1
|
Bai L, Guan Z, Zhang J, Lv Z, Duan Y, Tian S. Poliumoside Exhibits Neuroprotective Effects against Cerebral Ischemia-Reperfusion Injury by Relieving Microglia-Mediated Neuronal Damage and Astrocytic Activation. ACS Chem Neurosci 2025; 16:1780-1791. [PMID: 40295176 DOI: 10.1021/acschemneuro.4c00846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025] Open
Abstract
Excessive activation of microglia contributes to neuronal damage and astrocytic activation during cerebral ischemia and hypoxia. Poliumoside (Pol) is a caffeoylated phenylpropanoid glycoside with significant anti-inflammatory and antioxidant functions. However, whether Pol can mediate microglia-mediated neurotoxicity in the ischemic brain remains nebulous. Here, a cerebral ischemia-reperfusion injury (CI/RI) mouse model was conducted to investigate Pol's role in microglial activation and neurotoxicity. We found that Pol significantly reduced neurological deficits, cerebral infarction volume, and neuronal damage in the CI/RI mouse model. Pol inhibited proinflammatory cytokines and microglial and astrocytic activation, while enhancing anti-inflammatory cytokines. Mechanistically, Pol markedly suppressed Fstl1, NF-κB phosphorylation, and the Nlrp3-Asc-Caspase1 inflammasome. In the oxygen-glucose-deprivation (OGD)-mediated BV2 microglia, Fstl1 overexpression significantly enhanced microglial activation. The conditioned medium of Fstl1-overexpressed microglia promoted astrocytic activation and neuronal injuries. However, Pol treatment or NF-κB pathway inhibition reversed Fstl1-mediated effects. In conclusion, Pol restrained microglia-modulated neuroinflammation and neurotoxicity in the cerebral hypoxic-ischemic model by restraining the Fstl1-NF-κB pathway.
Collapse
Affiliation(s)
- Liping Bai
- Department of Anesthesiology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences & Tongji Shanxi Hospital), Taiyuan 030032, China
| | - Zhiming Guan
- Department of respiratory, The Second Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Jianwen Zhang
- Department of Anesthesiology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences & Tongji Shanxi Hospital), Taiyuan 030032, China
| | - Zhigan Lv
- Department of Anesthesiology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences & Tongji Shanxi Hospital), Taiyuan 030032, China
| | - Yinglei Duan
- Department of Anesthesiology, Third Hospital of Shanxi Medical University (Shanxi Bethune Hospital & Shanxi Academy of Medical Sciences & Tongji Shanxi Hospital), Taiyuan 030032, China
| | - Shouyuan Tian
- Department of Anesthesiology, Cancer Hospital Affiliated Shanxi Medical University, Taiyuan 030013, China
| |
Collapse
|
2
|
Oraki Kohshour M, Papiol S, Tkachev A, Stekolshchikova E, Adorjan K, Budde M, Heilbronner U, Heilbronner M, Kalman JL, Reich-Erkelenz D, K Schaupp S, Senner F, Vogl T, Wiltfang J, Reininghaus EZ, Juckel G, Dannlowski U, Fallgatter AJ, Spitzer C, Schmauß M, von Hagen M, Falkai P, Khaitovich P, Schulze TG, Schulte EC. Investigating the association of the plasma lipidomic profile with cognitive performance and genetic risk in the PsyCourse study. Transl Psychiatry 2025; 15:105. [PMID: 40155381 PMCID: PMC11953450 DOI: 10.1038/s41398-025-03323-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 02/21/2025] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
Although lipid biology may play a key role in the pathophysiology of mental health disorders such as schizophrenia (SCZ) and bipolar disorder (BD), the nature of this interplay and how it could shape phenotypic presentation, including cognitive performance is still incompletely understood. To address this question, we analyzed the association of plasma level of different lipid species with cognitive performance in the transdiagnostic PsyCourse Study. Plasma lipidomic profiles of 623 individuals (188 SCZ, 243 BD, 192 healthy controls) belonging to the PsyCourse Study were assessed using liquid chromatography and untargeted mass spectrometry. The association between 364 annotated lipid species from 16 lipid classes and six cognitive tests was evaluated. Likewise, the association of polygenic risk scores (PRS) for SCZ, BD, executive function (EF), and educational attainment (EA) with lipid plasma levels were also investigated. In the regression analysis, three lipid species belonging to phosphatidylethanolamine plasmalogen and one belonging to ceramide class showed significant negative association with Digit-Symbol test scores. Lipid class-based enrichment analysis in LipidR replicated the significance of the phosphatidylethanolamines class for the Digit-Symbol test, which evaluates the processing speed in cognitive tasks. Polygenic load for SCZ, BD, EF, or EA was not associated with lipid levels. Our findings suggest a link between lipids and cognitive performance independent of mental health disorders. Still, independent replication is warranted to better understand if phosphatidylethanolamines could represent an actionable pharmacologic target to tackle cognitive dysfunction, an important unmet clinical need that affects long-term functional outcomes in individuals with severe mental health disorders.
