1
|
Mmbando GS. Variation in ultraviolet-B (UV-B)-induced DNA damage repair mechanisms in plants and humans: an avenue for developing protection against skin photoaging. Int J Radiat Biol 2024; 100:1505-1516. [PMID: 39231421 DOI: 10.1080/09553002.2024.2398081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE The increasing amounts of ultraviolet-B (UV-B) light in our surroundings have sparked worries about the possible effects on humans and plants. The detrimental effects of heightened UV-B exposure on these two vital elements of terrestrial life are different due to their unique and concurrent nature. Understanding common vulnerabilities and distinctive adaptations of UV-B radiation by exploring the physiological and biochemical responses of plants and the effects on human health is of huge importance. The comparative effects of UV-B radiation on plants and animals, however, are poorly studied. This review sheds light on the sophisticated web of UV-B radiation effects by navigating the complex interaction between botanical and medical perspectives, drawing upon current findings. CONCLUSION By providing a comprehensive understanding of the complex effects of heightened UV-B radiation on plants and humans, this study summarizes relevant adaptation strategies to the heightened UV-B radiation stress, which offer new approaches for improving human cellular resilience to environmental stressors.
Collapse
Affiliation(s)
- Gideon Sadikiel Mmbando
- College of Natural and Mathematical Sciences, Department of Biology, The University of Dodoma, Dodoma, Tanzania
| |
Collapse
|
2
|
Situmorang PC, Ilyas S, Nugraha SE, Syahputra RA, Nik Abd Rahman NMA. Prospects of compounds of herbal plants as anticancer agents: a comprehensive review from molecular pathways. Front Pharmacol 2024; 15:1387866. [PMID: 39104398 PMCID: PMC11298448 DOI: 10.3389/fphar.2024.1387866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/17/2024] [Indexed: 08/07/2024] Open
Abstract
Cancer refers to the proliferation and multiplication of aberrant cells inside the human body, characterized by their capacity to proliferate and infiltrate various anatomical regions. Numerous biochemical pathways and signaling molecules have an impact on the cancer auto biogenesis process. The regulation of crucial cellular processes necessary for cell survival and proliferation, which are triggered by phytochemicals, is significantly influenced by signaling pathways. These pathways or components are regulated by phytochemicals. Medicinal plants are a significant reservoir of diverse anticancer medications employed in chemotherapy. The anticancer effects of phytochemicals are mediated by several methods, including induction of apoptosis, cessation of the cell cycle, inhibition of kinases, and prevention of carcinogenic substances. This paper analyzes the phytochemistry of seven prominent plant constituents, namely, alkaloids, tannins, flavonoids, phenols, steroids, terpenoids, and saponins, focusing on the involvement of the MAPK/ERK pathway, TNF signaling, death receptors, p53, p38, and actin dynamics. Hence, this review has examined a range of phytochemicals, encompassing their structural characteristics and potential anticancer mechanisms. It has underscored the significance of plant-derived bioactive compounds in the prevention of cancer, utilizing diverse molecular pathways. In addition, this endeavor also seeks to incentivize scientists to carry out clinical trials on anticancer medications derived from plants.
Collapse
Affiliation(s)
- Putri Cahaya Situmorang
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Syafruddin Ilyas
- Study Program of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Sony Eka Nugraha
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
3
|
Surai PF, Surai A, Earle-Payne K. Silymarin and Inflammation: Food for Thoughts. Antioxidants (Basel) 2024; 13:98. [PMID: 38247522 PMCID: PMC10812610 DOI: 10.3390/antiox13010098] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/07/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Inflammation is a vital defense mechanism, creating hostile conditions for pathogens, preventing the spread of tissue infection and repairing damaged tissues in humans and animals. However, when inflammation resolution is delayed or compromised as a result of its misregulation, the process proceeds from the acute phase to chronic inflammation, leading to the development of various chronic illnesses. It is proven that redox balance disturbances and oxidative stress are among major factors inducing NF-κB and leading to over-inflammation. Therefore, the anti-inflammatory properties of various natural antioxidants have been widely tested in various in vitro and in vivo systems. Accumulating evidence indicates that silymarin (SM) and its main constituent silibinin/silybin (SB) have great potential as an anti-inflammation agent. The main anti-inflammatory mechanism of SM/SB action is attributed to the inhibition of TLR4/NF-κB-mediated signaling pathways and the downregulated expression of pro-inflammatory mediators, including TNF-α, IL-1β, IL-6, IL-12, IL-23, CCL4, CXCL10, etc. Of note, in the same model systems, SM/SB was able to upregulate anti-inflammatory cytokines (IL-4, IL-10, IL-13, TGF-β, etc.) and lipid mediators involved in the resolution of inflammation. The inflammatory properties of SM/SB were clearly demonstrated in model systems based on immune (macrophages and monocytes) and non-immune (epithelial, skin, bone, connective tissue and cancer) cells. At the same time, the anti-inflammatory action of SM/SB was confirmed in a number of in vivo models, including toxicity models, nonalcoholic fatty liver disease, ischemia/reperfusion models, stress-induced injuries, ageing and exercising models, wound healing and many other relevant model systems. It seems likely that the anti-inflammatory activities of SM/SB are key elements on the health-promoting properties of these phytochemicals.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Faculty of Veterinary Medicine, Sumy National Agrarian University, 40021 Sumy, Ukraine
- Faculty of Technology of Grain and Grain Business, Odessa National Technological University, 65039 Odessa, Ukraine
| | | | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK
| |
Collapse
|
4
|
Boateng ST, Roy T, Torrey K, Owunna U, Banang-Mbeumi S, Basnet D, Niedda E, Alexander AD, Hage DE, Atchimnaidu S, Nagalo BM, Aryal D, Findley A, Seeram NP, Efimova T, Sechi M, Hill RA, Ma H, Chamcheu JC, Murru S. Synthesis, in silico modelling, and in vitro biological evaluation of substituted pyrazole derivatives as potential anti-skin cancer, anti-tyrosinase, and antioxidant agents. J Enzyme Inhib Med Chem 2023; 38:2205042. [PMID: 37184042 PMCID: PMC10187093 DOI: 10.1080/14756366.2023.2205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/16/2023] [Indexed: 05/16/2023] Open
Abstract
Twenty-five azole compounds (P1-P25) were synthesised using regioselective base-metal catalysed and microwave-assisted approaches, fully characterised by high-resolution mass spectrometry (HRMS), nuclear magnetic resonance (NMR), and infrared spectra (IR) analyses, and evaluated for anticancer, anti-tyrosinase, and anti-oxidant activities in silico and in vitro. P25 exhibited potent anticancer activity against cells of four skin cancer (SC) lines, with selectivity for melanoma (A375, SK-Mel-28) or non-melanoma (A431, SCC-12) SC cells over non-cancerous HaCaT-keratinocytes. Clonogenic, scratch-wound, and immunoblotting assay data were consistent with anti-proliferative results, expression profiling therewith implicating intrinsic and extrinsic apoptosis activation. In a mushroom tyrosinase inhibition assay, P14 was most potent among the compounds (half-maximal inhibitory concentration where 50% of cells are dead, IC50 15.9 μM), with activity greater than arbutin and kojic acid. Also, P6 exhibited noteworthy free radical-scavenging activity. Furthermore, in silico docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) simulations predicted prominent-phenotypic actives to engage diverse cancer/hyperpigmentation-related targets with relatively high affinities. Altogether, promising early-stage hits were identified - some with multiple activities - warranting further hit-to-lead optimisation chemistry with further biological evaluations, towards identifying new skin-cancer and skin-pigmentation renormalising agents.
