1
|
Bai J, Xiao R, Jiang D, Luo X, Tang Y, Cui M, You L, Zhao Y. Sialic Acids: Sweet modulators fueling cancer cells and domesticating the tumor microenvironment. Cancer Lett 2025; 626:217773. [PMID: 40339953 DOI: 10.1016/j.canlet.2025.217773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/23/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Tumor microenvironment (TME) can shift towards either immune activation or immunosuppression, influenced by various factors. Recent studies have underscored the pivotal role of sialic acids, a group of monosaccharides with a 9-carbon backbone, in modulating the TME. Aberrant expression or abnormal addition of sialic acids to the surface of cancer cells and within the tumor stroma has been identified as a key contributor to tumor progression. Abnormal sialylation on cancer cell surfaces can inhibit apoptosis, enhance cell proliferation, and facilitate metastasis. Notably, recent findings suggest that dysregulated sialic acid expression in the TME actively contributes to shaping an immunosuppressive niche by reducing the population of anti-tumor immune cells and impairing immune cell function. The mechanisms by which sialic acids foster immune escape and shape the immunosuppressive TME have been partially unraveled, particularly through interactions with sialic acid receptors on immune cells. Importantly, several sialic acid-targeted therapies are currently advancing into clinical trials, offering promising prospects for clinical translation. This dysregulated sialylation represents a significant opportunity for molecular diagnostics and therapeutic interventions in oncology. Targeting aberrant sialylation or disrupting the interaction between sialic acids and their receptors offers potential strategies to reprogram the TME towards an anti-tumor phenotype, thereby facilitating the advancement of innovative cancer therapies.
Collapse
Affiliation(s)
- Jialu Bai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ruiling Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Decheng Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiyuan Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yuemeng Tang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ming Cui
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; National Infrastructures for Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China; State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
2
|
Habeeb IF, Alao TE, Delgado D, Buffone A. When a negative (charge) is not a positive: sialylation and its role in cancer mechanics and progression. Front Oncol 2024; 14:1487306. [PMID: 39628991 PMCID: PMC11611868 DOI: 10.3389/fonc.2024.1487306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Sialic acids and sialoglycans are critical actors in cancer progression and metastasis. These terminal sugar residues on glycoproteins and glycolipids modulate key cellular processes such as immune evasion, cell adhesion, and migration. Aberrant sialylation is driven by overexpression of sialyltransferases, resulting in hypersialylation on cancer cell surfaces as well as enhancing tumor aggressiveness. Sialylated glycans alter the structure of the glycocalyx, a protective barrier that fosters cancer cell detachment, migration, and invasion. This bulky glycocalyx also increases membrane tension, promoting integrin clustering and downstream signaling pathways that drive cell proliferation and metastasis. They play a critical role in immune evasion by binding to Siglecs, inhibitory receptors on immune cells, which transmit signals that protect cancer cells from immune-mediated destruction. Targeting sialylation pathways presents a promising therapeutic opportunity to understand the complex roles of sialic acids and sialoglycans in cancer mechanics and progression, which is crucial for developing novel diagnostic and therapeutic strategies that can disrupt these processes and improve cancer treatment outcomes.
Collapse
Affiliation(s)
- Issa Funsho Habeeb
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Toheeb Eniola Alao
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Daniella Delgado
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| | - Alexander Buffone
- Department of Biomedical Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
- Chemical and Materials Engineering, New Jersey Institute of Technlogy, Newark, NJ, United States
| |
Collapse
|
3
|
Hánělová K, Raudenská M, Masařík M, Balvan J. Protein cargo in extracellular vesicles as the key mediator in the progression of cancer. Cell Commun Signal 2024; 22:25. [PMID: 38200509 PMCID: PMC10777590 DOI: 10.1186/s12964-023-01408-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
Exosomes are small vesicles of endosomal origin that are released by almost all cell types, even those that are pathologically altered. Exosomes widely participate in cell-to-cell communication via transferring cargo, including nucleic acids, proteins, and other metabolites, into recipient cells. Tumour-derived exosomes (TDEs) participate in many important molecular pathways and affect various hallmarks of cancer, including fibroblasts activation, modification of the tumour microenvironment (TME), modulation of immune responses, angiogenesis promotion, setting the pre-metastatic niche, enhancing metastatic potential, and affecting therapy sensitivity and resistance. The unique exosome biogenesis, composition, nontoxicity, and ability to target specific tumour cells bring up their use as promising drug carriers and cancer biomarkers. In this review, we focus on the role of exosomes, with an emphasis on their protein cargo, in the key mechanisms promoting cancer progression. We also briefly summarise the mechanism of exosome biogenesis, its structure, protein composition, and potential as a signalling hub in both normal and pathological conditions. Video Abstract.
