1
|
Ihara D, Rasli NR, Katsuyama Y. How do neurons live long and healthy? The mechanism of neuronal genome integrity. Front Neurosci 2025; 19:1552790. [PMID: 40177377 PMCID: PMC11961891 DOI: 10.3389/fnins.2025.1552790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Genome DNA of neurons in the brain is unstable, and mutations caused by inaccurate repair can lead to neurodevelopmental and neurodegenerative disorders. Damage to the neuronal genome is induced both exogenously and endogenously. Rapid cell proliferation of neural stem cells during embryonic brain development can lead to errors in genome duplication. Electrical excitations and drastic changes in gene expression in functional neurons cause risks of damaging genomic DNA. The precise repair of DNA damages caused by events making genomic DNA unstable maintains neuronal functions. The maintenance of the DNA sequence and structure of the genome is known as genomic integrity. Molecular mechanisms that maintain genomic integrity are critical for healthy neuronal function. In this review, we describe recent progress in understanding the genome integrity in functional neurons referring to their disruptions reported in neurological diseases.
Collapse
Affiliation(s)
| | | | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
2
|
Xavier FAC, Barbieri SS, Popoli M, Ieraci A. Short- and Long-Term Effects of Subchronic Stress Exposure in Male and Female Brain-Derived Neurotrophic Factor Knock-In Val66Met Mice. BIOLOGY 2024; 13:303. [PMID: 38785785 PMCID: PMC11118886 DOI: 10.3390/biology13050303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Abstract
Stress is an important risk factor for the onset of anxiety and depression. The ability to cope with stressful events varies among different subjects, probably depending on different genetic variants, sex and previous life experiences. The Val66Met variant of Brain-Derived Neurotrophic Factor (BDNF), which impairs the activity-dependent secretion of BDNF, has been associated with increased susceptibility to the development of various neuropsychiatric disorders. Adult male and female wild-type Val/Val (BDNFV/V) and heterozygous Val/Met (BDNFV/M) mice were exposed to two sessions of forced swimming stress (FSS) per day for two consecutive days. The mice were behaviorally tested 1 day (short-term effect) or 11 days (long-term effect) after the last stress session. Protein and mRNA levels were measured in the hippocampus 16 days after the end of stress exposure. Stressed mice showed a higher anxiety-like phenotype compared to non-stressed mice, regardless of the sex and genotype, when analyzed following the short period of stress. In the prolonged period, anxiety-like behavior persisted only in male BDNFV/M mice (p < 0.0001). Interestingly, recovery in male BDNFV/V mice was accompanied by an increase in pCREB (p < 0.001) and Bdnf4 (p < 0.01) transcript and a decrease in HDAC1 (p < 0.05) and Dnmt3a (p = 0.01) in the hippocampus. Overall, our results show that male and female BDNF Val66Met knock-in mice can recover from subchronic stress in different ways.
Collapse
Affiliation(s)
- Fernando Antonio Costa Xavier
- Laboratory of Molecular and Cellular Biology, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre 90619-900, Brazil;
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Silvia Stella Barbieri
- Unit of Brain-Heart Axis: Cellular and Molecular Mechanisms, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy;
| | - Maurizio Popoli
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, 20133 Milano, Italy;
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, 22060 Novedrate, Italy
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, 20156 Milan, Italy
| |
Collapse
|
3
|
Arzate-Mejia RG, Carullo NVN, Mansuy IM. The epigenome under pressure: On regulatory adaptation to chronic stress in the brain. Curr Opin Neurobiol 2024; 84:102832. [PMID: 38141414 DOI: 10.1016/j.conb.2023.102832] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Chronic stress (CS) can have long-lasting consequences on behavior and cognition, that are associated with stable changes in gene expression in the brain. Recent work has examined the role of the epigenome in the effects of CS on the brain. This review summarizes experimental evidence in rodents showing that CS can alter the epigenome and the expression of epigenetic modifiers in brain cells, and critically assesses their functional effect on genome function. It discusses the influence of the developmental time of stress exposure on the type of epigenetic changes, and proposes new lines of research that can help clarify these changes and their causal involvement in the impact of CS.