Collapse
Affiliation(s)
- Samuel T. Boateng
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Tithi Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Kara Torrey
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Uchechi Owunna
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Sergette Banang-Mbeumi
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- School of Nursing and Allied Health Sciences, Louisiana Delta Community College, Monroe, LA, USA
| | - David Basnet
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Eleonora Niedda
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Alexis D. Alexander
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Denzel El Hage
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siriki Atchimnaidu
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Bolni Marius Nagalo
- Department of Pathology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
- The Winthrop P. Rockefeller Cancer Institute, UAMS, Little Rock, AR, USA
| | - Dinesh Aryal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
- Department of Biomedical Affairs and Research, Edward Via College of Osteopathic Medicine, Monroe, LA, USA
| | - Ann Findley
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| | - Navindra P. Seeram
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Tatiana Efimova
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Mario Sechi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, Italy
| | - Ronald A. Hill
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Hang Ma
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Bioactive Botanical Research Laboratory, University of Rhode Island, Kingston, RI, USA
| | - Jean Christopher Chamcheu
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA, USA
| | - Siva Murru
- School of Sciences, College of Arts, Education and Sciences, University of Louisiana at Monroe, Monroe, LA, USA
| |
Collapse
|
5
|
Gjörloff Wingren A, Ziyad Faik R, Holefors A, Filecovic E, Gustafsson A. In vitro effects of undifferentiated callus extracts from Plantago major L, Rhodiola rosea L and Silybum marianum L in normal and malignant human skin cells. Heliyon 2023; 9:e16480. [PMID: 37292297 PMCID: PMC10245016 DOI: 10.1016/j.heliyon.2023.e16480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
Background and objectives The occurrence of non-melanoma and melanoma skin cancers is currently increasing rapidly with one in every three cancers diagnosed as a skin cancer. A useful strategy to control the progression of skin cancer could be the use of plant flavonoids that suppress pro-inflammatory cytokines involved in tumor initiation and progression. In this study, the anti-inflammatory and antioxidant activity of undifferentiated callus extracts from Plantago major L, Silybum marianum L and Rhodiola rosea L was investigated both in normal and malignant skin cells. Methods Antioxidant activity of the extracts was analyzed by using the Trolox Equivalent Antioxidant Capacity (TEAC) assay. High-Performance Thin-Layer Chromatography (HPTLC) was performed to demonstrate the phytochemical profile, and the total flavonoid content was analyzed with an aluminum chloride colorimetric method. The anti-inflammatory effect was investigated by cell treatments using the plant extracts. Thereafter, the possible suppression of induced IL-6 response was measured from the cultured skin cancer cell lines A2058 and A431, and normal primary keratinocytes with Enzyme-Linked Immunosorbent Assay (ELISA). Results The HPTLC analysis assessed that the extracts contained a complex phytochemical profile that was rich in phenolic and flavonoid compounds. Dose response assays showed that concentrations between 15 and 125 μg/mL of all three plant extracts could be used to investigate an effect on the IL-6 production. The S. marianum extract had the most pronounced anti-inflammatory effect, which significantly inhibited induced IL-6 production in both normal keratinocytes and skin cells derived from epidermal carcinoma. The extract from S. marianum also had the highest flavonoid content and showed the highest antioxidant activity of the three extracts tested. Conclusion All in all, we have confirmed that undifferentiated callus extracts of S. marianum possess properties such as antioxidant and anti-inflammatory activities in both normal and malignant keratinocytes, and thus could be a promising agent controlling the pro-inflammatory IL-6 production.
Collapse
Affiliation(s)
- Anette Gjörloff Wingren
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms – Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Riyam Ziyad Faik
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms – Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Anna Holefors
- In Vitro Plant-Tech AB, Geijersg 4B, 21618 Limhamn, Sweden
| | - Edina Filecovic
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms – Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| | - Anna Gustafsson
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, Malmö, Sweden
- Biofilms – Research Center for Biointerfaces, Malmö University, Malmö, Sweden
| |
Collapse
|
6
|
Tao ZS, Li TL, Wei S. Silymarin prevents iron overload induced bone loss by inhibiting oxidative stress in an ovariectomized animal model. Chem Biol Interact 2022; 366:110168. [PMID: 36087815 DOI: 10.1016/j.cbi.2022.110168] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/20/2022]
Abstract
Silibinin (SIL) has been used extensively for its hepatoprotective properties and antioxidant properties, including bone health. Iron overload can inhibit osteogenic proliferation and differentiation and promote bone loss. However, whether SIL can reverse the harmful effects of iron overload inovariectomized (OVX) rats and the mechanism is not clear. Therefore, this study intends to investigate the effect of SIL on bone mass and bone metabolism in iron overload rats and also explore the role of SIL on osteogenic differentiation of MC3T3-E1.RT-qPCR was used to measure the transcribe of target genes. Furthermore, alizarin red staining, alkaline phosphatase staining, immunofluorescence and CCK-8 assay were conducted to detect cell viability and target protein expression, osteogenic function. The OVX rat model with iron overload was set up to investigate bone reconstruction.Our results demonstrated that SIL promotes the proliferation and differentiation of osteoblasts, increases the ALP secretion and mineralization ability of osteoblasts, and enhances the transcribe and expression of target genes including OC, Runx-2, SOD2 and SIRT1 in an iron overload environment. In addition, it was confirmed that systemic SIL administration inhibits bone loss in OVX rats with iron overload and changes bone metabolism and oxidative stress status. Further study has shown that iron overload exerts its harmful function by accelerating bone turnover-mediated changes in higher bone metabolism to worsen osteoporosis. SIL can inhibit the unfriendly effects of iron overload, and by modifying bone metabolism and oxidative stress levels, the results contribute to clinical prevention and treatment of the progression of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Zhou-Shan Tao
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China.
| | - Tian-Lin Li
- Department of Orthopedics, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, No. 2, Zhe Shan Xi Road, Wuhu, 241001, Anhui, PR China
| | - Shan Wei
- School of Mechanical Engineering, Anhui Polytechnic University, Wuhu, 241000, PR China; Additive Manufacturing Institute of Anhui Polytechnic University, Anhui Polytechnic University, Wuhu, 241000, PR China
| |
Collapse
|
7
|
Sufianova G, Gareev I, Beylerli O, Wu J, Shumadalova A, Sufianov A, Chen X, Zhao S. Modern aspects of the use of natural polyphenols in tumor prevention and therapy. Front Cell Dev Biol 2022; 10:1011435. [PMID: 36172282 PMCID: PMC9512088 DOI: 10.3389/fcell.2022.1011435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Polyphenols are secondary plant metabolites or organic compounds synthesized by them. In other words, these are molecules that are found in plants. Due to the wide variety of polyphenols and the plants in which they are found, these compounds are divided according to the source of origin, the function of the polyphenols, and their chemical structure; where the main ones are flavonoids. All the beneficial properties of polyphenols have not yet been studied, since this group of substances is very extensive and diverse. However, most polyphenols are known to be powerful antioxidants and have anti-inflammatory effects. Polyphenols help fight cell damage caused by free radicals and immune system components. In particular, polyphenols are credited with a preventive effect that helps protect the body from certain forms of cancer. The onset and progression of tumors may be related directly to oxidative stress, or inflammation. These processes can increase the amount of DNA damage and lead to loss of control over cell division. A number of studies have shown that oxidative stress uncontrolled by antioxidants or an uncontrolled and prolonged inflammatory process increases the risk of developing sarcoma, melanoma, and breast, lung, liver, and prostate cancer. Therefore, a more in-depth study of the effect of polyphenolic compounds on certain signaling pathways that determine the complex cascade of oncogenesis is a promising direction in the search for new methods for the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Jianing Wu
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Russia
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Xin Chen
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Shiguang Zhao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| |
Collapse
|
8
|
Mechanistic Insights into the Pharmacological Significance of Silymarin. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165327. [PMID: 36014565 PMCID: PMC9414257 DOI: 10.3390/molecules27165327] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants are considered the reservoir of diverse therapeutic agents and have been traditionally employed worldwide to heal various ailments for several decades. Silymarin is a plant-derived mixture of polyphenolic flavonoids originating from the fruits and akenes of Silybum marianum and contains three flavonolignans, silibinins (silybins), silychristin and silydianin, along with taxifolin. Silybins are the major constituents in silymarin with almost 70–80% abundance and are accountable for most of the observed therapeutic activity. Silymarin has also been acknowledged from the ancient period and is utilized in European and Asian systems of traditional medicine for treating various liver disorders. The contemporary literature reveals that silymarin is employed significantly as a neuroprotective, hepatoprotective, cardioprotective, antioxidant, anti-cancer, anti-diabetic, anti-viral, anti-hypertensive, immunomodulator, anti-inflammatory, photoprotective and detoxification agent by targeting various cellular and molecular pathways, including MAPK, mTOR, β-catenin and Akt, different receptors and growth factors, as well as inhibiting numerous enzymes and the gene expression of several apoptotic proteins and inflammatory cytokines. Therefore, the current review aims to recapitulate and update the existing knowledge regarding the pharmacological potential of silymarin as evidenced by vast cellular, animal, and clinical studies, with a particular emphasis on its mechanisms of action.
