1
|
Bärenson A, Tagoma A, Varendi H, Uibo R. Atopy and asthma in children born to mothers at risk of gestational diabetes mellitus: a follow-up study. BMC Pregnancy Childbirth 2024; 24:610. [PMID: 39300411 DOI: 10.1186/s12884-024-06819-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is the most prevalent metabolic disturbance during pregnancy and is associated with adverse outcomes in offspring, including an elevated risk for developing atopic diseases in early childhood. Research is limited regarding only women at risk of GDM among whom some develop GDM while others do not. Information about adverse health outcomes in the offspring of these women is also lacking. The main aim was to assess whether maternal GDM increases the offspring's risk of atopic dermatitis (AD), asthma and allergic rhinitis at 1, 2 and 5 years of age. The second aim was to analyze the association of other maternal health characteristics on the development of these disorders in offspring. METHODS The follow-up study group of the Gestational Diabetes Study (GDS), conducted at Tartu University Hospital, Estonia, between 2014 and 2020, comprised 223 mother-child dyads. All women had at least one risk factor for GDM, of whom only some developed GDM. Information about the diagnoses of interest was obtained from Electronic Health Records. Allergen-specific IgE from children's serum was measured using ImmunoCAP™ Phadiatop™ Infant, with results ≥ 0.35 kU/l considered positive. Statistical analysis was performed using the RStudio software (version 4.3.0). RESULTS According to our results, only the cases of GDM requiring the use of antidiabetic medications were associated with the development of asthma and/or allergic rhinitis at 2 years of age (aOR 4.68, 95%CI 1.08-20.21, p = 0.039). Maternal obesity (BMI > 30) was associated with offspring´s asthma and/or allergic rhinitis diagnosis at 2 years of age (aOR 3.15, 95%CI 1.03-9.63, p = 0.045). Maternal abnormal weight gain during pregnancy was associated with asthma and/or allergic rhinitis at 5 years of age (aOR 2.76, 95%CI 1.04-7.31, p = 0.041). CONCLUSION Among pregnant women at risk for GDM, maternal weight-related factors significantly influence the development of atopic diseases in their children between 1 and 5 years of age, regardless of the GDM diagnosis. This suggests that, besides women with GDM greater attention should also be paid to women at risk but who do not develop GDM, as their children seem to be at higher risk of atopic diseases.
Collapse
Affiliation(s)
- Anu Bärenson
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, Tartu, Estonia.
- Tartu University Hospital, Childrens´ Clinic, Tartu, Estonia.
| | - Aili Tagoma
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Heili Varendi
- Tartu University Hospital, Childrens´ Clinic, Tartu, Estonia
| | - Raivo Uibo
- Department of Immunology, Institute of Bio- and Translational Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
2
|
Wekema L, Schoenmakers S, Schenkelaars N, Laskewitz A, Huurman RH, Liu L, Walters L, Harmsen HJM, Steegers-Theunissen RPM, Faas MM. Diet-Induced Obesity in Mice Affects the Maternal Gut Microbiota and Immune Response in Mid-Pregnancy. Int J Mol Sci 2024; 25:9076. [PMID: 39201761 PMCID: PMC11354285 DOI: 10.3390/ijms25169076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/10/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Maternal obesity during pregnancy is associated with adverse pregnancy outcomes. This might be due to undesired obesity-induced changes in the maternal gut microbiota and related changes in the maternal immune adaptations during pregnancy. The current study examines how obesity affects gut microbiota and immunity in pregnant obese and lean mice during mid-pregnancy (gestational day 12 (GD12)). C57BL/6 mice were fed a high-fat diet or low-fat diet from 8 weeks before mating and during pregnancy. At GD12, we analyzed the gut microbiota composition in the feces and immune responses in the intestine (Peyer's patches, mesenteric lymph nodes) and the peripheral circulation (spleen and peripheral blood). Maternal obesity reduced beneficial bacteria (e.g., Bifidobacterium and Akkermansia) and changed intestinal and peripheral immune responses (e.g., dendritic cells, Th1/Th2/Th17/Treg axis, monocytes). Numerous correlations were found between obesity-associated bacterial genera and intestinal/peripheral immune anomalies. This study shows that maternal obesity impacts the abundance of specific bacterial gut genera as compared to lean mice and deranges maternal intestinal immune responses that subsequently change peripheral maternal immune responses in mid-pregnancy. Our findings underscore the opportunities for early intervention strategies targeting maternal obesity, ideally starting in the periconceptional period, to mitigate these obesity-related pregnancy effects.