Collapse
Affiliation(s)
- Klára Hánělová
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martina Raudenská
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Michal Masařík
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
4
|
Dashzeveg NK, Jia Y, Zhang Y, Gerratana L, Patel P, Shajahan A, Dandar T, Ramos EK, Almubarak HF, Adorno-Cruz V, Taftaf R, Schuster EJ, Scholten D, Sokolowski MT, Reduzzi C, El-Shennawy L, Hoffmann AD, Manai M, Zhang Q, D'Amico P, Azadi P, Colley KJ, Platanias LC, Shah AN, Gradishar WJ, Cristofanilli M, Muller WA, Cobb BA, Liu H. Dynamic Glycoprotein Hyposialylation Promotes Chemotherapy Evasion and Metastatic Seeding of Quiescent Circulating Tumor Cell Clusters in Breast Cancer. Cancer Discov 2023; 13:2050-2071. [PMID: 37272843 PMCID: PMC10481132 DOI: 10.1158/2159-8290.cd-22-0644] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Most circulating tumor cells (CTC) are detected as single cells, whereas a small proportion of CTCs in multicellular clusters with stemness properties possess 20- to 100-times higher metastatic propensity than the single cells. Here we report that CTC dynamics in both singles and clusters in response to therapies predict overall survival for breast cancer. Chemotherapy-evasive CTC clusters are relatively quiescent with a specific loss of ST6GAL1-catalyzed α2,6-sialylation in glycoproteins. Dynamic hyposialylation in CTCs or deficiency of ST6GAL1 promotes cluster formation for metastatic seeding and enables cellular quiescence to evade paclitaxel treatment in breast cancer. Glycoproteomic analysis reveals newly identified protein substrates of ST6GAL1, such as adhesion or stemness markers PODXL, ICAM1, ECE1, ALCAM1, CD97, and CD44, contributing to CTC clustering (aggregation) and metastatic seeding. As a proof of concept, neutralizing antibodies against one newly identified contributor, PODXL, inhibit CTC cluster formation and lung metastasis associated with paclitaxel treatment for triple-negative breast cancer. SIGNIFICANCE This study discovers that dynamic loss of terminal sialylation in glycoproteins of CTC clusters contributes to the fate of cellular dormancy, advantageous evasion to chemotherapy, and enhanced metastatic seeding. It identifies PODXL as a glycoprotein substrate of ST6GAL1 and a candidate target to counter chemoevasion-associated metastasis of quiescent tumor cells. This article is featured in Selected Articles from This Issue, p. 1949.
Collapse
Affiliation(s)
- Nurmaa K. Dashzeveg
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Youbin Zhang
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lorenzo Gerratana
- Department of Medicinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Priyam Patel
- Quantitative Data Science Core, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Tsogbadrakh Dandar
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Erika K. Ramos
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hannah F. Almubarak
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Valery Adorno-Cruz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rokana Taftaf
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Emma J. Schuster
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David Scholten
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael T. Sokolowski
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Lamiaa El-Shennawy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Andrew D. Hoffmann
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Maroua Manai
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Qiang Zhang
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paolo D'Amico
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Karen J. Colley
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois
| | - Leonidas C. Platanias
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ami N. Shah
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William J. Gradishar
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William A. Muller
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Brian A. Cobb
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Huiping Liu
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
5
|
Al Saoud R, Hamrouni A, Idris A, Mousa WK, Abu Izneid T. Recent advances in the development of sialyltransferase inhibitors to control cancer metastasis: A comprehensive review. Biomed Pharmacother 2023; 165:115091. [PMID: 37421784 DOI: 10.1016/j.biopha.2023.115091] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
Metastasis accounts for the majority of cancer-associated mortalities, representing a huge health and economic burden. One of the mechanisms that enables metastasis is hypersialylation, characterized by an overabundance of sialylated glycans on the tumor surface, which leads to repulsion and detachment of cells from the original tumor. Once the tumor cells are mobilized, sialylated glycans hijack the natural killer T-cells through self-molecular mimicry and activatea downstream cascade of molecular events that result in inhibition of cytotoxicity and inflammatory responses against cancer cells, ultimately leading to immune evasion. Sialylation is mediated by a family of enzymes known as sialyltransferases (STs), which catalyse the transfer of sialic acid residue from the donor, CMP-sialic acid, onto the terminal end of an acceptor such as N-acetylgalactosamine on the cell-surface. Upregulation of STs increases tumor hypersialylation by up to 60% which is considered a distinctive hallmark of several types of cancers such as pancreatic, breast, and ovarian cancer. Therefore, inhibiting STs has emerged as a potential strategy to prevent metastasis. In this comprehensive review, we discuss the recent advances in designing novel sialyltransferase inhibitors using ligand-based drug design and high-throughput screening of natural and synthetic entities, emphasizing the most successful approaches. We analyse the limitations and challenges of designing selective, potent, and cell-permeable ST inhibitors that hindered further development of ST inhibitors into clinical trials. We conclude by analysing emerging opportunities, including advanced delivery methods which further increase the potential of these inhibitors to enrich the clinics with novel therapeutics to combat metastasis.