Collapse
|
9
|
Liu WW, Wang F, Li C, Song XY, Otkur W, Zhu YY, Hayashi T, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Silibinin relieves UVB-induced apoptosis of human skin cells by inhibiting the YAP-p73 pathway. Acta Pharmacol Sin 2022; 43:2156-2167. [PMID: 34912007 PMCID: PMC9343358 DOI: 10.1038/s41401-021-00826-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
Excessive exposure to UVB induces skin diseases. Silibinin, a flavonolignan used for treating liver diseases, is found to be effective against UVB-caused skin epidermal and dermal cell damage. In this study we investigated the molecular mechanisms underlying. Human nonmalignant immortalized keratinocyte HaCaT cells and neonatal human foreskin fibroblasts HFFs were exposed to UVB irradiation. We showed that pre-treatment with silibinin dose-dependently decreased UVB-induced apoptosis of HaCaT cells. Furthermore, we showed that silibinin treatment inhibited nuclear translocation of YAP after UVB irradiation. Molecular docking analysis and DARTS assay confirmed the direct interaction of silibinin with YAP. Silencing YAP by siRNA had no influence on the survival of HaCaT cells, whereas inhibiting classical YAP-TEAD signaling pathway by siRNA targeting TEAD1 or its pharmaceutical inhibitor verteporfin further augmented UVB-induced apoptosis, suggesting that YAP-TEAD pathway was prosurvival, which did not participate in the protective effect of silibinin. We then explored the pro-apoptotic YAP-p73 pathway. p73 was upregulated in UVB-irradiated cells, but reduced by silibinin cotreatment. The mRNA and protein levels of p73 target genes (PML, p21 and Bax) were all increased by UVB but decreased by silibinin co-treatment. Inhibiting p73 by using siRNA reduced UVB-induced apoptosis, suggesting that downregulation of p73 was responsible for the cytoprotective effect of silibinin. In HFFs, the upregulated YAP-p73 pathway by UVB irradiation was also suppressed by silibinin. Collectively, YAP-p73 pathway is a major cause of the death of UVB-exposed epidermal HaCaT cells and dermal HFFs. Silibinin directly inhibits YAP-p73 pathway, exerting the protective action on UVB-irradiated skin cells.
Collapse
Affiliation(s)
- Wei-wei Liu
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Fang Wang
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Can Li
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Xiao-yu Song
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Wuxiyar Otkur
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China ,grid.423905.90000 0004 1793 300XCAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Yu-ying Zhu
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China
| | - Toshihiko Hayashi
- grid.412561.50000 0000 8645 4345Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016 China ,grid.411110.40000 0004 1793 1012Department of Chemistry and Life science, School of Advanced Engineering, Kogakuin University, 2665-1, Nakanomachi, Hachioji, Tokyo 192-0015 Japan ,Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, 302-0017 Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, China. .,Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang, 110016, China.
| |
Collapse
|
10
|
Camponogara C, Oliveira SM. Are TRPA1 and TRPV1 channel-mediated signalling cascades involved in UVB radiation-induced sunburn? ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103836. [PMID: 35248760 DOI: 10.1016/j.etap.2022.103836] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Burn injuries are underappreciated injuries associated with substantial morbidity and mortality. Overexposure to ultraviolet (UV) radiation has dramatic clinical effects in humans and is a significant public health concern. Although the mechanisms underlying UVB exposure are not fully understood, many studies have made substantial progress in the pathophysiology of sunburn in terms of its molecular aspects in the last few years. It is well established that the transient receptor potential ankyrin 1 (TRPA1), and vanilloid 1 (TRPV1) channels modulate the inflammatory, oxidative, and proliferative processes underlying UVB radiation exposure. However, it is still unknown which mechanisms underlying TRPV1/A1 channel activation are elicited in sunburn induced by UVB radiation. Therefore, in this review, we give an overview of the TRPV1/A1 channel-mediated signalling cascades that may be involved in the pathophysiology of sunburn induced by UVB radiation. These data will undoubtedly help to explain the various features of sunburn and contribute to the development of novel therapeutic approaches to better treat it.
Collapse
Affiliation(s)
- Camila Camponogara
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Sara Marchesan Oliveira
- Graduated Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, Santa Maria, RS, Brazil; Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
11
|
Paudel S, Raina K, Tiku VR, Maurya A, Orlicky DJ, You Z, Rigby CM, Deep G, Kant R, Raina B, Agarwal C, Agarwal R. Chemopreventive efficacy of silibinin against basal cell carcinoma growth and progression in UVB-irradiated Ptch+/- mice. Carcinogenesis 2022; 43:557-570. [PMID: 35184170 PMCID: PMC9234765 DOI: 10.1093/carcin/bgac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/23/2022] [Accepted: 02/18/2022] [Indexed: 11/15/2022] Open
Abstract
The factors (environmental and genetic) contributing to basal cell carcinoma (BCC) pathogenesis are well-established; however, effective agents for BCC prevention are marred by toxic side-effects. Herein, we assessed the efficacy of flavonolignan silibinin against ultraviolet B (UVB)-induced BCC in Ptch+/- (heterozygous patched homolog 1 gene) mouse model. Both male and female Ptch+/- mice were irradiated with a 240 mJ/cm2 UVB dose 3 times/week for 26 or 46 weeks, with or without topical application of silibinin (9 mg/200 µl in acetone, applied 30 min before or after UVB exposure). Results indicated that silibinin application either pre- or post-UVB exposure for 26 weeks significantly decreased the number of BCC lesions by 65% and 39% (P < 0.001 for both) and the area covered by BCCs (72% and 45%, P < 0.001 for both), respectively, compared to UVB alone. Furthermore, continuous UVB exposure for 46 weeks increased the BCC lesion number and the BCC area covered by ~6 and ~3.4 folds (P < 0.001), respectively. Notably, even in this 46 week prolonged UVB exposure, silibinin (irrespective of pre- or post-UVB treatment) significantly halted the growth of BCCs by 81-94% (P < 0.001) as well as other epidermal lesions; specifically, silibinin treated tissues had less epidermal dysplasia, fibrosarcoma, and squamous cell carcinoma. Immunohistochemistry and immunofluorescence studies revealed that silibinin significantly decreased basal cell proliferation (Ki-67) and the expression of cytokeratins (14 and 15), and Hedgehog signaling mediators Smo and Gli1 in the BCC lesions. Together, our findings demonstrate strong potential of silibinin to be efficacious in preventing the growth and progression of UVB-induced BCC.
Collapse
Affiliation(s)
- Sandeep Paudel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA,Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Vasundhara R Tiku
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Akhilendra Maurya
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - David J Orlicky
- Department of Pathology, School of Medicine, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Zhiying You
- Department of Medicine, School of Medicine, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Cindy M Rigby
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA,Department of Cancer Biology, Atrium Health Wake Forest Baptist, Winston-Salem, NC, USA
| | - Rama Kant
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Bupinder Raina
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado DenverAnschutz Medical Campus, Aurora, CO, USA
| | - Rajesh Agarwal
- To whom correspondence should be addressed. Tel: +1 303 724 4055; Fax +1 303 724 7266;
| |
Collapse
|
12
|
Loureiro JB, Ribeiro R, Nazareth N, Ferreira T, Lopes EA, Gama A, Machuqueiro M, Alves MG, Marabini L, Oliveira PA, Santos MMM, Saraiva L. Mutant p53 reactivator SLMP53-2 hinders ultraviolet B radiation-induced skin carcinogenesis. Pharmacol Res 2022; 175:106026. [PMID: 34890775 DOI: 10.1016/j.phrs.2021.106026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
Abstract
The growing incidence of skin cancer (SC) has prompted the search for additional preventive strategies to counteract this global health concern. Mutant p53 (mutp53), particularly with ultraviolet radiation (UVR) signature, has emerged as a promising target for SC prevention based on its key role in skin carcinogenesis. Herein, the preventive activity of our previously disclosed mutp53 reactivator SLMP53-2 against UVR-induced SC was investigated. The pre-treatment of keratinocyte HaCaT cells with SLMP53-2, before UVB exposure, depleted mutp53 protein levels with restoration of wild-type-like p53 DNA-binding ability and subsequent transcriptional activity. SLMP53-2 increased cell survival by promoting G1-phase cell cycle arrest, while reducing UVB-induced apoptosis through inhibition of c-Jun N-terminal kinase (JNK) activity. SLMP53-2 also protected cells from reactive oxygen species and oxidative damage induced by UVB. Moreover, it enhanced DNA repair through upregulation of nucleotide excision repair pathway and depletion of UVB-induced DNA damage, as evidenced by a reduction of DNA in comet tails, γH2AX staining and cyclobutane pyrimidine dimers (CPD) levels. SLMP53-2 further suppressed UVB-induced inflammation by inhibiting the nuclear translocation and DNA-binding ability of NF-κB, and promoted the expression of key players involved in keratinocytes differentiation. Consistently, the topical application of SLMP53-2 in mice skin, prior to UVB irradiation, reduced cell death and DNA damage. It also decreased the expression of inflammatory-related proteins and promoted cell differentiation, in UVB-exposed mice skin. Notably, SLMP53-2 did not show signs of skin toxicity for cumulative topical use. Overall, these results support a promising protective activity of SLMP53-2 against UVB-induced SC.