Collapse
Affiliation(s)
- Rodrigo G Arzate-Mejia
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute of Neurosciences, Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Switzerland. https://twitter.com/RodrigoArzt
| | - Nancy V N Carullo
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute of Neurosciences, Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Switzerland. https://twitter.com/DrNancyCarullo
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute of Neurosciences, Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Switzerland.
| |
Collapse
|
4
|
Spinieli RL, Cazuza R, Sales AJ, Carolino R, Franci JA, Tajerian M, Leite-Panissi CRA. Acute restraint stress regulates brain DNMT3a and promotes defensive behaviors in male rats. Neurosci Lett 2024; 820:137589. [PMID: 38101612 PMCID: PMC10947420 DOI: 10.1016/j.neulet.2023.137589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Depending on its duration and severity, stress may contribute to neuropsychiatric diseases such as depression and anxiety. Studies have shown that stress impacts the hypothalamic-pituitary-adrenal (HPA) axis, but its downstream molecular, behavioral, and nociceptive effects remain unclear. We hypothesized that a 2-hour single exposure to acute restraint stress (ARS) activates the HPA axis and changes DNA methylation, a molecular mechanism involved in the machinery of stress regulation. We further hypothesized that ARS induces anxiety-like and risk assessment behavior and alters nociceptive responses in the rat. We employed biochemical (radioimmunoassay for corticosterone; global DNA methylation by enzyme immunoassay and western blot for DNMT3a expression in the amygdala, ventral hippocampus, and prefrontal cortex) and behavioral (elevated plus maze and dark-light box for anxiety and hot plate test for nociception) tests in adult male Wistar rats exposed to ARS or handling (control). All analyses were performed 24 h after ARS or handling. We found that ARS increased corticosterone levels in the blood, increased the expression of DNMT3a in the prefrontal cortex, promoted anxiety-like and risk assessment behaviors in the elevated plus maze, and increased the nociceptive threshold observed in the hot plate test. Our findings suggest that ARS might be a helpful rat model for studying acute stress and its effects on physiology, epigenetic machinery, and behavior.
Collapse
Affiliation(s)
- Richard L Spinieli
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, Brazil.
| | - Rafael Cazuza
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, Brazil
| | - Amanda J Sales
- Department of Pharmacology, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ruither Carolino
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Janete A Franci
- Department of Basic and Oral Biology, Dental School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maral Tajerian
- Department of Biology, Queens College, City University of New York, Flushing, NY, United States; The Graduate Center, City University of New York, New York, NY, United States
| | - Christie R A Leite-Panissi
- Department of Psychology, School of Philosophy, Science and Literature of Ribeirão Preto of the University of São Paulo, Brazil.
| |
Collapse
|
5
|
Bolouki A, Rahimi M, Azarpira N, Baghban F. Integrated multi-omics analysis identifies epigenetic alteration related to neurodegeneration development in post-traumatic stress disorder patients. Psychiatr Genet 2023; 33:167-181. [PMID: 37222234 DOI: 10.1097/ypg.0000000000000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
INTRODUCTION Post-traumatic stress disorder (PTSD), is associated with an elevated risk of neurodegenerative disorders, but the molecular mechanism was not wholly identified. Aberrant methylation status and miRNA expression pattern have been identified to be associated with PTSD, but their complex regulatory networks remain largely unexplored. METHODS The purpose of this study was to identify the key genes/pathways related to neurodegenerative disorder development in PTSD by evaluating epigenetic regulatory signature (DNA methylation and miRNA) using an integrative bioinformatic analysis. We integrated DNA expression array data with miRNA and DNA methylation array data - obtained from the GEO database- to evaluate the epigenetic regulatory mechanisms. RESULTS Our results indicated that target genes of dysregulated miRNAs were significantly related to several neurodegenerative diseases. Several dysregulated genes in the neurodegeneration pathways interacted with some members of the miR-17 and miR-15/107 families. Our analysis indicated that APP/CaN/NFATs signaling pathway was dysregulated in the peripheral blood samples of PTSD. Besides, the DNMT3a and KMT2D genes, as the encoding DNA and histone methyltransferase enzymes, were upregulated, and DNA methylation and miRNA regulators were proposed as critical molecular mechanisms. Our study found dysregulation of circadian rhythm as the CLOCK gene was upregulated and hypomethylated at TSS1500 CpGs S_shores and was also a target of several dysregulated miRNAs. CONCLUSION In conclusion, we found evidence of a negative feedback loop between stress oxidative, circadian rhythm dysregulation, miR-17 and miR-15/107 families, some essential genes involved in neuronal and brain cell health, and KMT2D/DNMT3a in the peripheral blood samples of PTSD.