Collapse
Affiliation(s)
- Ranim Al Saoud
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, P.O. Box 112612, Al Ain, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, P.O. Box 112612, Abu Dhabi, United Arab Emirates
| | - Amar Hamrouni
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, P.O. Box 112612, Al Ain, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, P.O. Box 112612, Abu Dhabi, United Arab Emirates
| | - Adi Idris
- School of Biomedical Sciences, Queensland University of Technology, Gardens Point, QLD, Australia; School of Pharmacy and Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Walaa K Mousa
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, P.O. Box 112612, Al Ain, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, P.O. Box 112612, Abu Dhabi, United Arab Emirates
| | - Tareq Abu Izneid
- Pharmaceutical Sciences Program, College of Pharmacy, Al Ain University, P.O. Box 112612, Al Ain, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, P.O. Box 112612, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
6
|
Wang L, Chen X, Meng F, Huang T, Wang S, Zheng Z, Zheng G, Li W, Zhang J, Liu Y. α2,6-Sialylation promotes hepatocellular carcinoma cells migration and invasion via enhancement of nSmase2-mediated exosomal miRNA sorting. J Physiol Biochem 2023; 79:19-34. [PMID: 35984620 DOI: 10.1007/s13105-022-00917-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 02/08/2023]
Abstract
Exosomes have a critical role in the intercellular communication and metastatic progression of hepatocellular carcinoma (HCC). Recently, our group showed that α2, 6-sialylation played an important role in the proliferation- and migration-promoting effects of cancer-derived exosomes. However, the molecular basis remains elusive. In this study, the mechanism of α2, 6-sialylation-mediated specific microRNAs (miRNA) sorting into exosomes was illustrated. We performed miRNA profiling analysis to compare exosomes from HCC cell lines that differ only in α2, 6-sialylation status. A total of 388 differentially distributed miRNAs were identified in wild-type and β-galactoside α2, 6-sialyltransferase I (ST6Gal-I) knockdown MHCC-97H cells-derived exosomes. Neutral sphingomyelinase-2 (nSmase2), an important regulator mediating the sorting of exosomal miRNAs, was found to be a target of ST6Gal-I. The reduction of α2, 6-sialylation could impair the activity of nSmase2, as well as the nSmase2-dependent exosomal miRNAs sorting. This α2,6-sialylation-dependent sorting exerted an augmentation of motility on recipient HCC cells. Our data further demonstrated that α2,6-sialylation-mediated sorting of exosomal miR-100-5p promoted the migration and invasion of recipient HepG2 cells via the PI3K/AKT signaling pathway. The cellular metastasis-related gene CLDN11 was confirmed as a direct target of exosomal miR-100-5p, which elevated the mobility of recipient HCC cells. In conclusion, our results showed that α2,6-sialylation modulates nSmase2-dependent exosomal miRNAs sorting and promotes HCC progression.
Collapse
Affiliation(s)
- Liping Wang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China
| | - Xixi Chen
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China
| | - Fanxu Meng
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China
| | - Tianmiao Huang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China
| | - Shujing Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian, China
| | - Zhichao Zheng
- Department of Gastric Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Liaoning, China
| | - Guoliang Zheng
- Department of Gastric Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), Liaoning, China
| | - Wenli Li
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China
| | - Jianing Zhang
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China.
| | - Yubo Liu
- School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, 122406, China.
| |
Collapse
|
7
|
ST6GAL1 inhibits metastasis of hepatocellular carcinoma via modulating sialylation of MCAM on cell surface. Oncogene 2023; 42:516-529. [PMID: 36528750 DOI: 10.1038/s41388-022-02571-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 11/24/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022]
Abstract
The poor prognosis of hepatocellular carcinoma (HCC) is mainly because of its high rate of metastasis. Thus, elucidation of the molecular mechanisms underlying HCC metastasis is of great significance. Glycosylation is an important post-translational modification that is closely associated with tumor progression. Altered glycosylation including the altered sialylation resulting from aberrant expression of β-galactoside α2,6 sialyltransferase 1 (ST6GAL1) has long been considered as an important feature of cancer cells. However, there is limited information on the roles of ST6GAL1 and α2,6 sialylation in HCC metastasis. Here, we found that ST6GAL1 and α2,6 sialylation were negatively correlated with the metastatic potentials of HCC cells. Moreover, ST6GAL1 overexpression inhibited migration and invasion of HCC cells in vitro and suppressed HCC metastasis in vivo. Using a metabolic labeling-based glycoproteomic strategy, we identified a list of sialylated proteins that may be regulated by ST6GAL1. In particular, an increase in α2,6 sialylation of melanoma cell adhesion molecule (MCAM) inhibited its interaction with galectin-3 and decreased its expression on cell surface. In vitro and in vivo analysis showed that ST6GAL1 exerted its function in HCC metastasis by regulating MCAM expression. Finally, we found the relative intensity of sialylated MCAM was negatively correlated with tumor malignancy in HCC patients. Taken together, these results demonstrate that ST6GAL1 may be an HCC metastasis suppressor by affecting sialylation of MCAM on cell surface, which provides a novel insight into the roles of ST6GAL1 in HCC progression and supports the functional complexity of ST6GAL1 in a cancer type- and tissue type-specific manner.
Collapse
|
8
|
Huang J, Huang J, Zhang G. Insights into the Role of Sialylation in Cancer Metastasis, Immunity, and Therapeutic Opportunity. Cancers (Basel) 2022; 14:5840. [PMID: 36497322 PMCID: PMC9737300 DOI: 10.3390/cancers14235840] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Sialylation is an enzymatic process that covalently attaches sialic acids to glycoproteins and glycolipids and terminates them by creating sialic acid-containing glycans (sialoglycans). Sialoglycans, usually located in the outmost layers of cells, play crucial biological roles, notably in tumor transformation, growth, metastasis, and immune evasion. Thus, a deeper comprehension of sialylation in cancer will help to facilitate the development of innovative cancer therapies. Cancer sialylation-related articles have consistently increased over the last four years. The primary subjects of these studies are sialylation, cancer, immunotherapy, and metastasis. Tumor cells activate endothelial cells and metastasize to distant organs in part by the interactions of abnormally sialylated integrins with selectins. Furthermore, cancer sialylation masks tumor antigenic epitopes and induces an immunosuppressive environment, allowing cancer cells to escape immune monitoring. Cytotoxic T lymphocytes develop different recognition epitopes for glycosylated and nonglycosylated peptides. Therefore, targeting tumor-derived sialoglycans is a promising approach to cancer treatments for limiting the dissemination of tumor cells, revealing immunogenic tumor antigens, and boosting anti-cancer immunity. Exploring the exact tumor sialoglycans may facilitate the identification of new glycan targets, paving the way for the development of customized cancer treatments.
