of Blood Transfusion, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yingxin Wei
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
40
|
Habeeb E, Aldosari S, Saghir SA, Cheema M, Momenah T, Husain K, Omidi Y, Rizvi SA, Akram M, Ansari RA. Role of environmental toxicants in the development of hypertensive and cardiovascular diseases. Toxicol Rep 2022; 9:521-533. [PMID: 35371924 PMCID: PMC8971584 DOI: 10.1016/j.toxrep.2022.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of hypertension with diabetes mellitus (DM) as a co-morbid condition is on the rise worldwide. In 2000, an estimated 972 million adults had hypertension, which is predicted to grow to 1.56 billion by 2025. Hypertension often leads to diabetes mellitus that strongly puts the patients at an increased risk of cardiovascular, kidney, and/or atherosclerotic diseases. Hypertension has been identified as a major risk factor for the development of diabetes; patients with hypertension are at two-to-three-fold higher risk of developing diabetes than patients with normal blood pressure (BP). Causes for the increase in hypertension and diabetes are not well understood, environmental factors (e.g., exposure to environmental toxicants like heavy metals, organic solvents, pesticides, alcohol, and urban lifestyle) have been postulated as one of the reasons contributing to hypertension and cardiovascular diseases (CVD). The mechanism of action(s) of these toxicants in developing hypertension and CVDs is not well defined. Research studies have linked hypertension with the chronic consumption of alcohol and exposure to metals like lead, mercury, and arsenic have also been linked to hypertension and CVD. Workers chronically exposed to styrene have a higher incidence of CVD. Recent studies have demonstrated that exposure to particulate matter (PM) in diesel exhaust and urban air contributes to increased CVD and mortality. In this review, we have imparted the role of environmental toxicants such as heavy metals, organic pollutants, PM, alcohol, and some drugs in hypertension and CVD along with possible mechanisms and limitations in extrapolating animal data to humans.
Collapse
Affiliation(s)
- Ehsan Habeeb
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Saad Aldosari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Shakil A. Saghir
- The Scotts Company LLC, Marysville, OH 43041, USA
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Mariam Cheema
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Tahani Momenah
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Kazim Husain
- Department of Gastrointestinal Oncology (FOB-2), Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Syed A.A. Rizvi
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, VA 23668, USA
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rais A. Ansari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| |
Collapse
|
41
|
Nugroho R, Aryani R, Manurung H, Anindita DF, Hidayati FSN, Prahastika W, Rudianto R. Effects of the Ethanol Extracts of Ficus deltoidea leaves on the Reproductive Parameters in Male Mice. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Indonesia, and in particular East Kalimantan, has a very high diversity of flora that has the potential to be used as traditional medicine. One type of flora is the leaves of Ficus deltoidea Jack. At present, there are no available data about the impact of F. deltoidea leaf ethanol extract on the male reproductive system.
AIM: The present study aims to investigate the effect of F. deltoidea leaf ethanol extract on several parameters of reproductive function in male mice, including changes in testicular biochemistry, reproductive hormones profile, and histopathology of the testes after subchronic exposure.
METHODS: In total, 25 male mice were divided into five groups: The control group and four treatment groups that received extract doses of 125, 250, 500, and 1000 mg/kgbw for 28 days, respectively. At the end of the treatment, surgery was performed, weight of body and reproductive organs (testis, epididymis, and seminal vesicles) were measured, and testicular biochemistry, reproductive hormone profile, antioxidant activity, and testes histopathology were analyzed.
RESULTS: In the subchronic toxicity test, there were no significant changes in body weight or in weight and relative weight of reproductive organs. Levels of testosterone, luteinizing hormone and follicle-stimulating hormone, protein, cholesterol, and activity of enzymes in the testes (alkaline phosphatase, lactate dehydrogenase, and glutamyltransferase) and activity of the enzyme superoxide dismutase increased significantly in the treated mice when compared to control mice (p < 0.05). Glycogen levels were not significantly different, but lipid peroxide (MDA) decreased significantly, though it did not change the histological structure of the testes.
