1
|
Shikauchi Y, Uehara K, Okazaki YO, Kitajo K. Electroencephalographic responses before, during, and after upper limb paired associative stimulation. Data Brief 2025; 60:111467. [PMID: 40226202 PMCID: PMC11986603 DOI: 10.1016/j.dib.2025.111467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Paired associative stimulation (PAS) is a non-invasive protocol involving repeated stimulus pairs to activate two cortical areas alternately, inducing Hebbian-like plasticity. However, its neurophysiological impacts remain unclear. To determine the changes that occur in the brain during PAS, brain activity during PAS must be measured and distinguished from the electromagnetic artifacts produced by the stimulation. Here, we present a novel dataset of electroencephalography (EEG) measurements during PAS with an inter-stimulus-interval of 25 ms (PAS25, expected to induce long-term potentiation-like changes) or 35 ms (PAS35, no expected change). This dataset includes raw data and pre-processed data with electromagnetic artefacts removed. The right ulnar nerve's electrical stimulation preceded transcranial magnetic stimulation to the left primary motor cortex in both cases. EEG was measured before and after the PAS sessions, with only electrical or magnetic stimulation. To demonstrate the quality of the data, we summarize the stability of the stimulation site and the event-related potentials before, during, and after PAS. This dataset will enable observing brain dynamics due to the accumulation of stimulations during PAS and differences in responsiveness to stimulations before and after PAS.
Collapse
Affiliation(s)
- Yumi Shikauchi
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-0083, Japan
- Graduate School of Arts and Science, Department of General Systems Studies, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazumasa Uehara
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Neural Information Dynamics Laboratory, Department of Computer Science and Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580, Japan
| | - Yuka O. Okazaki
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Keiichi Kitajo
- Rhythm-based Brain Information Processing Unit, CBS-TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
- Division of Neural Dynamics, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
2
|
Spampinato DA, Casula EP, Koch G. The Cerebellum and the Motor Cortex: Multiple Networks Controlling Multiple Aspects of Behavior. Neuroscientist 2024; 30:723-743. [PMID: 37649430 DOI: 10.1177/10738584231189435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The cerebellum and its thalamic projections to the primary motor cortex (M1) are well known to play an essential role in executing daily actions. Anatomic investigations in animals and postmortem humans have established the reciprocal connections between these regions; however, how these pathways can shape cortical activity in behavioral contexts and help promote recovery in neuropathological conditions remains not well understood. The present review aims to provide a comprehensive description of these pathways in animals and humans and discuss how novel noninvasive brain stimulation (NIBS) methods can be used to gain a deeper understanding of the cerebellar-M1 connections. In the first section, we focus on recent animal literature that details how information sent from the cerebellum and thalamus is integrated into an broad network of cortical motor neurons. We then discuss how NIBS approaches in humans can be used to reliably assess the connectivity between the cerebellum and M1. Moreover, we provide the latest perspectives on using advanced NIBS approaches to investigate and modulate multiple cerebellar-cortical networks involved in movement behavior and plasticity. Finally, we discuss how these emerging methods have been used in translation research to produce long-lasting modifications of cerebellar-thalamic-M1 to restore cortical activity and motor function in neurologic patients.