Collapse
Affiliation(s)
- Jianmei Huang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jianming Huang
- Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu 610041, China
| | - Guonan Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| |
Collapse
|
9
|
Lectin-Based Study Reveals the Presence of Disease-Relevant Glycoepitopes in Bladder Cancer Cells and Ectosomes. Int J Mol Sci 2022; 23:ijms232214368. [PMID: 36430846 PMCID: PMC9699364 DOI: 10.3390/ijms232214368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Bladder cancer is a malignancy that remains a therapeutic challenge and requires the identification of new biomarkers and mechanisms of progression. Several studies showed that extracellular vesicles promote angiogenesis, migration and metastasis, and inhibit apoptosis in bladder cancer. This effect may depend on their glycosylation status. Thus, the aim of this study was to compare glycosylation profiles of T-24 urothelial bladder cancer cells, HCV-29 normal ureter epithelial cells, and ectosomes released by both cell lines using lectin blotting and flow cytometry. Ectosomes displayed distinct total and surface glycosylation profiles with abundance of β-1,6-branched glycans and sialilated structures. Then, it was investigated whether the glycosylation status of the T-24 and HCV-29 cells is responsible for the effect exerted by ectosomes on the proliferation and migration of recipient cells. Stronger proproliferative and promigratory activity of T-24-derived ectosomes was observed in comparison to ectosomes from HCV-29 cells. When ectosomes were isolated from DMJ-treated cells, the aforementioned effects were diminished, suggesting that glycans carried by ectosomes were involved in modulation of recipient cell function. HCV-29- and T-24-derived ectosomes also increased the viability and motility of endothelial HUVEC cells and Hs27 fibroblasts. This supports the hypothesis that ectosomes can modulate the function of various cells present in the tumor microenvironment.
Collapse
|
10
|
Khan I, Gril B, Hoshino A, Yang HH, Lee MP, Difilippantonio S, Lyden DC, Steeg PS. Metastasis suppressor NME1 in exosomes or liposomes conveys motility and migration inhibition in breast cancer model systems. Clin Exp Metastasis 2022; 39:815-831. [PMID: 35939247 PMCID: PMC10642714 DOI: 10.1007/s10585-022-10182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/27/2022] [Indexed: 11/03/2022]
Abstract
Tumor-derived exosomes have documented roles in accelerating the initiation and outgrowth of metastases, as well as in therapy resistance. Little information supports the converse, that exosomes or similar vesicles can suppress metastasis. We investigated the NME1 (Nm23-H1) metastasis suppressor as a candidate for metastasis suppression by extracellular vesicles. Exosomes derived from two cancer cell lines (MDA-MB-231T and MDA-MB-435), when transfected with the NME1 (Nm23-H1) metastasis suppressor, secreted exosomes with NME1 as the predominant constituent. These exosomes entered recipient tumor cells, altered their endocytic patterns in agreement with NME1 function, and suppressed in vitro tumor cell motility and migration compared to exosomes from control transfectants. Proteomic analysis of exosomes revealed multiple differentially expressed proteins that could exert biological functions. Therefore, we also prepared and investigated liposomes, empty or containing partially purified rNME1. rNME1 containing liposomes recapitulated the effects of exosomes from NME1 transfectants in vitro. In an experimental lung metastasis assay the median lung metastases per histologic section was 158 using control liposomes and 15 in the rNME1 liposome group, 90.5% lower than the control liposome group (P = 0.016). The data expand the exosome/liposome field to include metastasis suppressive functions and describe a new translational approach to prevent metastasis.
Collapse
Affiliation(s)
- Imran Khan
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Convent Drive, Room 1126, Bethesda, MD, 20892, USA.
| | - Brunilde Gril
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Convent Drive, Room 1126, Bethesda, MD, 20892, USA
| | - Ayuko Hoshino
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Howard H Yang
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, USA
| | - Maxwell P Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, USA
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - David C Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, Cell and Developmental Biology, Weill Cornell Medical College, New York, NY, USA
- Department of Pediatrics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Patricia S Steeg
- Women's Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Building 37, Convent Drive, Room 1126, Bethesda, MD, 20892, USA
| |
Collapse
|
11
|
GC S, Bellis SL, Hjelmeland AB. ST6Gal1: Oncogenic signaling pathways and targets. Front Mol Biosci 2022; 9:962908. [PMID: 36106023 PMCID: PMC9465715 DOI: 10.3389/fmolb.2022.962908] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Golgi-sialyltransferase ST6Gal1 (βgalactosidase α2,6 sialyltransferase 1), adds the negatively charged sugar, sialic acid, to the terminal galactose of N-glycosylated proteins. Upregulation of ST6Gal1 is observed in many malignancies, and a large body of research has determined that ST6Gal1-mediated α2,6 sialylation impacts cancer hallmarks. ST6Gal1 affects oncogenic behaviors including sustained proliferation, enhanced self-renewal, epithelial-to-mesenchymal transition, invasion, and chemoresistance. However, there are relatively few ST6GaL1 related signaling pathways that are well-established to mediate these biologies: greater delineation of specific targets and signaling mechanisms that are orchestrated by ST6Gal1 is needed. The aim of this review is to provide a summary of our current understanding of select oncogenic signaling pathways and targets affected by ST6Gal1.