CONCLUSION: Ethanolic extract of the leaves of F. deltoidea Jack does not cause toxic effects and even has a beneficial effect on the reproduction of male mice by increasing fertility, reproductive hormones, and antioxidant activity, and it does not change the histological structure of the testes.
Collapse
|
42
|
Leonel ECR, Ruiz TFR, Bedolo CM, Campos SGP, Taboga SR. Inflammatory repercussions in female steroid responsive glands after perinatal exposure to bisphenol A and 17-β estradiol. Cell Biol Int 2021; 45:2264-2274. [PMID: 34288236 DOI: 10.1002/cbin.11665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
The mammary gland (MG) and female prostate are plastic reproductive organs which are highly responsive to hormones. Thus, endocrine disruptors, such as bisphenol A (BPA) and exogenous estrogens, negatively affect glandular homeostasis. In addition to previously described alterations, changes in inflammatory markers expression also trigger the development of a microenvironment that contributes to tumor progression. The current work aimed to evaluate the inflammatory responses of the MG and prostate gland to BPA (50 µg/kg) and 17-β estradiol (35 µg/kg) exposure during the perinatal window of susceptibility. The results showed that at 6 months of age there was an increase in the number of phospho-STAT3 (P-STAT3) positive cells in the female prostate from animals perinatally exposed to 50 µg/kg BPA daily. In addition, the number of macrophages increased in these animals in comparison with nonexposed animals, as shown by the F4/80 marker. Despite an increase in the incidence of lobuloalveolar and intraductal hyperplasia, the MG did not show any difference in the expression of the four inflammatory markers evaluated: tumor necrosis factor-α, COX-2, P-STAT3, and F4/80. Analysis of both glands from the same animal led to the conclusion that exposure to endocrine disruptors during the perinatal window of susceptibility leads to different inflammatory responses in different reproductive organs. As the prostate is more susceptible to these inflammatory mechanisms, it is reasonable to affirm that possible neoplastic alterations in this organ are related to changes in the inflammatory pattern of the stroma, a characteristic that is not evident in the MG.
Collapse
Affiliation(s)
- Ellen Cristina Rivas Leonel
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.,Department of Histology, Embriology, and Cell Biology, Institute of Biological Sciences (ICB III), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Thalles Fernando Rocha Ruiz
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Carolina Marques Bedolo
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
43
|
Liang PI, Wang CC, Cheng HJ, Wang SS, Lin YC, Lin P, Tung CW. Curation of cancer hallmark-based genes and pathways for in silico characterization of chemical carcinogenesis. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2020:5857494. [PMID: 32539087 PMCID: PMC7294774 DOI: 10.1093/database/baaa045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/10/2020] [Accepted: 05/19/2020] [Indexed: 01/19/2023]
Abstract
Exposure to toxic substances in the environment is one of the most important causes of cancer. However, the time-consuming process for the identification and characterization of carcinogens is not applicable to a huge amount of testing chemicals. The data gaps make the carcinogenic risk uncontrollable. An efficient and effective way of prioritizing chemicals of carcinogenic concern with interpretable mechanism information is highly desirable. This study presents a curation work for genes and pathways associated with 11 hallmarks of cancer (HOCs) reported by the Halifax Project. To demonstrate the usefulness of the curated HOC data, the interacting HOC genes and affected HOC pathways of chemicals of the three carcinogen lists from IARC, NTP and EPA were analyzed using the in silico toxicogenomics ChemDIS system. Results showed that a higher number of affected HOCs were observed for known carcinogens than the other chemicals. The curated HOC data is expected to be useful for prioritizing chemicals of carcinogenic concern. Database URL: The HOC database is available at https://github.com/hocdb-KMU-TMU/hocdb and the website of Database journal as Supplementary Data.