Collapse
Affiliation(s)
- Lieske Wekema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.L.); (R.H.H.)
| | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.S.); (N.S.); (R.P.M.S.-T.)
| | - Nicole Schenkelaars
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.S.); (N.S.); (R.P.M.S.-T.)
| | - Anne Laskewitz
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.L.); (R.H.H.)
| | - Romy H. Huurman
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.L.); (R.H.H.)
| | - Lei Liu
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (L.L.); (L.W.); (H.J.M.H.)
| | - Lisa Walters
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (L.L.); (L.W.); (H.J.M.H.)
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (L.L.); (L.W.); (H.J.M.H.)
| | - Régine P. M. Steegers-Theunissen
- Department of Obstetrics and Gynaecology, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (S.S.); (N.S.); (R.P.M.S.-T.)
| | - Marijke M. Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (A.L.); (R.H.H.)
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
3
|
Mandò C, Castiglioni S, Novielli C, Anelli GM, Serati A, Parisi F, Lubrano C, Zocchi M, Ottria R, Giovarelli M. Placental Bioenergetics and Antioxidant Homeostasis in Maternal Obesity and Gestational Diabetes. Antioxidants (Basel) 2024; 13:858. [PMID: 39061926 PMCID: PMC11273840 DOI: 10.3390/antiox13070858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Maternal obesity has been associated with short- and long-term risks of pregnancy-perinatal adverse events, possibly due to alterations of placental mitochondrial bioenergetics. However, several detrimental mechanisms occurring in the placentas of women with obesity still need to be clarified. Here, we analyzed placental mitochondrial features and oxidative environment of 46 pregnancies in relation to pre-pregnancy BMI. Seventeen Caucasian normal-weight (NW) and twenty-nine women who were obese (OB) were enrolled. The protein expression of mitochondrial CypD and electron transfer chain complexes (C) I-V were measured, as well as ATP production and oxygen consumption rates (OCRs). The protein levels of the pro/anti-oxidant enzymes TXNIP, SOD2, and PON2 were also analyzed. Despite no differences in CypD expression, OCRs were significantly lower in OB vs. NW women. Accordingly, ATP synthase (CV) levels and ATP content were decreased in OB women, positively correlating with placental efficiency, suggesting a link between ATP deficiency and placental dysfunction. SOD2 expression negatively correlated with maternal BMI, indicating a possible impairment of antioxidant defenses with increasing BMI. These changes were worsened in 10 OB women presenting with gestational diabetes mellitus. Overall, these results suggest alterations of placental bioenergetics in pregnancies of women with obesity, possibly leading to placental dysfunction and altered fetal development and programming.
Collapse
Affiliation(s)
- Chiara Mandò
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Sara Castiglioni
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Chiara Novielli
- Department of Woman, Mother and Neonate, Buzzi Children’s Hospital, ASST Fatebenefratelli Sacco, 20154 Milan, Italy
| | - Gaia Maria Anelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Anaïs Serati
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Francesca Parisi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
- Department of Woman, Mother and Neonate, Buzzi Children’s Hospital, ASST Fatebenefratelli Sacco, 20154 Milan, Italy
| | - Chiara Lubrano
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Monica Zocchi
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Roberta Ottria
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (C.M.); (S.C.); (G.M.A.); (F.P.); (C.L.); (M.Z.); (R.O.); (M.G.)