Collapse
Affiliation(s)
| | | | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Hugonnet M, Singh P, Haas Q, von Gunten S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front Immunol 2021; 12:799861. [PMID: 34975914 PMCID: PMC8718907 DOI: 10.3389/fimmu.2021.799861] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has been linked to immune evasion and metastatic spread, eventually by interaction with sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-associated sialoglycans involves sialyltransferases, which are differentially expressed in cancer cells. In this review article, we provide an overview of the twenty human sialyltransferases and their roles in cancer biology and immunity. A better understanding of the individual contribution of select sialyltransferases to the tumor sialome may lead to more personalized strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Marjolaine Hugonnet
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Pushpita Singh
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| |
Collapse
|
13
|
Aberrant Sialylation in Cancer: Biomarker and Potential Target for Therapeutic Intervention? Cancers (Basel) 2021; 13:cancers13092014. [PMID: 33921986 PMCID: PMC8122436 DOI: 10.3390/cancers13092014] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Sialylation is a post-translational modification that consists in the addition of sialic acid to growing glycan chains on glycoproteins and glycolipids. Aberrant sialylation is an established hallmark of several types of cancer, including breast, ovarian, pancreatic, prostate, colorectal and lung cancers, melanoma and hepatocellular carcinoma. Hypersialylation can be the effect of increased activity of sialyltransferases and results in an excess of negatively charged sialic acid on the surface of cancer cells. Sialic acid accumulation contributes to tumor progression by several paths, including stimulation of tumor invasion and migration, and enhancing immune evasion and tumor cell survival. In this review we explore the mechanisms by which sialyltransferases promote cancer progression. In addition, we provide insights into the possible use of sialyltransferases as biomarkers for cancer and summarize findings on the development of sialyltransferase inhibitors as potential anti-cancer treatments. Abstract Sialylation is an integral part of cellular function, governing many biological processes including cellular recognition, adhesion, molecular trafficking, signal transduction and endocytosis. Sialylation is controlled by the levels and the activities of sialyltransferases on glycoproteins and lipids. Altered gene expression of these enzymes in cancer yields to cancer-specific alterations of glycoprotein sialylation. Mounting evidence indicate that hypersialylation is closely associated with cancer progression and metastatic spread, and can be of prognostic significance in human cancer. Aberrant sialylation is not only a result of cancer, but also a driver of malignant phenotype, directly impacting key processes such as tumor cell dissociation and invasion, cell-cell and cell-matrix interactions, angiogenesis, resistance to apoptosis, and evasion of immune destruction. In this review we provide insights on the impact of sialylation in tumor progression, and outline the possible application of sialyltransferases as cancer biomarkers. We also summarize the most promising findings on the development of sialyltransferase inhibitors as potential anti-cancer treatments.
Collapse
|
14
|
Martins ÁM, Ramos CC, Freitas D, Reis CA. Glycosylation of Cancer Extracellular Vesicles: Capture Strategies, Functional Roles and Potential Clinical Applications. Cells 2021; 10:cells10010109. [PMID: 33430152 PMCID: PMC7827205 DOI: 10.3390/cells10010109] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Glycans are major constituents of extracellular vesicles (EVs). Alterations in the glycosylation pathway are a common feature of cancer cells, which gives rise to de novo or increased synthesis of particular glycans. Therefore, glycans and glycoproteins have been widely used in the clinic as both stratification and prognosis cancer biomarkers. Interestingly, several of the known tumor-associated glycans have already been identified in cancer EVs, highlighting EV glycosylation as a potential source of circulating cancer biomarkers. These particles are crucial vehicles of cell–cell communication, being able to transfer molecular information and to modulate the recipient cell behavior. The presence of particular glycoconjugates has been described to be important for EV protein sorting, uptake and organ-tropism. Furthermore, specific EV glycans or glycoproteins have been described to be able to distinguish tumor EVs from benign EVs. In this review, the application of EV glycosylation in the development of novel EV detection and capture methodologies is discussed. In addition, we highlight the potential of EV glycosylation in the clinical setting for both cancer biomarker discovery and EV therapeutic delivery strategies.
Collapse
Affiliation(s)
- Álvaro M. Martins
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Cátia C. Ramos
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Daniela Freitas
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Correspondence: (D.F.); (C.A.R.); Tel.:+351-225-570-786 (C.A.R.)
| | - Celso A. Reis
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; (Á.M.M.); (C.C.R.)
- Institute of Molecular Pathology and Immunology (IPATIMUP), University of Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), 4200-319 Porto, Portugal
- Correspondence: (D.F.); (C.A.R.); Tel.:+351-225-570-786 (C.A.R.)
| |
Collapse
|
15
|
Dorsett KA, Marciel MP, Hwang J, Ankenbauer KE, Bhalerao N, Bellis SL. Regulation of ST6GAL1 sialyltransferase expression in cancer cells. Glycobiology 2020; 31:530-539. [PMID: 33320246 DOI: 10.1093/glycob/cwaa110] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The ST6GAL1 sialyltransferase, which adds α2-6 linked sialic acids to N-glycosylated proteins, is overexpressed in a wide range of human malignancies. Recent studies have established the importance of ST6GAL1 in promoting tumor cell behaviors such as invasion, resistance to cell stress and chemoresistance. Furthermore, ST6GAL1 activity has been implicated in imparting cancer stem cell characteristics. However, despite the burgeoning interest in the role of ST6GAL1 in the phenotypic features of tumor cells, insufficient attention has been paid to the molecular mechanisms responsible for ST6GAL1 upregulation during neoplastic transformation. Evidence suggests that these mechanisms are multifactorial, encompassing genetic, epigenetic, transcriptional and posttranslational regulation. The purpose of this review is to summarize current knowledge regarding the molecular events that drive enriched ST6GAL1 expression in cancer cells.