Collapse
Affiliation(s)
- Joana B Loureiro
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-31b Porto, Portugal
| | - Rita Ribeiro
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-31b Porto, Portugal
| | - Nair Nazareth
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-31b Porto, Portugal
| | - Tiago Ferreira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Elizabeth A Lopes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Adelina Gama
- Animal and Veterinary Research Centre (CECAV), Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences (ECAV), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Miguel Machuqueiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande, C8 bdg, 1749-016 Lisboa, Portugal
| | - Marco G Alves
- Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Portugal
| | - Laura Marabini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Paula A Oliveira
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Inov4Agro, University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Maria M M Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-31b Porto, Portugal.
| |
Collapse
|
13
|
Lombardo G, Melzi G, Indino S, Piazza S, Sangiovanni E, Baruffaldi Preis F, Marabini L, Donetti E. Keratin 17 as a marker of UVB-induced stress in human epidermis and modulation by Vitis vinifera extract. Cells Tissues Organs 2021; 211:611-627. [PMID: 34644704 DOI: 10.1159/000520038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Giulia Lombardo
- Department of Biomedical Science for Health, Università degli Studi di Milano, Milan, Italy
| | - Gloria Melzi
- Department of Pharmacological and Biomolecular Sciences, Milan, Italy
| | - Serena Indino
- Department of Biomedical Science for Health, Università degli Studi di Milano, Milan, Italy
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences, Milan, Italy
| | | | | | - Laura Marabini
- Department of Pharmacological and Biomolecular Sciences, Milan, Italy
| | - Elena Donetti
- Department of Biomedical Science for Health, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Crosstalk between Environmental Inflammatory Stimuli and Non-Coding RNA in Cancer Occurrence and Development. Cancers (Basel) 2021; 13:cancers13174436. [PMID: 34503246 PMCID: PMC8430834 DOI: 10.3390/cancers13174436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/20/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Increasing evidence has indicated that chronic inflammatory processes have an influence on tumor occurrence and all stages of tumor development. A dramatic increase of studies into non-coding RNAs (ncRNAs) biology has shown that ncRNAs act as oncogenic drivers and tumor suppressors in various inflammation-induced cancers. Thus, this complex network of inflammation-associated cancers and ncRNAs offers targets for prevention from the malignant transformation from inflammation and treatment of malignant diseases. Abstract There is a clear relationship between inflammatory response and different stages of tumor development. Common inflammation-related carcinogens include viruses, bacteria, and environmental mutagens, such as air pollutants, toxic metals, and ultraviolet light. The expression pattern of ncRNA changes in a variety of disease conditions, including inflammation and cancer. Non-coding RNAs (ncRNAs) have a causative role in enhancing inflammatory stimulation and evading immune responses, which are particularly important in persistent pathogen infection and inflammation-to-cancer transformation. In this review, we investigated the mechanism of ncRNA expression imbalance in inflammation-related cancers. A better understanding of the function of inflammation-associated ncRNAs may help to reveal the potential of ncRNAs as a new therapeutic strategy.
Collapse
|
15
|
Lu K, Bhat M, Peters S, Mitra R, Mo X, Oberyszyn TM, Dasgupta PS, Basu S. Dopamine Prevents Ultraviolet B-induced Development and Progression of Premalignant Cutaneous Lesions through its D 2 Receptors. Cancer Prev Res (Phila) 2021; 14:687-696. [PMID: 33846213 DOI: 10.1158/1940-6207.capr-21-0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/16/2021] [Accepted: 04/06/2021] [Indexed: 01/11/2023]
Abstract
Although the role of dopamine (DA) in malignant tumors has been reported, its function in premalignant lesions is unknown. Herein we report that the stimulation of DA D2 receptors in endothelial cells in ultraviolet B (UVB)-induced cutaneous lesions in mice significantly reduced the tumor number, tumor burden, and malignant squamous cell carcinoma in these animals. DA D2 receptor agonist inhibited VEGFA-dependent proangiogenic genes in vitro and in vivo. However, the mice pretreated with selective DA D2 receptor antagonist inhibited the actions of the agonist, thereby suggesting that the action of DA was through its D2 receptors in the endothelial cells. To our knowledge, this study is the first to report DA-mediated regulation of pathogenesis and progression of UVB-induced premalignant skin lesions. PREVENTION RELEVANCE: This investigation demonstrates the role of dopamine and its D2 receptors in UVB induced premalignant squamous cell skin lesions and how DA through its D2 receptors inhibits the development and progression of these lesions and subsequently prevents squamous cell carcinoma of the skin.
Collapse
Affiliation(s)
- Kai Lu
- Department of Pathology, Ohio State University, Columbus, Ohio
| | - Madhavi Bhat
- Department of Pathology, Ohio State University, Columbus, Ohio
| | - Sara Peters
- Department of Pathology, Ohio State University, Columbus, Ohio
| | - Rita Mitra
- Department of Pathology, KPC Medical College, Kolkata, India
| | - Xiaokui Mo
- Department of SBS-Biomedical Informatics, Ohio State University, Columbus, Ohio
| | | | | | - Sujit Basu
- Department of Pathology, Ohio State University, Columbus, Ohio. .,Division of Medical Oncology, Department of Internal Medicine, Ohio State University, Columbus, Ohio
| |
Collapse
|
16
|
Lu K, Bhat M, Peters S, Mitra R, Oberyszyn T, Basu S. Suppression of beta 2 adrenergic receptor actions prevent UVB mediated cutaneous squamous cell tumorigenesis through inhibition of VEGF-A induced angiogenesis. Mol Carcinog 2021; 60:172-178. [PMID: 33482042 PMCID: PMC7889723 DOI: 10.1002/mc.23281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Although beta 2 adrenergic receptors (β2 ADR) are present in the keratinocytes, their role in cutaneous squamous cell tumorigenesis needs to be ascertained. For the first time, we report here that selective β2 ADR antagonists by inhibiting β2 ADR actions significantly retarded the progression of ultraviolet B (UVB) induced premalignant cutaneous squamous cell lesions. These antagonists acted by inhibiting vascular endothelial growth factor-A (VEGF) mediated angiogenesis to prevent UVB radiation-induced squamous cell carcinoma of the skin.