| |
Collapse
|
4
|
Wekema L, Schoenmakers S, Schenkelaars N, Laskewitz A, Liu L, Walters L, Harmsen HJM, Steegers-Theunissen RPM, Faas MM. Obesity and diet independently affect maternal immunity, maternal gut microbiota and pregnancy outcome in mice. Front Immunol 2024; 15:1376583. [PMID: 39072322 PMCID: PMC11272480 DOI: 10.3389/fimmu.2024.1376583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Maternal obesity poses risks for both mother and offspring during pregnancy, with underlying mechanisms remaining largely unexplored. Obesity is associated with microbial gut dysbiosis and low-grade inflammation, and also the diet has a major impact on these parameters. This study aimed to investigate how maternal obesity and diet contribute to changes in immune responses, exploring potential associations with gut microbiota dysbiosis and adverse pregnancy outcomes in mice. Methods Before mating, C57BL/6 mice were assigned to either a high-fat-diet (HFD) or low-fat-diet (LFD) to obtain obese (n=17) and lean (n=10) mice. To distinguish between the effects of obesity and diet, 7 obese mice were switched from the HFD to the LFD from day 7 until day 18 of pregnancy ("switch group"), which was the endpoint of the study. T helper (Th) cell subsets were studied in the spleen, mesenteric lymph nodes (MLN) and Peyer's patches (PP), while monocyte subsets and activation status were determined in maternal blood (flow cytometry). Feces were collected before and during pregnancy (day 7,14,18) for microbiota analysis (16S rRNA sequencing). Pregnancy outcome included determination of fetal and placental weight. Results Obesity increased splenic Th1 and regulatory T cells, MLN Th1 and PP Th17 cells and enhanced IFN-γ and IL-17A production by splenic Th cells upon ex vivo stimulation. Switching diet decreased splenic and PP Th2 cells and classical monocytes, increased intermediate monocytes and activation of intermediate/nonclassical monocytes. Obesity and diet independently induced changes in the gut microbiota. Various bacterial genera were increased or decreased by obesity or the diet switch. These changes correlated with the immunological changes. Fetal weight was lower in the obese than the lean group, while placental weight was lower in the switch than the obese group. Discussion This study demonstrates that obesity and diet independently impact peripheral and intestinal immune responses at the end of pregnancy. Simultaneously, both factors affect specific bacterial gut genera and lead to reduced fetal or placental weight. Our data suggest that switching diet during pregnancy to improve maternal health is not advisable and it supports pre/probiotic treatment of maternal obesity-induced gut dysbiosis to improve maternal immune responses and pregnancy outcome.
Collapse
Affiliation(s)
- Lieske Wekema
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Sam Schoenmakers
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Nicole Schenkelaars
- Department of Obstetrics and Gynaecology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Anne Laskewitz
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lei Liu
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lisa Walters
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | | | - Marijke M. Faas
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Obstetrics and Gynaecology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
5
|
Rees A, Jenkins BJ, Angelini R, Davies LC, Cronin JG, Jones N, Thornton CA. Immunometabolic adaptation in monocytes underpins functional changes during pregnancy. iScience 2024; 27:109779. [PMID: 38736550 PMCID: PMC11088341 DOI: 10.1016/j.isci.2024.109779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/02/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Metabolic heterogeneity is a determinant of immune cell function. The normal physiological metabolic reprogramming of pregnancy that ensures the fuel requirements of mother and baby are met, might also underpin changes in immunity that occur with pregnancy and manifest as altered responses to pathogens and changes to autoimmune disease symptoms. Using peripheral blood from pregnant women at term, we reveal that monocytes lose M2-like and gain M1-like properties accompanied by reductions in mitochondrial mass, maximal respiration, and cardiolipin content in pregnancy; glycolysis is unperturbed. We establish that muramyl dipeptide (MDP)-stimulated cytokine production relies on oxidative metabolism, then show in pregnancy reduced cytokine production in response to MDP but not LPS. Overall, mitochondrially centered metabolic capabilities of late gestation monocytes are down-regulated revealing natural plasticity in monocyte phenotype and function that could reveal targets for improving pregnancy outcomes but also yield alternative therapeutic approaches to diverse metabolic and/or immune-mediated diseases beyond pregnancy.