Collapse
Affiliation(s)
- Ayeh Bolouki
- Basic Sciences Laboratory, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
- University of Namur, Department of Biology, Research Unit on Cellular Biology (URBC), Namur, Belgium
| | - Moosa Rahimi
- Basic Sciences Laboratory, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Baghban
- Basic Sciences Laboratory, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Sheng ZF, Zhang H, Phaup JG, Zheng P, Kang X, Liu Z, Chang HM, Yeh ETH, Johnson AK, Pan HL, Li DP. Corticotropin-releasing hormone neurons in the central nucleus of amygdala are required for chronic stress-induced hypertension. Cardiovasc Res 2023; 119:1751-1762. [PMID: 37041718 PMCID: PMC10325697 DOI: 10.1093/cvr/cvad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/30/2022] [Accepted: 04/08/2023] [Indexed: 04/13/2023] Open
Abstract
AIMS Chronic stress is a well-known risk factor for the development of hypertension. However, the underlying mechanisms remain unclear. Corticotropin-releasing hormone (CRH) neurons in the central nucleus of the amygdala (CeA) are involved in the autonomic responses to chronic stress. Here, we determined the role of CeA-CRH neurons in chronic stress-induced hypertension. METHODS AND RESULTS Borderline hypertensive rats (BHRs) and Wistar-Kyoto (WKY) rats were subjected to chronic unpredictable stress (CUS). Firing activity and M-currents of CeA-CRH neurons were assessed, and a CRH-Cre-directed chemogenetic approach was used to suppress CeA-CRH neurons. CUS induced a sustained elevation of arterial blood pressure (ABP) and heart rate (HR) in BHRs, while in WKY rats, CUS-induced increases in ABP and HR quickly returned to baseline levels after CUS ended. CeA-CRH neurons displayed significantly higher firing activities in CUS-treated BHRs than unstressed BHRs. Selectively suppressing CeA-CRH neurons by chemogenetic approach attenuated CUS-induced hypertension and decreased elevated sympathetic outflow in CUS-treated BHRs. Also, CUS significantly decreased protein and mRNA levels of Kv7.2 and Kv7.3 channels in the CeA of BHRs. M-currents in CeA-CRH neurons were significantly decreased in CUS-treated BHRs compared with unstressed BHRs. Blocking Kv7 channel with its blocker XE-991 increased the excitability of CeA-CRH neurons in unstressed BHRs but not in CUS-treated BHRs. Microinjection of XE-991 into the CeA increased sympathetic outflow and ABP in unstressed BHRs but not in CUS-treated BHRs. CONCLUSIONS CeA-CRH neurons are required for chronic stress-induced sustained hypertension. The hyperactivity of CeA-CRH neurons may be due to impaired Kv7 channel activity, which represents a new mechanism involved in chronic stress-induced hypertension.
Collapse
Affiliation(s)
- Zhao-Fu Sheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Hua Zhang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Jeffery G Phaup
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - PeiRu Zheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - XunLei Kang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Zhenguo Liu
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Hui-Ming Chang
- Department of Pharmacology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Toxicology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Edward T H Yeh
- Department of Pharmacology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Toxicology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, The University of Iowa, G60 Psychological and Brain Sciences Building, Iowa City, IA 52242, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| |
Collapse
|
7
|
Lee H, Park J, Kim S. Metabolic and Transcriptomic Signatures of the Acute Psychological Stress Response in the Mouse Brain. Metabolites 2023; 13:metabo13030453. [PMID: 36984893 PMCID: PMC10052811 DOI: 10.3390/metabo13030453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Acute stress response triggers various physiological responses such as energy mobilization to meet metabolic demands. However, the underlying molecular changes in the brain remain largely obscure. Here, we used a brief water avoidance stress (WAS) to elicit an acute stress response in mice. By employing RNA-sequencing and metabolomics profiling, we investigated the acute stress-induced molecular changes in the mouse whole brain. The aberrant expression of 60 genes was detected in the brain tissues of WAS-exposed mice. Functional analyses showed that the aberrantly expressed genes were enriched in various processes such as superoxide metabolism. In our global metabolomic profiling, a total of 43 brain metabolites were significantly altered by acute WAS. Metabolic pathways upregulated from WAS-exposed brain tissues relative to control samples included lipolysis, eicosanoid biosynthesis, and endocannabinoid synthesis. Acute WAS also elevated the levels of branched-chain amino acids, 5-aminovalerates, 4-hydroxy-nonenal-glutathione as well as mannose, suggesting complex metabolic changes in the brain. The observed molecular events in the present study provide a valuable resource that can help us better understand how acute psychological stress impacts neural functions.