Collapse
MESH Headings
- Adrenergic beta-1 Receptor Agonists/pharmacology
- Adrenergic beta-2 Receptor Antagonists/pharmacology
- Animals
- Butoxamine/pharmacology
- Humans
- Keratinocytes/metabolism
- Keratinocytes/radiation effects
- Male
- Mice, Inbred Strains
- Neoplasms, Radiation-Induced/blood supply
- Neoplasms, Radiation-Induced/drug therapy
- Neoplasms, Radiation-Induced/etiology
- Neoplasms, Squamous Cell/blood supply
- Neoplasms, Squamous Cell/drug therapy
- Neoplasms, Squamous Cell/etiology
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Receptors, Adrenergic, beta-2/metabolism
- Skin Neoplasms/blood supply
- Skin Neoplasms/drug therapy
- Skin Neoplasms/etiology
- Ultraviolet Rays/adverse effects
- Vascular Endothelial Growth Factor A/metabolism
- Xamoterol/pharmacology
- Mice
Collapse
Affiliation(s)
- Kai Lu
- Department of Pathology, Ohio State University, Columbus,
USA
| | - Madhavi Bhat
- Department of Pathology, Ohio State University, Columbus,
USA
| | - Sara Peters
- Department of Pathology, Ohio State University, Columbus,
USA
| | - Rita Mitra
- KPC Medical College, Kolkata, India. USA
| | - Tatiana Oberyszyn
- Department of Pathology, Ohio State University, Columbus,
USA
- Comprehensive Cancer Center, Ohio State University,
Columbus, USA
| | - Sujit Basu
- Department of Pathology, Ohio State University, Columbus,
USA
- Comprehensive Cancer Center, Ohio State University,
Columbus, USA
- Division of Medical Oncology, Department of Internal
Medicine, Ohio State University, Columbus, USA
| |
Collapse
|
17
|
Chen J, Li DL, Xie LN, Ma YR, Wu PP, Li C, Liu WF, Zhang K, Zhou RP, Xu XT, Zheng X, Liu X. Synergistic anti-inflammatory effects of silibinin and thymol combination on LPS-induced RAW264.7 cells by inhibition of NF-κB and MAPK activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153309. [PMID: 32890914 DOI: 10.1016/j.phymed.2020.153309] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/04/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Combination drug therapy has become an effective strategy for inflammation control. The anti‑inflammatory capacities of silibinin and thymol have each been investigated on its own, but little is known about the synergistic anti-inflammatory effects of these two compounds. PURPOSE This study aims to investigate the synergistic anti-inflammatory effects of silibinin and thymol when administered in combination to lipopolysaccharide (LPS)-induced RAW264.7 cells. METHODS RAW264.7 cells were pre-treated with silibinin and thymol individually or in combination for 2 h before LPS stimulation. Cell viability was detected by the MTT assay. Nitric oxide (NO) production was measured by Griess reagent. Reactive oxygen species (ROS) was evaluated by 2',7'-dichlorofluorescein-diacetate. ELISA was used to detect tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Western blot was performed to analyse the protein expression of LPS-induced RAW264.7 cells. RESULTS We observed a synergistic anti-inflammatory effect of silibinin and thymol when administered in combination to LPS-induced RAW264.7 cells. Silibinin combined with thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) had more potent effects on the inhibition of NO, TNF-α, and IL-6 than those exerted by individual administration of these compounds in LPS-induced RAW264.7 cells. The combination of silibinin and thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) strongly inhibited ROS and cyclooxygenase-2 (COX-2). More importantly, the combination of silibinin and thymol (40 μM and 120 μM respectively, with the molar ratio 1:3) was also successful in inhibiting nuclear factor-κB (NF-κB) and mitogen-activated protein kinase (MAPK) activities. Our results suggest that the synergistic anti-inflammatory effects of silibinin with thymol were associated with the inhibition of NF-κB and MAPK signalling pathways. CONCLUSION The combination of silibinin and thymol (40 μM and 120 μM, respectively, with the molar ratio 1:3) could inhibit inflammation by suppressing NF-κB and MAPK signalling pathways in LPS-induced RAW264.7 cells.
Collapse
Affiliation(s)
- Jie Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Dong-Li Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Ling-Na Xie
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yu-Ran Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Pan-Pan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Chen Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Wen-Feng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China
| | - Ren-Ping Zhou
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xue-Tao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China; International Healthcare Innovation Institute (Jiangmen), Jiangmen 529020, P. R. China.
| | - Xi Zheng
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Xia Liu
- Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
18
|
Loureiro JB, Abrantes M, Oliveira PA, Saraiva L. P53 in skin cancer: From a master player to a privileged target for prevention and therapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188438. [PMID: 32980466 DOI: 10.1016/j.bbcan.2020.188438] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022]
Abstract
The increasing incidence of skin cancer (SC) is a global health concern. The commonly reported side effects and resistance mechanisms have imposed the pursuit for new therapeutic alternatives. Moreover, additional preventive strategies should be adopted to strengthen prevention and reduce the rising number of newly SC cases. This review provides relevant insights on the role of p53 tumour suppressor protein in melanoma and non-melanoma skin carcinogenesis, also highlighting the therapeutic potential of p53-targeting drugs against SC. In fact, several evidences are provided demonstrating the encouraging outcomes achieved with p53-activating drugs, alone and in combination with currently available therapies in SC. Another pertinent perspective falls on targeting p53 mutations, as molecular signatures in premature phases of photocarcinogenesis, in future SC preventive approaches. Overall, this review affords a critical and timely discussion of relevant issues related to SC prevention and therapy. Importantly, it paves the way to future studies that may boost the clinical translation of p53-activating agents, making them new effective alternatives in precision medicine of SC therapy and prevention.
Collapse
Affiliation(s)
- J B Loureiro
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - M Abrantes
- Biophysics Institute, Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Clinical Academic Center of Coimbra, Coimbra, Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR) area of Environment Genetics and Oncobiology (CIMAGO), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; CNC.IBILI Consortium/Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - P A Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal
| | - L Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
19
|
Tsaroucha AK, Korovesis GN, Valsami G, Lambropoulou M, Kollaras V, Anagnostopoulos C, Kostomitsopoulos N, Zerbini E, Simopoulos C. Silibinin-hydroxypropyl-β-cyclodextrin (SLB-HP-β-CD) complex prevents apoptosis in liver and kidney after hepatic ischemia-reperfusion injury. Food Chem Toxicol 2020; 145:111731. [PMID: 32891719 DOI: 10.1016/j.fct.2020.111731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/05/2020] [Accepted: 08/30/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND We investigated the protective effect of silibinin on rat liver and kidney after hepatic inschemia/reperfusion (I/R) injury. METHODS AND MATERIALS Sixty three male Wistar-type rats (median age 13 weeks; average weight 314 g) were subjected to I/R injury of the liver. They were randomly divided into three groups: Sham (n = 7), Control (C, n = 28) and Silibinin (Si, n = 28). The last group received intravenously silibinin. The C and Si groups were each subdivided in four subgroups according to euthanasia times (i.e., 60, 120, 180, 240 min). We assessed expression of caspase-3 and TUNEL assay, and biochemical and histological parameters. RESULTS At 240 min, expression of caspase-3 and TUNEL assay were statistically significantly lower in the Si compared to the C group for both liver and kidney. SGOT and SGPT were also statistically significantly lower in the Si than in the C group at all time points. Histological parameters of the liver were also improved in the Si group. CONCLUSION Silibinin was found to exhibit a protective effect on liver and kidney after hepatic I/R injury. The present results are encouraging for further studies and future clinical application.
Collapse
Affiliation(s)
- Alexandra K Tsaroucha
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; 2nd Department of Surgery and Laboratory of Experimental Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; Department of Experimental Surgery, Bioresearch Foundation of the Academy of Athens, Athens, Greece.
| | - Georgios N Korovesis
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Georgia Valsami
- School of Health Sciences, Department of Pharmacy, National and Kapodistrian University of Athens, Greece
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vasileios Kollaras
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Eleni Zerbini
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Constantinos Simopoulos
- Postgraduate Program in Hepatobiliary/Pancreatic Surgery, Faculty of Medicine, Democritus University of Thrace, Alexandroupolis, Greece; Department of Experimental Surgery, Bioresearch Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
20
|
Isidoro C. Nutraceuticals and diet in human health and disease. The special issue at a glance. J Tradit Complement Med 2020; 10:175-179. [PMID: 32670811 PMCID: PMC7340978 DOI: 10.1016/j.jtcme.2020.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This first Special Issue collects fifteen original research and up-to-date review articles addressing the beneficial properties of herbal products, nutrient supplements, dietary regimens, and functional food for the complementary therapy of human pathologies. In these articles, renowned scholars present and discuss the curative effects and the molecular mechanisms of action of nutraceuticals, medicinal herbs, and dietary regimens that have been proven effective in the treatment of cancers, metabolic syndrome, fatty liver disease, hearth arrythmia and neurodegenerative disorders.