Collapse
Affiliation(s)
- April Rees
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| | - Benjamin J. Jenkins
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| | - Roberto Angelini
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| | - Luke C. Davies
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| | - James G. Cronin
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| | - Nicholas Jones
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| | - Catherine A. Thornton
- Institute of Life Science, Swansea University Medical School, Swansea SA2 8PP, Wales, UK
| |
Collapse
|
6
|
Musumeci A, McElwain CJ, Manna S, McCarthy F, McCarthy C. Exposure to gestational diabetes mellitus increases subclinical inflammation mediated in part by obesity. Clin Exp Immunol 2024; 216:280-292. [PMID: 38334487 PMCID: PMC11097910 DOI: 10.1093/cei/uxae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/18/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a frequent and serious complication of pregnancy, often associated with obesity. Metabolic dysfunction and metainflammation are evident in both obesity and GDM. In this cross-sectional study, we aimed at defining the direct contribution of the immune system in GDM, across the main metabolic tissues, specifically focussing on elucidating the roles of obesity and GDM to the clinical outcome. Using immunoassays and multicolour flow cytometry, cytokine profiles and immune cell frequencies were measured in maternal circulation and central metabolic tissues [placenta and visceral adipose tissue (VAT)] in GDM-diagnosed (n = 28) and normal glucose tolerant (n = 32) women undergoing caesarean section. Participants were sub-grouped as non-obese [body mass index (BMI) < 30 kg/m2] or obese (BMI ≥ 30 kg/m2). Unsupervised data analysis was performed on the flow cytometry data set to identify functional alterations. GDM obese participants had significantly elevated circulating IL-6 and IL-17A levels. GDM non-obese participants had elevated circulating IL-12p70, elevated placental IL-17A, and VAT IFN-γ production. Unsupervised clustering of immune populations across the three biological sites simultaneously, identified different NK- and T-cell phenotypes that were altered in NGT obese and GDM non-obese participants, while a classical tissue monocyte cluster was increased in GDM obese participants. In this study, there was significant evidence of subclinical inflammation, and significant alterations in clusters of NK cells, T cells, and tissue monocyte populations in GDM. While increased adiposity assimilates with increased inflammation in the non-pregnant state, this overt relationship may not be as evident during pregnancy and warrants further examination in future longitudinal studies.
Collapse
Affiliation(s)
- Andrea Musumeci
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Colm John McElwain
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| | - Samprikta Manna
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Fergus McCarthy
- Department of Obstetrics and Gynaecology, Cork University Maternity Hospital, Cork, Ireland
| | - Cathal McCarthy
- Department of Pharmacology and Therapeutics, Western Gateway Building, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Rees A, Edwards-I-Coll Z, Richards O, Raikes ME, Angelini R, Thornton CA. The dynamic inflammatory profile of pregnancy can be monitored using a novel lipid-based mass spectrometry technique. Mol Omics 2023; 19:340-350. [PMID: 36883215 PMCID: PMC10167726 DOI: 10.1039/d2mo00294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The lipid environment changes throughout pregnancy both physiologically with emergent insulin resistance and pathologically e.g., gestational diabetes mellitus (GDM). Novel mass spectrometry (MS) techniques applied to minimally processed blood might lend themselves to monitoring changing lipid profiles to inform care decisions across pregnancy. In this study we use an intact-sandwich, MALDI-ToF MS method to identify phosphatidylcholine (PC) and lysophosphatidylcholine (LPC) species and calculate their ratio as an indicator of inflammation. Plasma and sera were prepared from venous blood of non-pregnant women (aged 18-40) and pregnant women at 16 weeks, 28 weeks (including GDM-positive women), and 37+ weeks (term) of gestation alongside umbilical cord blood (UCB). Women with a normal menstrual cycle and age-matched men provided finger-prick derived capillary sera at 6 time-points over a month. Serum rather than plasma was preferable for PC/LPC measurement. As pregnancy progresses, an anti-inflammatory phenotype dominates the maternal circulation, evidenced by increasing PC/LPC ratio. In contrast, the PC/LPC ratio of UCB was aligned to that of non-pregnant donors. BMI had no significant effect on the PC/LPC ratio, but GDM-complicated pregnancies had significantly lower PC/LPC at 16 weeks of gestation. To further translate the use of the PC/LPC ratio clinically, the utility of finger-prick blood was evaluated; no significant difference between capillary versus venous serum was found and we revealed the PC/LPC ratio oscillates with the menstrual cycle. Overall, we show that the PC/LPC ratio can be measured simply in human serum and has the potential to be used as a time-efficient and less invasive biomarker of (mal)adaptative inflammation.