Collapse
Affiliation(s)
- Haein Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jina Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seyun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Stem Cell Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Bell BJ, Hollinger KR, Deme P, Sakamoto S, Hasegawa Y, Volsky D, Kamiya A, Haughey N, Zhu X, Slusher BS. Glutamine antagonist JHU083 improves psychosocial behavior and sleep deficits in EcoHIV-infected mice. Brain Behav Immun Health 2022; 23:100478. [PMID: 35734753 PMCID: PMC9207540 DOI: 10.1016/j.bbih.2022.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 10/31/2022] Open
Abstract
Combined antiretroviral therapy ushered an era of survivable HIV infection in which people living with HIV (PLH) conduct normal life activities and enjoy measurably extended lifespans. However, despite viral control, PLH often experience a variety of cognitive, emotional, and physical phenotypes that diminish their quality of life, including cognitive impairment, depression, and sleep disruption. Recently, accumulating evidence has linked persistent CNS immune activation to the overproduction of glutamate and upregulation of glutaminase (GLS) activity, particularly in microglial cells, driving glutamatergic imbalance with neurological consequences. Our lab has developed a brain-penetrant prodrug of the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON), JHU083, that potently inhibits brain GLS activity in mice following oral administration. To assess the therapeutic potential of JHU083, we infected mice with EcoHIV and characterized their neurobehavioral phenotypes. EcoHIV-infected mice exhibited decreased social interaction, suppressed sucrose preference, disrupted sleep during the early rest period, and increased sleep fragmentation, similar to what has been reported in PLH but not yet observed in murine models. At doses shown to inhibit microglial GLS, JHU083 treatment ameliorated all of the abnormal neurobehavioral phenotypes. To explore potential mechanisms underlying this effect, hippocampal microglia were isolated for RNA sequencing. The dysregulated genes and pathways in EcoHIV-infected hippocampal microglia pointed to disruptions in immune functions of these cells, which were partially restored by JHU083 treatment. These findings suggest that upregulation of microglial GLS may affect immune functions of these cells. Thus, brain-penetrable GLS inhibitors like JHU083 could act as a potential therapeutic modality for both glutamate excitotoxicity and aberrant immune activation in microglia in chronic HIV infection.
Collapse
|
9
|
von Ziegler LM, Floriou-Servou A, Waag R, Das Gupta RR, Sturman O, Gapp K, Maat CA, Kockmann T, Lin HY, Duss SN, Privitera M, Hinte L, von Meyenn F, Zeilhofer HU, Germain PL, Bohacek J. Multiomic profiling of the acute stress response in the mouse hippocampus. Nat Commun 2022; 13:1824. [PMID: 35383160 PMCID: PMC8983670 DOI: 10.1038/s41467-022-29367-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/11/2022] [Indexed: 12/26/2022] Open
Abstract
The acute stress response mobilizes energy to meet situational demands and re-establish homeostasis. However, the underlying molecular cascades are unclear. Here, we use a brief swim exposure to trigger an acute stress response in mice, which transiently increases anxiety, without leading to lasting maladaptive changes. Using multiomic profiling, such as proteomics, phospho-proteomics, bulk mRNA-, single-nuclei mRNA-, small RNA-, and TRAP-sequencing, we characterize the acute stress-induced molecular events in the mouse hippocampus over time. Our results show the complexity and specificity of the response to acute stress, highlighting both the widespread changes in protein phosphorylation and gene transcription, and tightly regulated protein translation. The observed molecular events resolve efficiently within four hours after initiation of stress. We include an interactive app to explore the data, providing a molecular resource that can help us understand how acute stress impacts brain function in response to stress. Acute stress can help individuals to respond to challenging events, although chronic stress leads to maladaptive changes. Here, the authors present a multi omic analysis profiling acute stress-induced changes in the mouse hippocampus, providing a resource for the scientific community.