Collapse
Affiliation(s)
- Peir-In Liang
- Phd Program in Toxicology, Kaohsiung Medical University, 100 Shiquan 1st Road, Kaohsiung 80706, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, 100 Ziyou 1st Road, Kaohsiung 80706, Taiwan
| | - Chia-Chi Wang
- Department and Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 1 Section 4 Roosevelt Rd, Taipei 10617, Taiwan
| | - Hsien-Jen Cheng
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Road, Miaoli County 35053, Taiwan
| | - Shan-Shan Wang
- Graduate Institute of Data Science, College of Management, Taipei Medical University, 250 Wuxing Street, Taipei 10675, Taiwan
| | - Ying-Chi Lin
- Phd Program in Toxicology, Kaohsiung Medical University, 100 Shiquan 1st Road, Kaohsiung 80706, Taiwan.,School of Pharmacy, Kaohsiung Medical University, 100 Shiquan 1st Road, Kaohsiung 80706, Taiwan
| | - Pinpin Lin
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Road, Miaoli County 35053, Taiwan
| | - Chun-Wei Tung
- National Institute of Environmental Health Sciences, National Health Research Institutes, 35 Keyan Road, Miaoli County 35053, Taiwan.,Graduate Institute of Data Science, College of Management, Taipei Medical University, 250 Wuxing Street, Taipei 10675, Taiwan
| |
Collapse
|
44
|
Xu Y, Yuan X, Zhang X, Hu W, Wang Z, Yao L, Zong L. Prognostic value of inflammatory and nutritional markers for hepatocellular carcinoma. Medicine (Baltimore) 2021; 100:e26506. [PMID: 34160470 PMCID: PMC8238303 DOI: 10.1097/md.0000000000026506] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/18/2021] [Accepted: 06/02/2021] [Indexed: 01/04/2023] Open
Abstract
Many clinical studies have demonstrated that the neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and Onodera's prognostic nutritional index (OPNI) are visibly involved in the prognosis of a variety of tumors. In our research, we aim to determin the prognostic impact of NLR, PLR, and OPNI for hepatocellular carcinoma (HCC).Data of hepatocellular carcinoma patients undergoing treatment in Changzhi People's Hospital between 2011 and 2017 were reviewed. 270 patients with HCC were under inclusion criteria. The optimal cut-off points of OPNI, NLR and PLR were determined by using the X-tile program. The overall survival (OS) was analyzed by Kaplan-Meier method. Multivariate analysis was performed using Cox Proportional Hazard Regression model to determine independent prognostic indicators for HCC.As revealed by Univariate and multivariate analysis, OPNI, Treatment, PLR, and BCLC Stage can be used as independent prognostic indicators for HCC. Comparing the P values and hazard ratios, we found out that the OPNI has greatest influence on prognosis in these indexes. The appropriate cut-off points of NLR, PLR, and OPNI were 2.5, 133.3, and 39.5, respectively. High score OPNI group had a better OS. In the analysis between OPNI and clinicopathological characteristics, there were differences in treatment, postoperative therapy, AST, ALBI grade, NLR and PLR between the high OPNI group and the low OPNI group, while others did not.OPNI is a straightforward and effective independent prognostic indicator for HCC.