Collapse
Affiliation(s)
- April Rees
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK, SA2 8PP.
| | - Zoe Edwards-I-Coll
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK, SA2 8PP.
| | - Oliver Richards
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK, SA2 8PP.
| | - Molly E Raikes
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK, SA2 8PP.
| | - Roberto Angelini
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK, SA2 8PP.
| | - Catherine A Thornton
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, UK, SA2 8PP.
| |
Collapse
|
8
|
Relationship between the Dietary Inflammatory Index Score and Cytokine Levels in Chinese Pregnant Women during the Second and Third Trimesters. Nutrients 2022; 15:nu15010194. [PMID: 36615851 PMCID: PMC9824482 DOI: 10.3390/nu15010194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The impact of dietary inflammatory potential on serum cytokine concentrations in second and third trimesters of Chinese pregnant women is not clear. A total of 175 pregnant women from the Tianjin Maternal and Child Health Education and Service Cohort (TMCHESC) were included. The dietary inflammatory index (DII) was calculated based on 24-h food records. Serum tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β), IL-6, IL-8, IL-10, C-reactive protein (CRP), and monocyte chemoattractant protein-1 (MCP-1) levels in the second and third trimesters were measured. The mean DII scores (mean ± SD) were -0.07 ± 1.65 and 0.06 ± 1.65 in the second and third trimesters, respectively. In the third trimester, IL-1β (p = 0.039) and MCP-1 (p = 0.035) levels decreased and then increased with increasing DII scores. IL-10 concentrations decreased in pregnant women whose DII scores increased between the second and third trimesters (p = 0.011). Thiamin and vitamin C were negatively correlated with MCP-1 (β = -0.879, and β = -0.003) and IL-6 (β = -0.602, and β = -0.002) levels in the third trimester. In conclusion, the DII score had a U-shaped association with cytokine levels during the third trimester. Changes in DII scores between the second and third trimesters of pregnancy were correlated with cytokine levels during the third trimester.
Collapse
|
9
|
Denizli M, Capitano ML, Kua KL. Maternal obesity and the impact of associated early-life inflammation on long-term health of offspring. Front Cell Infect Microbiol 2022; 12:940937. [PMID: 36189369 PMCID: PMC9523142 DOI: 10.3389/fcimb.2022.940937] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
The prevalence of obesity is increasingly common in the United States, with ~25% of women of reproductive age being overweight or obese. Metaflammation, a chronic low grade inflammatory state caused by altered metabolism, is often present in pregnancies complicated by obesity. As a result, the fetuses of mothers who are obese are exposed to an in-utero environment that has altered nutrients and cytokines. Notably, both human and preclinical studies have shown that children born to mothers with obesity have higher risks of developing chronic illnesses affecting various organ systems. In this review, the authors sought to present the role of cytokines and inflammation during healthy pregnancy and determine how maternal obesity changes the inflammatory landscape of the mother, leading to fetal reprogramming. Next, the negative long-term impact on offspring’s health in numerous disease contexts, including offspring’s risk of developing neuropsychiatric disorders (autism, attention deficit and hyperactive disorder), metabolic diseases (obesity, type 2 diabetes), atopy, and malignancies will be discussed along with the potential of altered immune/inflammatory status in offspring as a contributor of these diseases. Finally, the authors will list critical knowledge gaps in the field of developmental programming of health and diseases in the context of offspring of mothers with obesity, particularly the understudied role of hematopoietic stem and progenitor cells.
Collapse
Affiliation(s)
- Merve Denizli
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis IN, United States
| | - Maegan L. Capitano
- Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis IN, United States
| | - Kok Lim Kua
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis IN, United States
- *Correspondence: Kok Lim Kua,
| |
Collapse
|
10
|
Mauro C, Diana M, Nicholas J. Metabolites: fuelling the immune response. Clin Exp Immunol 2022; 208:129-131. [PMID: 35576509 PMCID: PMC9188342 DOI: 10.1093/cei/uxac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Corrado Mauro
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
- Institute of Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | - Moreira Diana
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin, 2, Ireland
| | - Jones Nicholas
- Institute of Life Science, Swansea University, Swansea, SA2 8PP, UK
| |
Collapse
|