Collapse
|
3
|
Hayes KD, Khan MER, Graham KR, Staines WR, Meehan SK. Persistent adaptations in sensorimotor interneuron circuits in the motor cortex with a history of sport-related concussion. Exp Brain Res 2024; 243:5. [PMID: 39607543 DOI: 10.1007/s00221-024-06964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/04/2024] [Indexed: 11/29/2024]
Abstract
Recent studies highlight a persistent increase in subsequent injury risk following a sport-related concussion (SRC) despite clinical recovery. However, markers of persistent alterations in sensorimotor integration have yet to be identified. One possibility is that compensatory adaptation following SRC may only be unmasked during transient periods of high task complexity in specific sensorimotor circuits. The current study used short-latency afferent inhibition (SAI) to investigate the long-term sequelae of sport-related concussion (SRC) in different short-latency sensorimotor circuits converging in the motor cortex. Specific sensorimotor circuits sensitive to posterior-anterior current with a positive phase lasting 120µs (PA120) and anterior-posterior current with a positive phase lasting 30µs (AP30) were assessed using controllable pulse parameter transcranial magnetic stimulation (cTMS) while young adults with and without a history of SRC were at rest or responded to valid and invalid sensorimotor cues. SAI was quantified as the ratio of the motor-evoked potential (MEP) elicited by peripherally conditioned cTMS stimuli to the unconditioned MEP for each cTMS configuration. Individuals with a SRC history demonstrated persistent adaptation in AP30 SAI, but only in response to invalid cues. Persistent adaptation in AP30 SAI was not apparent at rest or during simple sensorimotor transformations in response to valid cues. PA120 SAI demonstrated similar responses at rest and in response to both valid and invalid cues, regardless of SRC history. AP30-sensitive sensorimotor circuits may mark the long-term SRC sequelae and the increased susceptibility to momentary breakdowns in sensorimotor integration during periods of high cognitive-motor demands.
Collapse
Affiliation(s)
- Kara D Hayes
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Madison E R Khan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Kylee R Graham
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - W Richard Staines
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Sean K Meehan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
4
|
Ross RE, Saladin ME, George MS, Gregory CM. Acute effects of aerobic exercise on corticomotor plasticity in individuals with and without depression. J Psychiatr Res 2024; 176:108-118. [PMID: 38852541 PMCID: PMC11283944 DOI: 10.1016/j.jpsychires.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND Although complex in nature, the pathophysiology of depression involves reduced or impaired neuroplastic capabilities. Restoring or enhancing neuroplasticity may serve as a treatment target for developing therapies for depression. Aerobic exercise (AEx) has antidepressant benefits and may enhance neuroplasticity in depression although the latter has yet to be substantiated. Therefore, we sought to examine the acute effect of AEx on neuroplasticity in depression. METHODS Sixteen individuals with (DEP; 13 female; age = 28.5 ± 7.3; Montgomery-Äsberg Depression Rating Scale [MADRS] = 21.3 ± 5.2) and without depression (HC; 13 female; age 27.2 ± 7.5; MADRS = 0.8 ± 1.2) completed three experimental visits consisting of 15 min of low intensity AEx (LO) at 35% heart rate reserve (HRR), high intensity AEx (HI) at 70% HRR, or sitting (CON). Following AEx, excitatory paired associative stimulation (PAS25ms) was employed to probe neuroplasticity. Motor evoked potentials (MEP) were assessed via transcranial magnetic stimulation before and after PAS25ms to indicate acute changes in neuroplasticity. RESULTS PAS25ms primed with HI AEx led to significant increases in MEP amplitude compared to LO and CON. HI AEx elicited enhanced PAS25ms-induced neuroplasticity for up to 1-h post-PAS. There were no significant between-group differences. CONCLUSION HI AEx enhances PAS measured neuroplasticity in individuals with and without depression. HI AEx may have a potent influence on the brain and serve as an effective primer, or adjunct, to therapies that seek to harness neuroplasticity.
Collapse
Affiliation(s)
- Ryan E Ross
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA.
| | - Michael E Saladin
- Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA; Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Mark S George
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Chris M Gregory
- Ralph H. Johnson Veterans Affairs Health Care System, Charleston, SC, USA; Department of Health Sciences and Research, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
5
|
Sveva V, Cruciani A, Mancuso M, Santoro F, Latorre A, Monticone M, Rocchi L. Cerebellar Non-Invasive Brain Stimulation: A Frontier in Chronic Pain Therapy. J Pers Med 2024; 14:675. [PMID: 39063929 PMCID: PMC11277881 DOI: 10.3390/jpm14070675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Chronic pain poses a widespread and distressing challenge; it can be resistant to conventional therapies, often having significant side effects. Non-invasive brain stimulation (NIBS) techniques offer promising avenues for the safe and swift modulation of brain excitability. NIBS approaches for chronic pain management targeting the primary motor area have yielded variable outcomes. Recently, the cerebellum has emerged as a pivotal hub in human pain processing; however, the clinical application of cerebellar NIBS in chronic pain treatment remains limited. This review delineates the cerebellum's role in pain modulation, recent advancements in NIBS for cerebellar activity modulation, and novel biomarkers for assessing cerebellar function in humans. Despite notable progress in NIBS techniques and cerebellar activity assessment, studies targeting cerebellar NIBS for chronic pain treatment are limited in number. Nevertheless, positive outcomes in pain alleviation have been reported with cerebellar anodal transcranial direct current stimulation. Our review underscores the potential for further integration between cerebellar NIBS and non-invasive assessments of cerebellar function to advance chronic pain treatment strategies.