Collapse
Affiliation(s)
- Yingying Xu
- Department of General Surgery, Yizheng People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province
| | - Xiuxue Yuan
- Medical College of Wuhan University of Science and Technology, Wuhan, Hubei Province
| | | | - Wenqing Hu
- Department of Gastrointestinal Surgery, Changzhi People's Hospital
| | - Zehua Wang
- Department of Anesthesiology, Heji Hospital, The Affiliated Hospital of Changzhi Medical College, Changzhi, Shanxi Province
| | - Longdi Yao
- The Second Clinical College of Dalian Medical University, Dalian, Liaoning Province, China
| | - Liang Zong
- Central Laboratory
- Department of Gastrointestinal Surgery, Changzhi People's Hospital
| |
Collapse
|
45
|
Gudbrandsdottir G, Aarstad HH, Hjelle KM, Førde K, Reisæter L, Bostad L, Aarstad HJ, Beisland C. The levels of IL-6 and soluble IL-33R are increased in the renal vein during surgery for clear cell renal cell carcinoma. Cytokine 2021; 144:155586. [PMID: 34058568 DOI: 10.1016/j.cyto.2021.155586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/13/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE The main aim was to map serum levels of IL-1/IL-6 family cytokines and relevant receptors from serum samples taken across treatment in patients with Renal Cell Carcinoma (RCC). Additionally, we explored the possible interactions between these measurements, immunohistochemistry and intratumoral blood flow. METHODS We included 40 patients undergoing open surgery for renal tumors. Blood samples were collected before, during (taken simultaneously from a peripheral site and the renal vein (RV) before clamping) and after surgery. Samples were analyzed for IL-6, IL-27, IL-31, OSM, TNF-α, serum (s)-gp130, s-IL-6Rα, s-IL-33R, IL-1Rα and VEGF. All 35 RCC tumors were histologically subtyped as clear cell (CCRCC), papillary or chromophobe. Immunohistochemistry for the CCRCC group included expression of IL-6/IL-6R. Intratumoral blood flow was determined by calculating intratumoral contrast enhancement on preoperative computerized tomography (CT) imaging. RESULTS In the CCRCC patients, the intraoperative RV concentration of IL-6 was significantly higher than in both the preoperative and postoperative samples (p = 0.005 and p = 0.032, respectively). Furthermore, the intraoperative ratio showed significantly higher levels of IL-6 in the RV than in the simultaneously drawn peripheral sample. Immunohistochemistry showed general expression of IL-6 (23/24) in both tumor cells and the vasculature (20/23). Moreover, s-IL-6R was expressed in tumor cells in 23/24 studied patients. Increased blood flow in the CCRCC tumors predicted increased IL-6 levels in the RV (p < 0.001). The other cytokines and receptors showed an overall stability across the measurements. However, the intraoperative ratios of IL-33R and gp130 showed significantly higher levels in the RV. CONCLUSION Serum levels of IL-6 increased during surgery. Intraoperative IL-6 and s-IL-33R values were higher in the RV compared to the periphery, suggesting secretion from the tumor or tumor microenvironment itself. Supportive of this is an almost general expression of IL-6/s-IL-6R in tumor cells and IL-6 in vasculature in the tumor microenvironment. Other studied cytokines/receptors were remarkably stable across all measurements.
Collapse
Affiliation(s)
- Gigja Gudbrandsdottir
- Department of Urology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway.
| | - Helene H Aarstad
- Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway
| | - Karin M Hjelle
- Department of Urology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway
| | - Kristina Førde
- Department of Urology, Haukeland University Hospital, Bergen, Norway
| | - Lars Reisæter
- Department of Radiology, Haukeland University Hospital, Bergen, Norway
| | - Leif Bostad
- Department of Pathology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway
| | - Hans J Aarstad
- Department of Otolaryngology/Head and Neck Surgery, N-5021 Bergen, Norway; Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway
| | - Christian Beisland
- Department of Urology, Haukeland University Hospital, Bergen, Norway; Department of Clinical Medicine, University of Bergen, N-5021 Bergen, Norway
| |
Collapse
|
46
|
Abstract
Human cytochrome P450 1B1 (CYP1B1) is an extrahepatic heme-containing monooxygenase. CYP1B1 contributes to the oxidative metabolism of xenobiotics, drugs, and endogenous substrates like melatonin, fatty acids, steroid hormones, and retinoids, which are involved in diverse critical cellular functions. CYP1B1 plays an important role in the pathogenesis of cardiovascular diseases, hormone-related cancers and is responsible for anti-cancer drug resistance. Inhibition of CYP1B1 activity is considered as an approach in cancer chemoprevention and cancer chemotherapy. CYP1B1 can activate anti-cancer prodrugs in tumor cells which display overexpression of CYP1B1 in comparison to normal cells. CYP1B1 involvement in carcinogenesis and cancer progression encourages investigation of CYP1B1 interactions with its ligands: substrates and inhibitors. Computational methods, with a simulation of molecular dynamics (MD), allow the observation of molecular interactions at the binding site of CYP1B1, which are essential in relation to the enzyme’s functions.