Collapse
Affiliation(s)
- Kaitlyn A Dorsett
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Venturi G, Gomes Ferreira I, Pucci M, Ferracin M, Malagolini N, Chiricolo M, Dall'Olio F. Impact of sialyltransferase ST6GAL1 overexpression on different colon cancer cell types. Glycobiology 2020; 29:684-695. [PMID: 31317190 DOI: 10.1093/glycob/cwz053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated glycan structures can be both tumor markers and engines of disease progression. The structure Siaα2,6Galβ1,4GlcNAc (Sia6LacNAc), synthesized by sialyltransferase ST6GAL1, is a cancer-associated glycan. Although ST6GAL1/Sia6LacNAc are often overexpressed in colorectal cancer (CRC), their biological and clinical significance remains unclear. To get insights into the clinical relevance of ST6GAL1 expression in CRC, we interrogated The Cancer Genome Atlas with mRNA expression data of hundreds of clinically characterized CRC and normal samples. We found an association of low ST6GAL1 expression with microsatellite instability (MSI), BRAF mutations and mucinous phenotype but not with stage, response to therapy and survival. To investigate the impact of ST6GAL1 expression in experimental systems, we analyzed the transcriptome and the phenotype of the CRC cell lines SW948 and SW48 after retroviral transduction with ST6GAL1 cDNA. The two cell lines display the two main pathways of CRC transformation: chromosomal instability and MSI, respectively. Constitutive ST6GAL1 expression induced much deeper transcriptomic changes in SW948 than in SW48 and affected different genes in the two cell lines. ST6GAL1 expression affected differentially the tyrosine phosphorylation induced by hepatocyte growth factor, the ability to grow in soft agar, to heal a scratch wound and to invade Matrigel in the two cell lines. These results indicate that the altered expression of a cancer-associated glycosyltransferase impacts the gene expression profile, as well as the phenotype, although in a cancer subtype-specific manner.
Collapse
Affiliation(s)
- Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| |
Collapse
|
17
|
Hassinen A, Khoder-Agha F, Khosrowabadi E, Mennerich D, Harrus D, Noel M, Dimova EY, Glumoff T, Harduin-Lepers A, Kietzmann T, Kellokumpu S. A Golgi-associated redox switch regulates catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I. Redox Biol 2019; 24:101182. [PMID: 30959459 PMCID: PMC6454061 DOI: 10.1016/j.redox.2019.101182] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/10/2023] Open
Abstract
Glycosylation, a common modification of cellular proteins and lipids, is often altered in diseases and pathophysiological states such as hypoxia, yet the underlying molecular causes remain poorly understood. By utilizing lectin microarray glycan profiling, Golgi pH and redox screens, we show here that hypoxia inhibits terminal sialylation of N- and O-linked glycans in a HIF- independent manner by lowering Golgi oxidative potential. This redox state change was accompanied by loss of two surface-exposed disulfide bonds in the catalytic domain of the α-2,6-sialyltransferase (ST6Gal-I) and its ability to functionally interact with B4GalT-I, an enzyme adding the preceding galactose to complex N-glycans. Mutagenesis of selected cysteine residues in ST6Gal-I mimicked these effects, and also rendered the enzyme inactive. Cells expressing the inactive mutant, but not those expressing the wild type ST6Gal-I, were able to proliferate and migrate normally, supporting the view that inactivation of the ST6Gal-I help cells to adapt to hypoxic environment. Structure comparisons revealed similar disulfide bonds also in ST3Gal-I, suggesting that this O-glycan and glycolipid modifying sialyltransferase is also sensitive to hypoxia and thereby contribute to attenuated sialylation of O-linked glycans in hypoxic cells. Collectively, these findings unveil a previously unknown redox switch in the Golgi apparatus that is responsible for the catalytic activation and cooperative functioning of ST6Gal-I with B4GalT-I.
Collapse
Affiliation(s)
- Antti Hassinen
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Fawzi Khoder-Agha
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Elham Khosrowabadi
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Daniela Mennerich
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Deborah Harrus
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Maxence Noel
- Université de Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Elitsa Y Dimova
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Tuomo Glumoff
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Anne Harduin-Lepers
- Université de Lille, CNRS, UMR 8576, UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland
| | - Sakari Kellokumpu
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu, Finland.
| |
Collapse
|
18
|
Zhou X, Kinlough CL, Hughey RP, Jin M, Inoue H, Etling E, Modena BD, Kaminski N, Bleecker ER, Meyers DA, Jarjour NN, Trudeau JB, Holguin F, Ray A, Wenzel SE. Sialylation of MUC4β N-glycans by ST6GAL1 orchestrates human airway epithelial cell differentiation associated with type-2 inflammation. JCI Insight 2019; 4:122475. [PMID: 30730306 DOI: 10.1172/jci.insight.122475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/29/2019] [Indexed: 12/28/2022] Open
Abstract
Although type-2-induced (T2-induced) epithelial dysfunction is likely to profoundly alter epithelial differentiation and repair in asthma, the mechanisms for these effects are poorly understood. A role for specific mucins, heavily N-glycosylated epithelial glycoproteins, in orchestrating epithelial cell fate in response to T2 stimuli has not previously been investigated. Levels of a sialylated MUC4β isoform were found to be increased in airway specimens from asthmatic patients in association with T2 inflammation. We hypothesized that IL-13 would increase sialylation of MUC4β, thereby altering its function and that the β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) would regulate the sialylation. Using human biologic specimens and cultured primary human airway epithelial cells (HAECs),we demonstrated that IL-13 increases ST6GAL1-mediated sialylation of MUC4β and that both were increased in asthma, particularly in sputum supernatant and/or fresh isolated HAECs with elevated T2 biomarkers. ST6GAL1-induced sialylation of MUC4β altered its lectin binding and secretion. Both ST6GAL1 and MUC4β inhibited epithelial cell proliferation while promoting goblet cell differentiation. These in vivo and in vitro data provide strong evidence for a critical role for ST6GAL1-induced sialylation of MUC4β in epithelial dysfunction associated with T2-high asthma, thereby identifying specific sialylation pathways as potential targets in asthma.