Collapse
Affiliation(s)
- Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, 80336, Germany
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, 80336, Germany
- Max Planck Institute of Psychiatry, Munich, 80804, Germany
| | - Anna Tkachev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Elena Stekolshchikova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, 80336, Germany
- University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, 80336, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, 80336, Germany
| | - Maria Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, 80336, Germany
| | - Janos L Kalman
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, 80336, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, 80336, Germany
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, 80336, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, 80336, Germany
| | - Sabrina K Schaupp
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, 80336, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, 80336, Germany
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, 80336, Germany
- Centres for Psychiatry Suedwuerttemberg, Ravensburg, 88214, Germany
| | - Thomas Vogl
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, 80336, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, 37075, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, 37075, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Eva Z Reininghaus
- Division of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, 8036, Austria
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, 44791, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, 48149, Germany
| | - Andreas J Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, 72076, Germany
- German Center for Mental Health (DZPG), partner site Tübingen, Tübingen, 72076, Germany
| | - Carsten Spitzer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Rostock, Rostock, 18147, Germany
| | - Max Schmauß
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Augsburg University, Medical Faculty, Bezirkskrankenhaus Augsburg, Augsburg, 86156, Germany
| | - Martin von Hagen
- Clinic for Psychiatry and Psychotherapy, Clinical Center Werra-Meißner, Eschwege, 37269, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, 80336, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, 80336, Munich, Germany
| | - Philipp Khaitovich
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, 80336, Germany
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, 80336, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), LMU University Hospital, LMU Munich, Munich, 80336, Germany.
- Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Munich, 80336, Germany.
- German Center for Mental Health (DZPG), partner site Munich/Augsburg, 80336, Munich, Germany.
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Bonn, University of Bonn, Bonn, 53127, Germany.
- Institute of Human Genetics, Faculty of Medicine and University Hospital Bonn, University of Bonn, Bonn, 53127, Germany.
| |
Collapse
|
3
|
Šakić B. The MRL Model: A Valuable Tool in Studies of Autoimmunity-Brain Interactions. Methods Mol Biol 2025; 2868:221-246. [PMID: 39546233 DOI: 10.1007/978-1-0716-4200-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The link between systemic autoimmunity, brain pathology, and aberrant behavior is still largely unexplored field of biomedical science. Accumulating evidence points to causal relationships between immune factors, neurodegeneration, and neuropsychiatric manifestations. By documenting autoimmunity-associated neuronal degeneration and cytotoxicity of the cerebrospinal fluid from disease-affected subjects, the murine MRL model has shown high validity in revealing principal pathogenic circuits. In addition, unlike any other autoimmune strain, MRL mice produce antibodies commonly found in patients suffering from lupus and other autoimmune disorders. This review highlights the importance of the MRL model as a useful preparation for understanding the links between the immune system and brain function.