Collapse
Affiliation(s)
- Ciro Isidoro
- Università Del Piemonte Orientale, Department of Health Sciences, Novara, Italy
| |
Collapse
|
21
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
22
|
Di Caprio R, Monfrecola G, Gasparri F, Micillo R, Balato A, Lembo S. Milk thistle and olive extract: old substances with a new mission against sun-induced skin damage. GIORN ITAL DERMAT V 2020; 155:286-293. [PMID: 29192469 DOI: 10.23736/s0392-0488.17.05726-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Natural antioxidants represent an effective option in the prevention and/or improvement of ultraviolet radiations (UVR)-induced/aggravated skin conditions. UVR cause DNA damage in keratinocytes, directly, in the form of cyclobutane pyrimidine dimers (CPDs), or indirectly, through oxidative stress production. Failure of the repair system can result in genetic mutations primarily responsible for the initiation of NMSCs. The aim of our study was to evaluate the in vitro protective effect of milk thistle and olive purified extracts on cultured keratinocytes after solar simulator irradiations (SSR). METHODS Immortalized keratinocytes were pre-incubated with different concentrations of milk thistle and olive purified extracts, and irradiated with increasing doses of SSR. Thereafter, CPDs and p53 expression were evaluated to assess DNA damage, whereas cellular antioxidants consumption and lipid membranes peroxidation were measured to analyze oxidative stress. RESULTS The study substances were well tolerated by cells and displayed good cytoprotective and antioxidant activities, being milk thistle dry extract more effective in limiting the direct DNA damage, and olive extract particularly able to reduce lipid membrane peroxidation and to increase cellular antioxidants. CONCLUSIONS Both study substances can be defined as safe compounds, showing differential cytoprotective and antioxidant activities and might represent interesting options for NMSCs chemoprevention.
Collapse
Affiliation(s)
- Roberta Di Caprio
- Section of Dermatology, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy -
| | - Giuseppe Monfrecola
- Section of Dermatology, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Franco Gasparri
- Department of Pharmacy (DIFARMA), University of Salerno, Salerno, Italy
| | - Raffaella Micillo
- Section of Dermatology, Department of Clinical Medicine and Surgery, Federico II University of Naples, Naples, Italy
| | - Anna Balato
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Serena Lembo
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Salerno, Italy
| |
Collapse
|
23
|
Castelletti N, Kaiser JC, Simonetto C, Furukawa K, Küchenhoff H, Stathopoulos GT. Risk of lung adenocarcinoma from smoking and radiation arises in distinct molecular pathways. Carcinogenesis 2020; 40:1240-1250. [PMID: 30915466 DOI: 10.1093/carcin/bgz036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 01/04/2023] Open
Abstract
KRAS mutations of lung adenocarcinoma (LADC) are associated with smoking but little is known on other exposure-oncogene associations. Hypothesizing that different inciting agents may cause different driver mutations, we aimed to identify distinct molecular pathways to LADC, applying two entirely different approaches. First, we examined clinicopathologic features and genomic signatures of environmental exposures in the large LADC Campbell data set. Second, we designed a molecular mechanistic risk model of LADC (M3LADC) that links environmental exposure to incidence risk by mathematically emulating the disease process. This model was applied to incidence data of Japanese atom-bomb survivors which contains information on radiation and smoking exposure. Grouping the clinical data by driver mutations revealed two main distinct molecular pathways to LADC: one unique to transmembrane receptor-mutant patients that displayed robust signatures of radiation exposure and one shared between submembrane transducer-mutant patients and patients with no evident driver mutation that carried the signature of smoking. Consistently, best fit of the incidence data was achieved with a M3LADC with two pathways: in one LADC risk increased with radiation exposure and in the other with cigarette consumption. We conclude there are two main molecular pathways to LADC associated with different environmental exposures. Future molecular measurements in lung cancer tissue of atom-bomb survivors may allow to further test quantitatively the M3LADC-predicted link of radiation to transmembrane receptor mutations. Moreover, the developed molecular mechanistic model showed that for low doses, as relevant e.g. for medical imaging, smokers have the same radiation risk compared with never smokers.
Collapse
Affiliation(s)
- Noemi Castelletti
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Jan Christian Kaiser
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Cristoforo Simonetto
- Institute of Radiation Medicine (IRM), Helmholtz Zentrum München, Neuherberg, Bavaria, Germany
| | - Kyoji Furukawa
- Biostatistics Center, Kurume University, Asahi-machi, Kurume, Japan
| | - Helmut Küchenhoff
- Department of Statistics, Ludwig-Maximilian University (LMU) Munich, Munich, Bavaria, Germany
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine; University of Patras; Rio, Achaia, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilian University (LMU) and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| |
Collapse
|
24
|
Prasad RR, Paudel S, Raina K, Agarwal R. Silibinin and non-melanoma skin cancers. J Tradit Complement Med 2020; 10:236-244. [PMID: 32670818 PMCID: PMC7340873 DOI: 10.1016/j.jtcme.2020.02.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 01/20/2023] Open
Abstract
Skin is the largest human organ that shields the inner body from contact with xenobiotic and genotoxic agents, and in this process, the skin's cellular genome faces continuous stress due to direct exposure to these noxious factors. Accumulation of genetic stress results in genomic alterations leading to undesirable gene or protein alteration/expression in skin cells, which eventually causes the formation of non-melanoma skin cancers (NMSCs). Ultraviolet B (UVB) radiation from sun is the most prominent factor contributing to ∼5 million skin cancer cases (which are mostly NMSCs) in the United States (US) and western countries. UVB exposure causes aberrations in a range of biochemical and molecular pathways such as: thymine dimer formation, DNA damage, oxidative stress, inflammatory responses, altered cellular signaling, which ultimately contribute to the development of NMSCs. The focus of this review is to summarize the protective and preventive potential of silymarin and/or silibinin against UVB-induced NMSC in pre-clinical skin cancer studies. Over two decades of research has shown the strong potential of silibinin, a biologically active flavonolignan (crude form Silymarin) derived from milk thistle plant, against a wide range of cancers, including NMSCs. Silibinin protects against UVB-induced thymine dimer formation and in turn promotes DNA repair and/or initiates apoptosis in damaged cells via an increase in p53 levels. Additionally, silibinin has shown strong efficacy against NMSCs via its potential to target aberrant signaling pathways, and induction of anti-inflammatory responses. Overall, completed comprehensive studies suggest the potential use of silibinin to prevent and/or manage NMSCs in humans.
Collapse
Affiliation(s)
- Ram Raj Prasad
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sandeep Paudel
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Komal Raina
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, 57007, USA
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, 80045, USA
- University of Colorado Comprehensive Cancer Center, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
25
|
Gómez-García FJ, López López A, Guerrero-Sánchez Y, Sánchez Siles M, Martínez Díaz F, Camacho Alonso F. Chemopreventive effect of pomegranate and cocoa extracts on ultraviolet radiation-induced photocarcinogenesis in SKH-1 mice. PLoS One 2020; 15:e0232009. [PMID: 32353018 PMCID: PMC7192448 DOI: 10.1371/journal.pone.0232009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) has a high and increasing incidence all over the world. Solar radiation is the main aetiology for humans. Although most research into photocarcinogenesis uses UVB as a source of radiation, UVA is also carcinogenic in long term. Pomegranate (PGE) and cocoa (CE) extracts have been used for medicinal purposes for time immemorial. Recently, it has been claimed that some of their properties may be an effective preventative measure against photocarcinogenesis and photoaging, but to date in vivo models have not been tested using RUVA, the objective of the present work. A lower incidence of lesions was observed in SKH-1 mice treated with PGE (p<0.001), and lower incidence of invasive squamous carcinoma in both treatment groups (p<0.001 for PGE and p<0.05 for CE); the PGE group also showed a lower level of cell proliferation than the control group (p<0.001). Significantly greater p53 alteration was observed in the control group than the treatment groups (p<0.001 for PGE and p = 0.05 for CE). No significant differences were found in relation to TIMP-1 and MMP-9. Taken together, the results suggest that oral feeding of PGE and CE to SKH-1 mice affords substantial protection against the adverse effects of RUVA, especially PGE.