Collapse
Affiliation(s)
- Xiuxia Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Environmental & Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Carol L Kinlough
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebecca P Hughey
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mingzhu Jin
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hideki Inoue
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Division of Pulmonary and Allergy Medicine, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Emily Etling
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Brian D Modena
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Deborah A Meyers
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - John B Trudeau
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Environmental & Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Fernando Holguin
- Division of Pulmonary and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Environmental & Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
19
|
Spugnini EP, Logozzi M, Di Raimo R, Mizzoni D, Fais S. A Role of Tumor-Released Exosomes in Paracrine Dissemination and Metastasis. Int J Mol Sci 2018; 19:E3968. [PMID: 30544664 PMCID: PMC6321583 DOI: 10.3390/ijms19123968] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/04/2018] [Accepted: 12/07/2018] [Indexed: 12/13/2022] Open
Abstract
Metastatic diffusion is thought to be a multi-step phenomenon involving the release of cells from the primary tumor and their diffusion through the body. Currently, several hypotheses have been put forward in order to explain the origin of cancer metastasis, including epithelial⁻mesenchymal transition, mutagenesis of stem cells, and a facilitating role of macrophages, involving, for example, transformation or fusion hybridization with neoplastic cells. In this paradigm, tumor-secreted extracellular vesicles (EVs), such as exosomes, play a pivotal role in cell communications, delivering a plethora of biomolecules including proteins, lipids, and nucleic acids. For their natural role in shuttling molecules, EVs have been newly considered a part of the metastatic cascade. They have a prominent role in preparing the so-called "tumor niches" in target organs. However, recent evidence has pointed out an even more interesting role of tumor EVs, consisting in their ability to induce malignant transformation in resident mesenchymal stem cells. All in all, in this review, we discuss the multiple involvements of EVs in the metastatic cascade, and how we can exploit and manipulate EVs in order to reduce the metastatic spread of malignant tumors.
Collapse
Affiliation(s)
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
20
|
Yan X, Lu J, Zou X, Zhang S, Cui Y, Zhou L, Liu F, Shan A, Lu J, Zheng M, Feng B, Zhang Y. The polypeptide N-acetylgalactosaminyltransferase 4 exhibits stage-dependent expression in colorectal cancer and affects tumorigenesis, invasion and differentiation. FEBS J 2018; 285:3041-3055. [PMID: 29931806 DOI: 10.1111/febs.14593] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/20/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022]
Abstract
The aberrant expression of mucin-type O-glycosylation plays important roles in cancer malignancy. The polypeptide N-acetylgalactosaminyltransferases (ppGalNAc-Ts) are a family of conserved enzymes that initiate the mucin-type O-glycosylation in cells. In human, consistent up- or down-regulation of ppGalNAc-Ts expression during cancer development has been frequently reported. Here, we provide evidence that ppGalNAc-T4 shows a stage-dependent expression at the different stages of colorectal cancer (CRC) in the 62 pair-matched tumor/normal tissues. In detail, ppGalNAc-T4 expression is significantly induced at stage I and II but not at stage III and IV. Overexpression of ppGalNAc-T4 in CRC cells enhances colony formation and sphere formation suggesting an important role of ppGalNAc-T4 in tumorigenesis. Conversely, knockdown of ppGalNAc-T4 in CRC cells increases the cell migration and invasion, and leads to an epithelial-mesenchymal transition-like transition. Further analysis suggests that loss of ppGalNAc-T4 contributes to the dedifferentiation of CRC and high expression of ppGalNAc-T4 correlates to a good prognosis of patients. Taken together, our results not only demonstrate a stage-dependent expression of ppGalNAc-T4 in CRC progression, but also suggest that such stage-dependent expression may contribute to the tumorigenesis at the early stage and promote cell migration and invasion at the advanced stage.
Collapse
Affiliation(s)
- Xialin Yan
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Jishun Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Xia Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Sen Zhang
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Yalu Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Leqi Zhou
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Feng Liu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Aidong Shan
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| | - Jiaoyang Lu
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Minghua Zheng
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Bo Feng
- Department of General Surgery, Department of Gastrointestinal Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, China
| |
Collapse
|
21
|
Zhao H, Achreja A, Iessi E, Logozzi M, Mizzoni D, Di Raimo R, Nagrath D, Fais S. The key role of extracellular vesicles in the metastatic process. Biochim Biophys Acta Rev Cancer 2018; 1869:64-77. [PMID: 29175553 PMCID: PMC5800973 DOI: 10.1016/j.bbcan.2017.11.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/16/2017] [Accepted: 11/22/2017] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs), including exosomes, have a key role in the paracrine communication between organs and compartments. EVs shuttle virtually all types of biomolecules such as proteins, lipids, nucleic acids, metabolites and even pharmacological compounds. Their ability to transfer their biomolecular cargo into target cells enables EVs to play a key role in intercellular communication that can regulate cellular functions such as proliferation, apoptosis and migration. This has led to the emergence of EVs as a key player in tumor growth and metastasis through the formation of "tumor niches" in target organs. Recent data have also been shown that EVs may transform the microenvironment of primary tumors thus favoring the selection of cancer cells with a metastatic behavior. The release of EVs from resident non-malignant cells may contribute to the metastatic processes as well. However, cancer EVs may induce malignant transformation in resident mesenchymal stem cells, suggesting that the metastatic process is not exclusively due to circulating tumor cells. In this review, we outline and discuss evidence-based roles of EVs in actively regulating multiple steps of the metastatic process and how we can leverage EVs to impair metastasis.