Collapse
Affiliation(s)
- Lukas M von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Rebecca R Das Gupta
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Oliver Sturman
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Katharina Gapp
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Christina A Maat
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Tobias Kockmann
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Han-Yu Lin
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Zurich, Switzerland
| | - Sian N Duss
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Mattia Privitera
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Laura Hinte
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ferdinand von Meyenn
- Laboratory of Nutrition and Metabolic Epigenetics, Institute of Food, Nutrition and Health, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Hanns U Zeilhofer
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Pierre-Luc Germain
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.,Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland.,Laboratory of Statistical Bioinformatics, Department for Molecular Life Sciences, University of Zürich, Zurich, Switzerland
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland. .,Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
10
|
He JG, Zhou HY, Wang F, Chen JG. Dysfunction of Glutamatergic Synaptic Transmission in Depression: Focus on AMPA Receptor Trafficking. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 3:187-196. [PMID: 37124348 PMCID: PMC10140449 DOI: 10.1016/j.bpsgos.2022.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Pharmacological and anatomical evidence suggests that abnormal glutamatergic neurotransmission may be associated with the pathophysiology of depression. Compounds that act as NMDA receptor antagonists may be a potential treatment for depression, notably the rapid-acting agent ketamine. The rapid-acting and sustained antidepressant effects of ketamine rely on the activation of AMPA receptors (AMPARs). As the key elements of fast excitatory neurotransmission in the brain, AMPARs are crucially involved in synaptic plasticity and memory. Recent efforts have been directed toward investigating the bidirectional dysregulation of AMPAR-mediated synaptic transmission in depression. Here, we summarize the published evidence relevant to the dysfunction of AMPAR in stress conditions and review the recent progress toward the understanding of the involvement of AMPAR trafficking in the pathophysiology of depression, focusing on the roles of AMPAR auxiliary subunits, key AMPAR-interacting proteins, and posttranslational regulation of AMPARs. We also discuss new prospects for the development of improved therapeutics for depression.
Collapse
|
11
|
Sanacora G, Yan Z, Popoli M. The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci 2022; 23:86-103. [PMID: 34893785 DOI: 10.1038/s41583-021-00540-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Stress is a primary risk factor for several neuropsychiatric disorders. Evidence from preclinical models and clinical studies of depression have revealed an array of structural and functional maladaptive changes, whereby adverse environmental factors shape the brain. These changes, observed from the molecular and transcriptional levels through to large-scale brain networks, to the behaviours reveal a complex matrix of interrelated pathophysiological processes that differ between sexes, providing insight into the potential underpinnings of the sex bias of neuropsychiatric disorders. Although many preclinical studies use chronic stress protocols, long-term changes are also induced by acute exposure to traumatic stress, opening a path to identify determinants of resilient versus susceptible responses to both acute and chronic stress. Epigenetic regulation of gene expression has emerged as a key player underlying the persistent impact of stress on the brain. Indeed, histone modification, DNA methylation and microRNAs are closely involved in many aspects of the stress response and reveal the glutamate system as a key player. The success of ketamine has stimulated a whole line of research and development on drugs directly or indirectly targeting glutamate function. However, the challenge of translating the emerging understanding of stress pathophysiology into effective clinical treatments remains a major challenge.