Collapse
Affiliation(s)
- Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Alessandro Cruciani
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Marco Mancuso
- Department of Human Neuroscience, University of Rome “Sapienza”, Viale dell’Università 30, 00185 Rome, Italy;
| | - Francesca Santoro
- Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy; (A.C.); (F.S.)
- Department of Medicine and Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Marco Monticone
- Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
6
|
Ginatempo F, Manzo N, Spampinato DA, Loi N, Burgio F, Rothwell JC, Deriu F. A Novel Paired Somatosensory-Cerebellar Stimulation Induces Plasticity on Cerebellar-Brain Connectivity. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1121-1127. [PMID: 37897625 PMCID: PMC11102379 DOI: 10.1007/s12311-023-01622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 10/30/2023]
Abstract
The cerebellum receives and integrates a large amount of sensory information that is important for motor coordination and learning. The aim of the present work was to investigate whether peripheral nerve and cerebellum paired associative stimulation (cPAS) could induce plasticity in both the cerebellum and the cortex. In a cross-over design, we delivered right median nerve electrical stimulation 25 or 10 ms before applying transcranial magnetic stimulation over the cerebellum. We assessed changes in motor evoked potentials (MEP), somatosensory evoked potentials (SEP), short-afferent inhibition (SAI), and cerebellum-brain inhibition (CBI) immediately, and 30 min after cPAS. Our results showed a significant reduction in CBI 30 minutes after cPAS, with no discernible changes in MEP, SEP, and SAI. Notably, cPAS10 did not produce any modulatory effects on these parameters. In summary, cPAS25 demonstrated the capacity to induce plasticity effects in the cerebellar cortex, leading to a reduction in CBI. This novel intervention may be used to modulate plasticity mechanisms and motor learning in healthy individuals and patients with neurological conditions.
Collapse
Affiliation(s)
- Francesca Ginatempo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | | | - Danny A Spampinato
- Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Nicola Loi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | | | - John C Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
- Unit of Endocrinology, Nutritional and Metabolic Disorders, AOU, Sassari, Sassari, Italy.
| |
Collapse
|
7
|
Lenizky MW, Meehan SK. The effects of verbal and spatial working memory on short- and long-latency sensorimotor circuits in the motor cortex. PLoS One 2024; 19:e0302989. [PMID: 38753604 PMCID: PMC11098330 DOI: 10.1371/journal.pone.0302989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Multiple sensorimotor loops converge in the motor cortex to create an adaptable system capable of context-specific sensorimotor control. Afferent inhibition provides a non-invasive tool to investigate the substrates by which procedural and cognitive control processes interact to shape motor corticospinal projections. Varying the transcranial magnetic stimulation properties during afferent inhibition can probe specific sensorimotor circuits that contribute to short- and long-latency periods of inhibition in response to the peripheral stimulation. The current study used short- (SAI) and long-latency (LAI) afferent inhibition to probe the influence of verbal and spatial working memory load on the specific sensorimotor circuits recruited by posterior-anterior (PA) and anterior-posterior (AP) TMS-induced current. Participants completed two sessions where SAI and LAI were assessed during the short-term maintenance of two- or six-item sets of letters (verbal) or stimulus locations (spatial). The only difference between the sessions was the direction of the induced current. PA SAI decreased as the verbal working memory load increased. In contrast, AP SAI was not modulated by verbal working memory load. Visuospatial working memory load did not affect PA or AP SAI. Neither PA LAI nor AP LAI were sensitive to verbal or spatial working memory load. The dissociation of short-latency PA and AP sensorimotor circuits and short- and long-latency PA sensorimotor circuits with increasing verbal working memory load support multiple convergent sensorimotor loops that provide distinct functional information to facilitate context-specific supraspinal control.