Collapse
Affiliation(s)
- Hongyun Zhao
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Abhinav Achreja
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Elisabetta Iessi
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| | - Mariantonia Logozzi
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| | - Davide Mizzoni
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| | - Rossella Di Raimo
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy
| | - Deepak Nagrath
- Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Stefano Fais
- Department of Oncology and Molecular Medicine, National Institute of Health, viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
22
|
Zhao Y, Wei A, Zhang H, Chen X, Wang L, Zhang H, Yu X, Yuan Q, Zhang J, Wang S. α2,6-Sialylation mediates hepatocellular carcinoma growth in vitro and in vivo by targeting the Wnt/β-catenin pathway. Oncogenesis 2017; 6:e343. [PMID: 28553930 PMCID: PMC5523073 DOI: 10.1038/oncsis.2017.40] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/07/2017] [Accepted: 04/20/2017] [Indexed: 12/16/2022] Open
Abstract
Abnormal sialylation due to overexpression of sialyltransferases has been associated with tumorigenesis and tumor progression. Although ST6Gal-I influences cancer persistence and progression by affecting various receptors, the underlying mechanisms and mediators remain largely obscure, especially in hepatocellular carcinoma (HCC). We found that ST6Gal-I expression was markedly upregulated in HCC tissues and cells, high levels being associated with aggressive phenotype and poor prognosis. Furthermore, we examined the roles and mechanisms of ST6Gal-I in HCC tumorigenesis and metastasis in vitro and in vivo. ST6Gal-I overexpression promoted proliferation, migration and invasion of Huh-7 cells, whereas its knockdown restricted these abilities in MHCC97-H cells. Additionally, in a mouse xenograft model, ST6Gal-I-knockdown MHCC97-H cells formed significantly smaller tumors, implying that ST6Gal-I overexpression can induce HCC cell malignant transformation. Importantly, enhanced HCC tumorigenesis and metastasis by ST6Gal-I may be associated with Wnt/β-catenin signaling promotion, including β-catenin nuclear transition and upregulation of downstream molecules. Together, our results suggest a role for ST6Gal-I in promoting the growth and invasion of HCC cells through the modulation of Wnt/β-catenin signaling molecules, and that ST6Gal-I might be a promising marker for prognosis and therapy of HCC.
Collapse
Affiliation(s)
- Y Zhao
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Liaoning Province, China
| | - A Wei
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Liaoning Province, China
| | - H Zhang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Liaoning Province, China
| | - X Chen
- School of Life Science and Medicine, Dalian University of Technology, Liaoning Province, China
| | - L Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Liaoning Province, China
| | - H Zhang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Liaoning Province, China
| | - X Yu
- Department of Pathology, Dalian Medical University, Liaoning Province, China
| | - Q Yuan
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Liaoning Province, China
| | - J Zhang
- School of Life Science and Medicine, Dalian University of Technology, Liaoning Province, China
| | - S Wang
- Department of Biochemistry and Molecular Biology, Institute of Glycobiology, Dalian Medical University, Liaoning Province, China
| |
Collapse
|
23
|
Zhang S, Lu J, Xu Z, Zou X, Sun X, Xu Y, Shan A, Lu J, Yan X, Cui Y, Yan W, Du Y, Gu J, Zheng M, Feng B, Zhang Y. Differential expression of ST6GAL1 in the tumor progression of colorectal cancer. Biochem Biophys Res Commun 2017; 486:1090-1096. [PMID: 28377225 DOI: 10.1016/j.bbrc.2017.03.167] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 03/31/2017] [Indexed: 12/21/2022]
Abstract
Elevated expression of β-galactoside α2,6-sialyltranferase 1 (ST6GAL1) has been observed in colorectal cancer (CRC) and demonstrated to be important for its tumorigenesis. Here, we found that ST6GAL1 expression was significantly higher in non-metastatic tumors (stage I and II) than that in metastatic tumors (stage III and IV) using 62 pair-matched tumor/normal tissues. To elucidate the molecular mechanisms of how ST6GAL1 affected the CRC progression, we performed a global identification of the substrates of ST6GAL1 in the colon adenocarcinoma cell line SW480. A total of 318 membrane proteins were identified differentially affected by ST6GAL1 overexpression using metabolic labeling and proteomic analysis. Subsequent bioinformatic analysis revealed a list of potential substrates that might mediate the different functions of ST6GAL1 in CRC including cell movement, cell death and survival. Taken together, these results indicate a dynamic change in the expression of ST6GAL1 during the CRC progression and provide a list of sialylated proteins potentially relevant to the different functions of ST6GAL1 in CRC.
Collapse
Affiliation(s)
- Sen Zhang
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Ruijin Er Road, Shanghai 200025, China
| | - Jishun Lu
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai 981-8558, Miyagi, Japan
| | - Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xia Zou
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Ruijin Er Road, Shanghai 200025, China; Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xue Sun
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingjiao Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Aidong Shan
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiaoyang Lu
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Ruijin Er Road, Shanghai 200025, China
| | - Xialin Yan
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Ruijin Er Road, Shanghai 200025, China
| | - Yalu Cui
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Yan
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yuguo Du
- State Key Lab of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aobaku, Sendai 981-8558, Miyagi, Japan; Department of Pharmacology, Pharmacy College, Nantong University, Nantong 226001, Jiangsu, China
| | - Minhua Zheng
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Ruijin Er Road, Shanghai 200025, China
| | - Bo Feng
- Department of General Surgery, Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Ruijin Er Road, Shanghai 200025, China.
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine (SCSB), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|