Collapse
|
47
|
Peinado FM, Ocón-Hernández O, Iribarne-Durán LM, Vela-Soria F, Ubiña A, Padilla C, Mora JC, Cardona J, León J, Fernández MF, Olea N, Artacho-Cordón F. Cosmetic and personal care product use, urinary levels of parabens and benzophenones, and risk of endometriosis: results from the EndEA study. ENVIRONMENTAL RESEARCH 2021; 196:110342. [PMID: 33069703 DOI: 10.1016/j.envres.2020.110342] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
AIM To explore the relationship of urinary concentrations of different congeners of benzophenones and parabens with the utilization of cosmetics and personal care products (PCPs) and their impact on the risk of endometriosis, and to evaluate the influence of oxidative stress on associations found. METHODS This case-control study comprised a subsample of 124 women (35 cases; 89 controls). Endometriosis was confirmed (cases) or ruled out (controls) by laparoscopy, with visual inspection of the pelvis and biopsy of suspected lesions (histological diagnosis). Urinary concentrations of benzophenone-1 (BP-1), benzophenone-3 (BP-3), 4-hydroxibenzophenone (4-OH-BP), methyl- (MeP), ethyl- (EtP), propyl- (PrP), and butyl-paraben (BuP), and biomarkers of oxidative stress [lipid peroxidation (TBARS) and total antioxidant power (TAP)] were quantified. Information was gathered on the frequency of use of cosmetics and PCPs. Associations between the frequency of cosmetics/PCP use, urinary concentrations of benzophenones and parabens, oxidative stress, and endometriosis risk were explored in logistic and linear multivariable regression analyses. RESULTS The frequency of utilization of certain cosmetics and PCPs was significantly associated with urinary concentrations of benzophenones and parabens. After adjustment for potential confounders, the risk of endometriosis was increased in women in the second versus first terciles of MeP (OR = 5.63; p-value<0.001), BP-1 (OR = 5.12; p-value = 0.011), BP-3 (OR = 4.98; p-value = 0.008), and ƩBPs (OR = 3.34; p-value = 0.032). A close-to-significant relationship was observed between TBARS concentrations and increased endometriosis risk (OR = 1.60, p-value = 0.070) and an inverse association between TAP concentrations and this risk (OR = 0.15; p-value = 0.048). Oxidative stress results did not modify associations observed between benzophenone/paraben exposure and endometriosis risk. CONCLUSIONS Our findings indicate that the frequency of cosmetics and PCP utilization is a strong predictor of exposure to certain benzophenone and paraben congeners. These compounds may increase the risk of endometriosis in an oxidative stress-independent manner. Further studies are warranted to corroborate these findings.
Collapse
Affiliation(s)
- F M Peinado
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012, Granada, Spain
| | - O Ocón-Hernández
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012, Granada, Spain; Gynecology and Obstetrics Unit, 'San Cecilio' University Hospital, E-18016, Granada, Spain
| | - L M Iribarne-Durán
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012, Granada, Spain
| | - F Vela-Soria
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012, Granada, Spain
| | - A Ubiña
- General Surgery Unit, 'San Cecilio' University Hospital, E-18016, Granada, Spain
| | - C Padilla
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012, Granada, Spain; Gynecology and Obstetrics Unit, 'San Cecilio' University Hospital, E-18016, Granada, Spain
| | - J C Mora
- Gynecology and Obstetrics Unit, 'Virgen de las Nieves' University Hospital, E-18014, Granada, Spain
| | - J Cardona
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012, Granada, Spain; Gynecology and Obstetrics Unit, 'San Cecilio' University Hospital, E-18016, Granada, Spain
| | - J León
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012, Granada, Spain; Digestive Medicine Unit, 'San Cecilio' University Hospital, E-18012, Granada, Spain; CIBER Hepatic and Digestive Diseases (CIBEREHD), E-28029, Madrid, Spain
| | - M F Fernández
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012, Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), E-28029, Madrid, Spain; Radiology and Physical Medicine Department, University of Granada, E-18016, Granada, Spain
| | - N Olea
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012, Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), E-28029, Madrid, Spain; Radiology and Physical Medicine Department, University of Granada, E-18016, Granada, Spain; Nuclear Medicine Unit, 'San Cecilio' University Hospital, E-18016, Granada, Spain
| | - F Artacho-Cordón
- Biohealth Research Institute in Granada (ibs.GRANADA), E-18012, Granada, Spain; CIBER Epidemiology and Public Health (CIBERESP), E-28029, Madrid, Spain; Radiology and Physical Medicine Department, University of Granada, E-18016, Granada, Spain.