Collapse
Affiliation(s)
- Boris Šakić
- Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
4
|
Polis B, Cuda CM, Putterman C. Animal models of neuropsychiatric systemic lupus erythematosus: deciphering the complexity and guiding therapeutic development. Autoimmunity 2024; 57:2330387. [PMID: 38555866 PMCID: PMC12069686 DOI: 10.1080/08916934.2024.2330387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/10/2024] [Indexed: 04/02/2024]
Abstract
Systemic lupus erythematosus (SLE) poses formidable challenges due to its multifaceted etiology while impacting multiple tissues and organs and displaying diverse clinical manifestations. Genetic and environmental factors contribute to SLE complexity, with relatively limited approved therapeutic options. Murine models offer insights into SLE pathogenesis but do not always replicate the nuances of human disease. This review critically evaluates spontaneous and induced animal models, emphasizing their validity and relevance to neuropsychiatric SLE (NPSLE). While these models undoubtedly contribute to understanding disease pathophysiology, discrepancies persist in mimicking some NPSLE intricacies. The lack of literature addressing this issue impedes therapeutic progress. We underscore the urgent need for refining models that truly reflect NPSLE complexities to enhance translational fidelity. We encourage a comprehensive, creative translational approach for targeted SLE interventions, balancing scientific progress with ethical considerations to eventually improve the management of NPSLE patients. A thorough grasp of these issues informs researchers in designing experiments, interpreting results, and exploring alternatives to advance NPSLE research.
Collapse
Affiliation(s)
- Baruh Polis
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
| | - Carla M. Cuda
- Division of Rheumatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chaim Putterman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Research Institute, Galilee Medical Center, Nahariya, Israel
- Division of Rheumatology and Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
5
|
Li N, Li Y. Lysophosphatidic Acid (LPA) and Its Receptors in Mood Regulation: A Systematic Review of the Molecular Mechanisms and Therapeutic Potential. Int J Mol Sci 2024; 25:7440. [PMID: 39000547 PMCID: PMC11242315 DOI: 10.3390/ijms25137440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Mood disorders affect over 300 million individuals worldwide, often characterized by their chronic and refractory nature, posing significant threats to patient life. There has been a notable increase in mood disorders among American adolescents and young adults, with a rising number of suicide attempts and fatalities, highlighting a growing association between mood disorders and suicidal outcomes. Dysregulation within the neuroimmune-endocrine system is now recognized as one of the fundamental biological mechanisms underlying mood and mood disorders. Lysophosphatidic acid (LPA), a novel mediator of mood behavior, induces anxiety-like and depression-like phenotypes through its receptors LPA1 and LPA5, regulating synaptic neurotransmission and plasticity. Consequently, LPA has garnered substantial interest in the study of mood regulation. This study aimed to elucidate the molecular mechanisms of lysophosphatidic acid and its receptors, along with LPA receptor ligands, in mood regulation and to explore their potential therapeutic efficacy in treating mood disorders. A comprehensive literature search was conducted using the PubMed and Web of Science databases, identifying 208 articles through keyword searches up to June 2024. After excluding duplicates, irrelevant publications, and those restricted by open access limitations, 21 scientific papers were included in this review. The findings indicate that LPA/LPA receptor modulation could be beneficial in treating mood disorders, suggesting that pharmacological agents or gintonin, an extract from ginseng, may serve as effective therapeutic strategies. This study opens new avenues for future research into how lysophosphatidic acid and its receptors, as well as lysophosphatidic acid receptor ligands, influence emotional behavior in animals and humans.
Collapse
Affiliation(s)
- Nan Li
- School of Competitive Sports, Beijing Sport University, Beijing 100084, China
| | - Yanchun Li
- China Institute of Sports and Health Science, Beijing Sport University, Beijing 100084, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing 100084, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing 100084, China
| |
Collapse
|
6
|
Ma F, Bian H, Jiao W, Zhang N. Single-cell RNA-seq reveals the role of YAP1 in prefrontal cortex microglia in depression. BMC Neurol 2024; 24:191. [PMID: 38849737 PMCID: PMC11157917 DOI: 10.1186/s12883-024-03685-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Depression is a complex mood disorder whose pathogenesis involves multiple cell types and molecular pathways. The prefrontal cortex, as a key brain region for emotional regulation, plays a crucial role in depression. Microglia, as immune cells of the central nervous system, have been closely linked to the development and progression of depression through their dysfunctional states. This study aims to utilize single-cell RNA-seq technology to reveal the pathogenic mechanism of YAP1 in prefrontal cortex microglia in depression. METHODS Firstly, we performed cell type identification and differential analysis on normal and depressed prefrontal cortex tissues by mining single-cell RNA-seq datasets from public databases. Focusing on microglia, we conducted sub-clustering, differential gene KEGG enrichment analysis, intercellular interaction analysis, and pseudotime analysis. Additionally, a cross-species analysis was performed to explore the similarities and differences between human and rhesus monkey prefrontal cortex microglia. To validate our findings, we combined bulk RNA-Seq and WGCNA analysis to reveal key genes associated with depression and verified the relationship between YAP1 and depression using clinical samples. RESULTS Our study found significant changes in the proportion and transcriptional profiles of microglia in depressed prefrontal cortex tissues. Further analysis revealed multiple subpopulations of microglia and their associated differential genes and signaling pathways related to depression. YAP1 was identified as a key molecule contributing to the development of depression and was significantly elevated in depression patients. Moreover, the expression level of YAP1 was positively correlated with HAMD scores, suggesting its potential as a biomarker for predicting the onset of depression. CONCLUSION This study utilized single-cell RNA-seq technology to reveal the pathogenic mechanism of YAP1 in prefrontal cortex microglia in depression, providing a new perspective for a deeper understanding of the pathophysiology of depression and identifying potential targets for developing novel treatment strategies.