Collapse
Affiliation(s)
- Francisco José Gómez-García
- Department of Dermatology, Stomatology, Radiology and Physic Medicine, Faculty of Medicine, Campus of Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Antonia López López
- Department of Dermatology, Stomatology, Radiology and Physic Medicine, Faculty of Medicine, Campus of Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Yolanda Guerrero-Sánchez
- Department of Dermatology, Stomatology, Radiology and Physic Medicine, Faculty of Medicine, Campus of Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | - Mariano Sánchez Siles
- Department of Dermatology, Stomatology, Radiology and Physic Medicine, Faculty of Medicine, Campus of Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| | | | - Fabio Camacho Alonso
- Department of Dermatology, Stomatology, Radiology and Physic Medicine, Faculty of Medicine, Campus of Excellence Mare Nostrum, University of Murcia, Murcia, Spain
| |
Collapse
|
26
|
Fan Y, Hou T, Dan W, Liu T, Luan J, Liu B, Li L, Zeng J. Silibinin inhibits epithelial‑mesenchymal transition of renal cell carcinoma through autophagy‑dependent Wnt/β‑catenin signaling. Int J Mol Med 2020; 45:1341-1350. [PMID: 32323735 PMCID: PMC7138295 DOI: 10.3892/ijmm.2020.4521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/22/2020] [Indexed: 01/07/2023] Open
Abstract
Silibinin is a flavonoid extracted from milk thistle seeds which has been widely used as a hepatoprotective and antioxidant agent. Recently, accumulating evidence has demonstrated the anti-cancer effects of silibinin in various cancer models. It was previously reported that silibinin induced apoptosis and decreased metastasis by activating autophagy in renal cell carcinoma (RCC). However, the underlying molecular mechanisms by which silibinin regulates autophagy remain largely unknown. The aim of the present study was to investigate the effects of silibinin on RCC metastasis in vitro and in vivo, with a focus on autophagy-dependent Wnt/β-catenin signaling. Human RCC 786-O and ACHN cell lines were used as the model system in vitro and RCC xenografts of nude mice were used for in vivo studies. Silibinin inhibited metastasis and epithelial-mesenchymal transition (EMT) of RCC in vitro and in vivo, by regulating the Wnt/β-catenin signaling pathway. Furthermore, silibinin inhibited the Wnt/β-catenin signaling pathway in an autophagy-dependent manner. Autophagic degradation of β-catenin induced by silibinin was associated with the anti-metastatic effects of silibinin against RCC. These findings identify a novel mechanism by which silibinin inhibits EMT and metastasis of RCC, highlighting a potential novel strategy for treating metastatic RCC.
Collapse
Affiliation(s)
- Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tao Hou
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Weichao Dan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jiaxin Luan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Bo Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jin Zeng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
27
|
Raimundo L, Ramos H, Loureiro JB, Calheiros J, Saraiva L. BRCA1/P53: Two strengths in cancer chemoprevention. Biochim Biophys Acta Rev Cancer 2020; 1873:188339. [PMID: 31917206 DOI: 10.1016/j.bbcan.2020.188339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Abstract
Increasing emphasis has been given to prevention as a feasible approach to reduce the cancer burden. However, for its clinical success, further advances are required to identify effective chemopreventive agents. This review affords a critical and up-to-date discussion of issues related to cancer prevention, including an in-depth knowledge on BRCA1 and p53 tumor suppressor proteins as key molecular players. Indeed, it compiles the most recent advances on the topic, highlighting the unique potential of BRCA1 and p53 germline mutations as molecular biomarkers for risk assessment and targets for chemoprevention. Relevant evidences are herein provided supporting the effectiveness of distinct pharmacological agents in cancer prevention, by targeting BRCA1 and p53. Moreover, the rationale for using germline mutant BRCA1- or p53-related cancer syndromes as model systems to investigate effective chemopreventive agents is also addressed. Altogether, this work provides an innovative conception about the dependence on p53 and BRCA1 co-inactivation in tumor formation and development, emphasizing the relationship between these two proteins as an encouraging direction for future personalized pharmacological interventions in cancer prevention.
Collapse
Affiliation(s)
- Liliana Raimundo
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Helena Ramos
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Joana B Loureiro
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Juliana Calheiros
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Lucília Saraiva
- LAQV/REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal.
| |
Collapse
|
28
|
Zhang X, Jiang J, Chen Z, Cao M. Silibinin inhibited autophagy and mitochondrial apoptosis in pancreatic carcinoma by activating JNK/SAPK signaling. Pathol Res Pract 2019; 215:152530. [PMID: 31351801 DOI: 10.1016/j.prp.2019.152530] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 06/12/2019] [Accepted: 07/05/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND Previous investigation have indicated Silibinin induces apoptosis and JNK/SAPK in human pancreatic cancer cells. This study aims to evaluate the further mechanism of Silibinin in pancreatic cancer treatment. MATERIALS AND METHODS Human pancreatic cancer cell lines SW1990 was treated with Silibinin and/or JNK/SAPK inhibitor SP600125 followed by measurement of cell viability, apoptosis, autophagy, ROS and ATP, and western blotting. RESULTS Silibinin promoted cell viability and promoted cell apoptosis. The expression of ROS and ATP associated with mitochondrial function was also promoted by the treatment of silibinin. Silibinin also promoted autophagy in pancreatic cancer cells. All these biological effects of Silibinin can be reversed by JNK/SAPK inhibitor. CONCLUSIONS The biological effects regulated by Silibinin can be mediated by JNK/SAPK signaling. This provides a solid theoretical basis for the role of Silibinin in the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of General Surgery, The First People's Hospital of Nanyang City, Nanyang, Henan 473000, China.
| | - Jianwei Jiang
- Department of Biochemistry, Medical College, Jinan University, Guangzhou, Guangdong 510630, China
| | - Zhiwei Chen
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China
| | - Mingrong Cao
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510630, China.
| |
Collapse
|
29
|
Hua H, Cheng JW, Bu WB, Liu J, Ma WW, Ni N, Shi J, Zhou BR, Luo D. 5-aminolaevulinic acid-based photodynamic therapy inhibits ultraviolet B-induced skin photodamage. Int J Biol Sci 2019; 15:2100-2109. [PMID: 31592145 PMCID: PMC6775304 DOI: 10.7150/ijbs.31583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 06/21/2019] [Indexed: 12/02/2022] Open
Abstract
To evaluate the photoprotective effect of 5-aminolaevulinic acid-based photodynamic therapy (ALA-PDT) on ultraviolet B (UVB)-induced skin photodamage. In vivo experiments, the dorsal skin of hairless mice were treated with ALA-PDT or saline-PDT, and then exposed to 180 mJ/m2 UVB. Results showed that the number of sunburn cells and apoptotic cells in the epidermis of ALA-PDT-treated groups at 24 h after UVB irradiation were significantly decreased compared with those in the UVB groups. And the removal rate of CPDs was obviously higher in ALA-PDT-treated groups. At 48 h, the number of Ki67 positive nuclei in ALA-PDT-UVB group was significantly fewer than that in UVB group. Further in vitro experiments, human keratinocyte cell line (HaCaT) cells of two groups (one treated with ALA-PDT, the other untreated), were exposed to 60 mJ/m2 UVB irradiation. We found 0.5 mmol/L of ALA and 3 J/cm2 of red light did not affect the vitality of cells, and could reduce UVB induced apoptosis, accelerate the clearance of CPDs, inhibit proliferation and activate p53. Thus, our data demonstrate that ALA-PDT pretreatment can induce a protective DNA damage response that protects skin cells from UVB-induced photodamages.