Collapse
Affiliation(s)
- Markus W. Lenizky
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| | - Sean K. Meehan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
8
|
Marques Paulo AJ, Sato JR, de Faria DD, Balardin J, Borges V, de Azevedo Silva SM, Ballalai Ferraz H, de Carvalho Aguiar P. Task-related brain activity in upper limb dystonia revealed by simultaneous fNIRS and EEG. Clin Neurophysiol 2024; 159:1-12. [PMID: 38232654 DOI: 10.1016/j.clinph.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024]
Abstract
OBJECTIVE The aim of this study was to explore differences in brain activity and connectivity using simultaneous electroencephalography and near-infrared spectroscopy in patients with focal dystonia during handwriting and finger-tapping tasks. METHODS Patients with idiopathic right upper limb focal dystonia and controls were assessed by simultaneous near-infrared spectroscopy and electroencephalography during the writing and finger-tapping tasks in terms of the mu-alpha, mu-beta, beta and low gamma power and effective connectivity, as well as relative changes in oxyhemoglobin (oxy-Hb) and deoxyhemoglobin using a channel-wise approach with a mixed-effect model. RESULTS Patients exhibited higher oxy-Hb levels in the right and left motor cortex and supplementary motor area during writing, but lower oxy-Hb levels in the left sensorimotor and bilateral somatosensory area during finger-tapping compared to controls. During writing, patients showed increased low gamma power in the bilateral sensorimotor cortex and less mu-beta and beta attenuation compared to controls. Additionally, patients had reduced connectivity between the supplementary motor area and the left sensorimotor cortex during writing. No differences were observed in terms of effective connectivity in either task. Finally, patients failed to attenuate the mu-alpha, mu-beta, and beta rhythms during the finger-tapping task. CONCLUSIONS Cortical blood flow and EEG spectral power differ between controls and dystonia patients, depending on the task. Writing increased blood flow and altered connectivity in dystonia patients, and it also decreased slow-band attenuation. Finger-tapping decreased blood flow and slow-band attenuation. SIGNIFICANCE Simultaneous fNIRS and EEG may show relevant information regarding brain dynamics in movement disorders patients in unconstrained environments.
Collapse
Affiliation(s)
- Artur José Marques Paulo
- Hospital Israelita Albert Einstein, Instituto de Ensino e Pesquisa, Av. Albert Einstein, 627, São Paulo-SP 05652-900, Brazil
| | - João Ricardo Sato
- Hospital Israelita Albert Einstein, Instituto de Ensino e Pesquisa, Av. Albert Einstein, 627, São Paulo-SP 05652-900, Brazil; Universidade Federal do ABC, Centro de Matemática Computação e Cognição , São Bernardo do Campo-SP , 09606-045, Brazil
| | - Danilo Donizete de Faria
- Universidade Federal de São Paulo, Department of Neurology and Neurosurgery, R. Pedro de Toledo, 650, São Paulo - SP 04039-002, Brazil; Hospital do Servidor Público Estadual, Av. Ibirapuera, 981 - Vila Clementino, São Paulo - SP 04038-034, Brazil
| | - Joana Balardin
- Hospital Israelita Albert Einstein, Instituto de Ensino e Pesquisa, Av. Albert Einstein, 627, São Paulo-SP 05652-900, Brazil
| | - Vanderci Borges
- Universidade Federal de São Paulo, Department of Neurology and Neurosurgery, R. Pedro de Toledo, 650, São Paulo - SP 04039-002, Brazil
| | - Sonia Maria de Azevedo Silva
- Universidade Federal de São Paulo, Department of Neurology and Neurosurgery, R. Pedro de Toledo, 650, São Paulo - SP 04039-002, Brazil; Hospital do Servidor Público Estadual, Av. Ibirapuera, 981 - Vila Clementino, São Paulo - SP 04038-034, Brazil
| | - Henrique Ballalai Ferraz
- Universidade Federal de São Paulo, Department of Neurology and Neurosurgery, R. Pedro de Toledo, 650, São Paulo - SP 04039-002, Brazil
| | - Patrícia de Carvalho Aguiar
- Hospital Israelita Albert Einstein, Instituto de Ensino e Pesquisa, Av. Albert Einstein, 627, São Paulo-SP 05652-900, Brazil; Universidade Federal de São Paulo, Department of Neurology and Neurosurgery, R. Pedro de Toledo, 650, São Paulo - SP 04039-002, Brazil.