Collapse
Affiliation(s)
- Fenghui Ma
- Department of Health Management, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Hongjun Bian
- Department of Pediatrics, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710000, China
| | - Wenyan Jiao
- Department of Psychiatry, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710068, China
| | - Ni Zhang
- Department of Mental Health, Xi'an ZhongShengKaiXin Technology Development Co., Ltd., Xi'an, Shaanxi, 710000, China.
| |
Collapse
|
7
|
Maiese K. Microglia: Formidable Players in Alzheimer's Disease and Other Neurodegenerative Disorders. Curr Neurovasc Res 2024; 20:515-518. [PMID: 37888824 DOI: 10.2174/1567202620999231027155308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 10/28/2023]
|
8
|
Nagata W, Gotoh M, Koizumi A, Fukasawa K, Nakagawa K, Satoh Y, Ishizuka T. Two-carba cyclic phosphatidic acid treatment promotes phenotypic switch from M1 to M2 microglia and prevents behavioral abnormalities in a mouse model of neuropsychiatric systemic lupus erythematosus. Hum Cell 2023; 36:2006-2015. [PMID: 37540445 DOI: 10.1007/s13577-023-00964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease associated with the production of double-stranded DNA (dsDNA) antibodies and other antibodies that predominantly affects women with a wide range of lesions. Although neuropsychiatric lupus erythematosus (NPSLE), characterized by neuropsychiatric symptoms related to cerebrovascular diseases or depression, ranks high in severity, no specific treatment has been defined. Two-carba cyclic phosphatidic acid (2ccPA), a derivative of cyclic phosphatidic acid, was isolated from the true slime mold Physarum polycephalum in 1992. 2ccPA treatment suppresses neuroinflammation and promotes tissue repair in mouse multiple sclerosis and traumatic brain injury models. In this study, we performed behavioral tests on MRL/lpr mice as an NPSLE model. MRL/lpr mice showed increased depression-like behaviors compared with control mice, which were significantly suppressed by 2ccPA treatment. The expression of CD68, an M1 phenotypic marker of microglia, was significantly elevated in the prefrontal cortex and hippocampus of MRL/lpr mice, which was significantly suppressed by 2ccPA treatment. In contrast, the expression of Arginase1, an M2 phenotypic marker of microglia, was significantly increased by 2ccPA treatment. Compared to control mice, MRL/lpr mice showed higher plasma levels of anti-dsDNA antibodies, which are mainly involved in SLE pathogenesis. 2ccPA treatment decreased these levels in the MRL/lpr mice. These results suggest that 2ccPA treatment suppresses behavioral abnormalities by promoting a microglial phenotypic switch from M1 to M2 in MRL/lpr mice.