Collapse
Affiliation(s)
- Hui Hua
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jia-wei Cheng
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen-bo Bu
- Institute of Dermatology, Chinese Academy of Medical Science and Peking Union Medical College, Nanjing, China
| | - Juan Liu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei-wei Ma
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Na Ni
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian Shi
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Bing-rong Zhou
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Luo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
30
|
Fidrus E, Ujhelyi Z, Fehér P, Hegedűs C, Janka EA, Paragh G, Vasas G, Bácskay I, Remenyik É. Silymarin: Friend or Foe of UV Exposed Keratinocytes? Molecules 2019; 24:molecules24091652. [PMID: 31035502 PMCID: PMC6540143 DOI: 10.3390/molecules24091652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 12/19/2022] Open
Abstract
The application of natural plant extracts in UV-protection is popular and intensively studied. Silymarin (from Silibum marianum), a naturally occurring polyphenol, has recently received attention due to its antioxidant, anti-inflammatory and anti-apoptotic effects. However, its role in the UV-mediated keratinocyte cell response is still controversial. In this study, we investigated the effects of Silibum marianum extracts with different origins and formulations on UVA-exposed HaCaT keratinocytes in vitro. Our results show, that silymarin treatment caused an inverse dose-dependent photosensitivity relationship (at higher doses, a decrease in cell viability and ROS production) after UVA exposure. The attenuation of the UVA-induced ROS generation after silymarin treatment was also observed. Moreover, silymarin pre-treatment increased the cyclobutane pyrimidine dimer photolesions in keratinocytes after UVA exposure. These results indicated the dual role of silymarin in UVA-exposed keratinocytes. It scavenges ROS but still induces phototoxicity. Based on our results dermatological applications of silymarin and related compounds should be considered very carefully.
Collapse
Affiliation(s)
- Eszter Fidrus
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary.
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Pálma Fehér
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Csaba Hegedűs
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary.
| | - Eszter Anna Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary.
| | - György Paragh
- Departments of Dermatology and Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Gábos Vasas
- Department of Pharmacognosy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary.
| | - Éva Remenyik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4032 Debrecen, Hungary.
| |
Collapse
|
31
|
Jeter JM, Bowles TL, Curiel-Lewandrowski C, Swetter SM, Filipp FV, Abdel-Malek ZA, Geskin LJ, Brewer JD, Arbiser JL, Gershenwald JE, Chu EY, Kirkwood JM, Box NF, Funchain P, Fisher DE, Kendra KL, Marghoob AA, Chen SC, Ming ME, Albertini MR, Vetto JT, Margolin KA, Pagoto SL, Hay JL, Grossman D, Ellis DL, Kashani-Sabet M, Mangold AR, Markovic SN, Meyskens FL, Nelson KC, Powers JG, Robinson JK, Sahni D, Sekulic A, Sondak VK, Wei ML, Zager JS, Dellavalle RP, Thompson JA, Weinstock MA, Leachman SA, Cassidy PB. Chemoprevention agents for melanoma: A path forward into phase 3 clinical trials. Cancer 2019; 125:18-44. [PMID: 30281145 PMCID: PMC6860362 DOI: 10.1002/cncr.31719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 06/10/2018] [Accepted: 07/12/2018] [Indexed: 12/12/2022]
Abstract
Recent progress in the treatment of advanced melanoma has led to unprecedented improvements in overall survival and, as these new melanoma treatments have been developed and deployed in the clinic, much has been learned about the natural history of the disease. Now is the time to apply that knowledge toward the design and clinical evaluation of new chemoprevention agents. Melanoma chemoprevention has the potential to reduce dramatically both the morbidity and the high costs associated with treating patients who have metastatic disease. In this work, scientific and clinical melanoma experts from the national Melanoma Prevention Working Group, composed of National Cancer Trials Network investigators, discuss research aimed at discovering and developing (or repurposing) drugs and natural products for the prevention of melanoma and propose an updated pipeline for translating the most promising agents into the clinic. The mechanism of action, preclinical data, epidemiological evidence, and results from available clinical trials are discussed for each class of compounds. Selected keratinocyte carcinoma chemoprevention studies also are considered, and a rationale for their inclusion is presented. These data are summarized in a table that lists the type and level of evidence available for each class of agents. Also included in the discussion is an assessment of additional research necessary and the likelihood that a given compound may be a suitable candidate for a phase 3 clinical trial within the next 5 years.
Collapse
Affiliation(s)
- Joanne M Jeter
- Department of Medicine, Divisions of Genetics and Oncology, The Ohio State University, Columbus, Ohio
| | - Tawnya L Bowles
- Department of Surgery, Intermountain Health Care, Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, Utah
| | | | - Susan M Swetter
- Department of Dermatology, Pigmented Lesion and Melanoma Program, Stanford University Medical Center Cancer Institute, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Fabian V Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, Merced, California
| | | | - Larisa J Geskin
- Department of Dermatology, Cutaneous Oncology Center, Columbia University Medical Center, New York, New York
| | - Jerry D Brewer
- Department of Dermatologic Surgery, Mayo Clinic Minnesota, Rochester, Minnesota
| | - Jack L Arbiser
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
- Division of Dermatology, Veterans Affairs Medical Center, Atlanta, Georgia
| | - Jeffrey E Gershenwald
- Departments of Surgical Oncology and Cancer Biology, Melanoma and Skin Cancer Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Emily Y Chu
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - John M Kirkwood
- Melanoma and Skin Cancer Program, Department of Medicine, University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Neil F Box
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Dermatology Service, U.S. Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - David E Fisher
- Department of Dermatology, Massachusetts General Hospital, Boston, Massachusetts
| | - Kari L Kendra
- Department of Internal Medicine, Medical Oncology Division, The Ohio State University, Columbus, Ohio
| | - Ashfaq A Marghoob
- Memorial Sloan Kettering Skin Cancer Center and Department of Dermatology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Suephy C Chen
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia
- Division of Dermatology, Veterans Affairs Medical Center, Atlanta, Georgia
| | - Michael E Ming
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark R Albertini
- Department of Medicine, University of Wisconsin, School of Medicine and Public Health, University of Wisconsin Carbone Cancer Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin
| | - John T Vetto
- Division of Surgical Oncology, Oregon Health & Science University, Portland, Oregon
| | - Kim A Margolin
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, California
| | - Sherry L Pagoto
- Department of Allied Health Sciences, UConn Institute for Collaboration in Health, Interventions, and Policy, University of Connecticut, Storrs, Connecticut
| | - Jennifer L Hay
- Department of Psychiatry and Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Douglas Grossman
- Departments of Dermatology and Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Darrel L Ellis
- Department of Dermatology, Vanderbilt University Medical Center and Division of Dermatology, Vanderbilt Ingram Cancer Center, Nashville, Tennessee
- Department of Medicine, Tennessee Valley Healthcare System, Nashville Veterans Affairs Medical Center, Nashville, Tennessee
| | - Mohammed Kashani-Sabet
- Center for Melanoma Research and Treatment, California Pacific Medical Center, San Francisco, California
| | | | | | | | - Kelly C Nelson
- Department of Dermatology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - June K Robinson
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Debjani Sahni
- Department of Dermatology, Boston Medical Center, Boston, Massachusetts
| | | | - Vernon K Sondak
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Departments of Oncologic Sciences and Surgery, University of South Florida Morsani College of Medicine, Tampa, Florida
| | - Maria L Wei
- Department of Dermatology, University of California, San Francisco, San Francisco, California
- Dermatology Service, San Francisco Veterans Affairs Medical Center, San Francisco, California
| | - Jonathan S Zager
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Sarcoma, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Robert P Dellavalle
- Department of Dermatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
- Dermatology Service, U.S. Department of Veterans Affairs, Eastern Colorado Health Care System, Denver, Colorado
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - John A Thompson
- Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| | - Martin A Weinstock
- Center for Dermatoepidemiology, Veterans Affairs Medical Center, Providence, Rhode Island
- Department of Dermatology, Brown University, Providence, Rhode Island
- Department of Epidemiology, Brown University, Providence, Rhode Island
- Department of Dermatology, Rhode Island Hospital, Providence, Rhode Island
| | - Sancy A Leachman
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| | - Pamela B Cassidy
- Department of Dermatology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
32
|
Silibinin-induced autophagy mediated by PPARα-sirt1-AMPK pathway participated in the regulation of type I collagen-enhanced migration in murine 3T3-L1 preadipocytes. Mol Cell Biochem 2018; 450:1-23. [DOI: 10.1007/s11010-018-3368-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 05/17/2018] [Indexed: 12/21/2022]
|
33
|
Rajnochová Svobodová A, Gabrielová E, Michaelides L, Kosina P, Ryšavá A, Ulrichová J, Zálešák B, Vostálová J. UVA-photoprotective potential of silymarin and silybin. Arch Dermatol Res 2018; 310:413-424. [DOI: 10.1007/s00403-018-1828-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/01/2018] [Accepted: 03/19/2018] [Indexed: 01/27/2023]
|