Collapse
Affiliation(s)
- Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milano, Milan, Italy.
| |
Collapse
|
12
|
Guo Z, Li S, Wu J, Zhu X, Zhang Y. Maternal Deprivation Increased Vulnerability to Depression in Adult Rats Through DRD2 Promoter Methylation in the Ventral Tegmental Area. Front Psychiatry 2022; 13:827667. [PMID: 35308874 PMCID: PMC8924051 DOI: 10.3389/fpsyt.2022.827667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE Early life adversity is a risk factor for depression in adulthood; however, the underlying mechanisms are not well understood. This study aims to investigate the effect of DNA methylation of DRD2 gene on early life stress-induced depression in adult rats. METHODS Newborn Sprague-Dawley rats were randomly assigned to four groups: maternal deprivation group (MD), chronic unpredictable stress (CUS) group, maternal deprivation plus chronic unpredictable stress (MD/CUS) group, and normal control group (NOR). Behaviors were measured by open field test (OFT), sucrose preference test (SPT), and Original Research Article forced swimming test (FST). Fecal CORT level was detected by ELISA. Bisulfite amplicon sequencing PCR was used to assess methylation levels of DRD2 promoter. RESULTS CUS and MD/CUS rats had a significantly shorter total distance, longer immobility time, and higher CORT level, while MD and MD/CUS rats had a significantly lower percentage of central distance, more feces, lower rate of sucrose preference, and lower levels of DRD2 protein and mRNA in the VTA than NOR rats. CUS rats showed a significantly higher DRD2 mRNA and protein levels in the VTA than NOR rats. CUS, MD, and MD/CUS rats showed a significantly higher level of DRD2 promoter methylation than NOR rats. CORT level was significantly correlated with the sucrose preference rate in SPT, the immobility time in FST, the total distance, and the number of fecal pellets in OFT. DRD2 protein level was significantly correlated with the sucrose preference rate and the number of fecal pellets. DRD2 mRNA level was significantly correlated with the percentage of central distance and the number of fecal pellets in OFT. The level of DRD2 promoter methylation was significantly correlated with the sucrose preference rate, immobility time, total distance, the percentage of central distance, and the number of fecal pellets. CONCLUSIONS Early life MD increased vulnerability to stress-induced depressive-like behavior in adult rats. Enhanced DRD2 promoter methylation in the VTA may increase the susceptibility to depression.
Collapse
Affiliation(s)
- Zhenli Guo
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shansi Li
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialing Wu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiongzhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Zhang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute of Central South University, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Floriou-Servou A, von Ziegler L, Waag R, Schläppi C, Germain PL, Bohacek J. The Acute Stress Response in the Multiomic Era. Biol Psychiatry 2021; 89:1116-1126. [PMID: 33722387 DOI: 10.1016/j.biopsych.2020.12.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/13/2020] [Accepted: 12/30/2020] [Indexed: 12/18/2022]
Abstract
Studying the stress response is a major pillar of neuroscience research not only because stress is a daily reality but also because the exquisitely fine-tuned bodily changes triggered by stress are a neuroendocrinological marvel. While the genome-wide changes induced by chronic stress have been extensively studied, we know surprisingly little about the complex molecular cascades triggered by acute stressors, the building blocks of chronic stress. The acute stress (or fight-or-flight) response mobilizes organismal energy resources to meet situational demands. However, successful stress coping also requires the efficient termination of the stress response. Maladaptive coping-particularly in response to severe or repeated stressors-can lead to allostatic (over)load, causing wear and tear on tissues, exhaustion, and disease. We propose that deep molecular profiling of the changes triggered by acute stressors could provide molecular correlates for allostatic load and predict healthy or maladaptive stress responses. We present a theoretical framework to interpret multiomic data in light of energy homeostasis and activity-dependent gene regulation, and we review the signaling cascades and molecular changes rapidly induced by acute stress in different cell types in the brain. In addition, we review and reanalyze recent data from multiomic screens conducted mainly in the rodent hippocampus and amygdala after acute psychophysical stressors. We identify challenges surrounding experimental design and data analysis, and we highlight promising new research directions to better understand the stress response on a multiomic level.
Collapse
Affiliation(s)
- Amalia Floriou-Servou
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Lukas von Ziegler
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Rebecca Waag
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Christa Schläppi
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland
| | - Pierre-Luc Germain
- Computational Neurogenomics, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland; Laboratory of Statistical Bioinformatics, Department for Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Johannes Bohacek
- Laboratory of Molecular and Behavioral Neuroscience, Institute for Neuroscience, Department of Health Sciences and Technology, ETH Zürich, Switzerland; Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zürich, Switzerland.
| |
Collapse
|