| |
Collapse
|
48
|
Abstract
Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis, and cancer recurrence. CSCs are considered derived from normal stem cells affected by the inflammatory microenvironment. Stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from stem cells in the cancer-inducing niche, which is a condition of chronic inflammation rich in growth factors, interleukins, chemokines, etc. Exosomes are considered to be the key mediators responsible for the cell-to-cell communications carrying proteins, nucleic acids, metabolites, etc., to shuttle between cells. If these cells are in the environment of chronic inflammation, the exosomes should be reflecting the conditions. In this chapter, we detail the method of CSC initiation using extracellular vesicles (EVs) derived from cancer cell. The stem cells treated with the EVs acquired characteristics of CSCs showing spheroids expressing stemness markers in the suspension culture and high tumorigenicity in Balb/c nude mice. EVs might perform as suitable inducer for initiating CSCs from stem cells or progenitor cells. The model of CSCs and the procedure of their establishment with EVs will help study the exact effect of EVs in the cancer-inducing niche and tumor microenvironment.
Collapse
|
49
|
Wang RX, Zhou M, Ma HL, Qiao YB, Li QS. The Role of Chronic Inflammation in Various Diseases and Anti-inflammatory Therapies Containing Natural Products. ChemMedChem 2021; 16:1576-1592. [PMID: 33528076 DOI: 10.1002/cmdc.202000996] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Indexed: 12/13/2022]
Abstract
Chronic inflammation represents a long-term reaction of the body's immune system to noxious stimuli. Such a sustained inflammatory response sometimes results in lasting damage to healthy tissues and organs. In fact, chronic inflammation is implicated in the development and progression of various diseases, including cardiovascular diseases, respiratory diseases, metabolic diseases, neurodegenerative diseases, and even cancers. Targeting nonresolving inflammation thus provides new opportunities for treating relevant diseases. In this review, we will go over several chronic inflammation-associated diseases first with emphasis on the role of inflammation in their pathogenesis. Then, we will summarize a number of natural products that exhibit therapeutic effects against those diseases by acting on different markers in the inflammatory response. We envision that natural products will remain a rich resource for the discovery of new drugs treating diseases associated with chronic inflammation.
Collapse
Affiliation(s)
- Ren-Xiao Wang
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Mi Zhou
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Hui-Lai Ma
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Yuan-Biao Qiao
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| | - Qing-Shan Li
- Shanxi Key Laboratory of Innovative Drugs for the, Treatment of Serious Diseases Based on Chronic Inflammation, College of Traditional Chinese Medicines, Shanxi University of Chinese Medicine, Taiyuan, Shanxi, 030619, P. R. China
| |
Collapse
|
50
|
The role of ADRB2 gene polymorphisms in malignancies. Mol Biol Rep 2021; 48:2741-2749. [PMID: 33675465 DOI: 10.1007/s11033-021-06250-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 02/24/2021] [Indexed: 12/30/2022]
Abstract
Beta-2-adrenergic receptor is a member of the G protein-coupled receptor superfamily, which is highly expressed in most malignancies. There is increasing evidence showing that beta-2-adrenergic receptors are associated with carcinogenesis, proliferation, immune regulation, invasion, angiogenesis, clinical prognosis and treatment resistance in malignancies. Polymorphisms of the ADRB2 gene have been confirmed to be associated with transcriptional activity, mRNA translation, and beta-2-adrenergic receptor expression and sensitivity. This review discusses clinically relevant examples of single nucleotide polymorphisms of ADRB2 in malignancies and the effects of these polymorphisms on cancer susceptibility, prognosis and treatment response of cancer patients.
Collapse
|