Collapse
Affiliation(s)
- Wataru Nagata
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan
| | - Mari Gotoh
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Itabashi, Tokyo, Japan
- Institute for Human Life Science, Ochanomizu University, Ohtsuka, Tokyo, Japan
| | - Akiho Koizumi
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan
| | - Keiko Fukasawa
- Ochadai Academic Production, Ochanomizu University, Ohtsuka, Tokyo, Japan
- Juntendo Advanced Research Institute for Health Science, Juntendo University, Hongo, Tokyo, Japan
| | - Keiichi Nakagawa
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan
| | - Yasushi Satoh
- Department of Biochemistry, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshiaki Ishizuka
- Department of Pharmacology, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-0042, Japan.
| |
Collapse
|
9
|
Moreno-Fernández RD, Sampedro-Piquero P, Gómez-Salas FJ, Nieto-Quero A, Estivill-Torrús G, Rodríguez de Fonseca F, Santín LJ, Pedraza C. Social avoidance and altered hypothalamic-pituitary-adrenal axis in a mouse model of anxious depression: The role of LPA 1 receptor. Behav Brain Res 2023; 455:114681. [PMID: 37741054 DOI: 10.1016/j.bbr.2023.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/03/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Anxious depression is a prevalent disease with devastating consequences. Despite the lack of knowledge about the neurobiological basis of this subtype of depression, recently our group has identified a relationship between the LPA1 receptor, one of the six characterized G protein-coupled receptors (LPA1-6) for lysophosphatidic acid, with a mixed depressive-anxiety phenotype. Dysfunctional social behaviors, which have been related to increased activation of the hypothalamus-pituitary-adrenal (HPA) axis, are key symptoms of depression and are even more prominent in patients with comorbid anxiety and depressive disorders. Social behavior and HPA functioning were assessed in animals lacking the LPA1 receptor. For these purposes, we first examined social behaviors in wild-type and LPA1 receptor-null mice. In addition, a dexamethasone (DEX) suppression test was carried out. maLPA1-null mice exhibited social avoidance, a blunted response to DEX administration and an impaired circadian rhythm of corticosterone levels, which are features that are consistently dysregulated in many mental illnesses including anxious depression. Here, we have strengthened the previous experimental evidence for maLPA1-null mice to represent a good animal model of anxious depression, providing an opportunity to explore new therapeutic targets for the treatment of mood disorders, particularly this subtype of depression.
Collapse
Affiliation(s)
| | - P Sampedro-Piquero
- Departamento de Psicología Biológica y de la Salud. Facultad de Psicología. Universidad Autónoma de Madrid. Madrid, Spain
| | - F J Gómez-Salas
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Malaga, Malaga, Spain
| | - A Nieto-Quero
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Malaga, Malaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Malaga, Spain
| | - G Estivill-Torrús
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Malaga, Spain
| | - F Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Malaga, Spain; Unidad Clínica de Neurociencias, Hospital Regional Universitario de Málaga, Spain
| | - L J Santín
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Malaga, Malaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Malaga, Spain
| | - C Pedraza
- Departamento de Psicobiologia y Metodologia en las CC, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Malaga, Malaga, Spain; Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Malaga, Spain.
| |
Collapse
|
10
|
Fu X, Wang Y, Zhao F, Cui R, Xie W, Liu Q, Yang W. Shared biological mechanisms of depression and obesity: focus on adipokines and lipokines. Aging (Albany NY) 2023; 15:5917-5950. [PMID: 37387537 PMCID: PMC10333059 DOI: 10.18632/aging.204847] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Depression and obesity are both common disorders currently affecting public health, frequently occurring simultaneously within individuals, and the relationship between these disorders is bidirectional. The association between obesity and depression is highly co-morbid and tends to significantly exacerbate metabolic and related depressive symptoms. However, the neural mechanism under the mutual control of obesity and depression is largely inscrutable. This review focuses particularly on alterations in systems that may mechanistically explain the in vivo homeostatic regulation of the obesity and depression link, such as immune-inflammatory activation, gut microbiota, neuroplasticity, HPA axis dysregulation as well as neuroendocrine regulators of energy metabolism including adipocytokines and lipokines. In addition, the review summarizes potential and future treatments for obesity and depression and raises several questions that need to be answered in future research. This review will provide a comprehensive description and localization of the biological connection between obesity and depression to better understand the co-morbidity of obesity and depression.
Collapse
Affiliation(s)
- Xiying Fu
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yicun Wang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Fangyi Zhao
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Ranji Cui
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Xie
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Qianqian Liu
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Wei Yang
- Jilin Provincial Key Laboratory for Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun 130041, P.R. China
- Department of Neurology, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|