| |
Collapse
|
9
|
Christova M, Sylwester V, Gallasch E, Fresnoza S. Reduced Cerebellar Brain Inhibition and Vibrotactile Perception in Response to Mechanical Hand Stimulation at Flutter Frequency. CEREBELLUM (LONDON, ENGLAND) 2024; 23:67-81. [PMID: 36502502 PMCID: PMC10864223 DOI: 10.1007/s12311-022-01502-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/30/2022] [Indexed: 12/14/2022]
Abstract
The cerebellum is traditionally considered a movement control structure because of its established afferent and efferent anatomical and functional connections with the motor cortex. In the last decade, studies also proposed its involvement in perception, particularly somatosensory acquisition and prediction of the sensory consequences of movement. However, compared to its role in motor control, the cerebellum's specific role or modulatory influence on other brain areas involved in sensory perception, specifically the primary sensorimotor cortex, is less clear. In the present study, we explored whether peripherally applied vibrotactile stimuli at flutter frequency affect functional cerebello-cortical connections. In 17 healthy volunteers, changes in cerebellar brain inhibition (CBI) and vibration perception threshold (VPT) were measured before and after a 20-min right hand mechanical stimulation at 25 Hz. 5 Hz mechanical stimulation of the right foot served as an active control condition. Performance in a Grooved Pegboard test (GPT) was also measured to assess stimulation's impact on motor performance. Hand stimulation caused a reduction in CBI (13.16%) and increased VPT but had no specific effect on GPT performance, while foot stimulation had no significant effect on all measures. The result added evidence to the functional connections between the cerebellum and primary motor cortex, as shown by CBI reduction. Meanwhile, the parallel increase in VPT indirectly suggests that the cerebellum influences the processing of vibrotactile stimulus through motor-sensory interactions.
Collapse
Affiliation(s)
- Monica Christova
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Neue Stiftingtalstraße 6/D05, 8010, Graz, Austria.
- Institute of Physiotherapy, University of Applied Sciences FH-Joanneum, Graz, Austria.
| | | | - Eugen Gallasch
- Otto Loewi Research Center, Physiology Section, Medical University of Graz, Neue Stiftingtalstraße 6/D05, 8010, Graz, Austria
| | - Shane Fresnoza
- Institute of Psychology, University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
10
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
11
|
Grimm K, Prilop L, Schön G, Gelderblom M, Misselhorn J, Gerloff C, Zittel S. Cerebellar Modulation of Sensorimotor Associative Plasticity Is Impaired in Cervical Dystonia. Mov Disord 2023; 38:2084-2093. [PMID: 37641392 DOI: 10.1002/mds.29586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND In recent years, cervical dystonia (CD) has been recognized as a network disorder that involves not only the basal ganglia but other brain regions, such as the primary motor and somatosensory cortex, brainstem, and cerebellum. So far, the role of the cerebellum in the pathophysiology of dystonia is only poorly understood. OBJECTIVE The objective of this study was to investigate the role of the cerebellum on sensorimotor associative plasticity in patients with CD. METHODS Sixteen patients with CD and 13 healthy subjects received cerebellar transcranial direct current stimulation (ctDCS) followed by a paired associative stimulation (PAS) protocol based on transcranial magnetic stimulation that induces sensorimotor associative plasticity. Across three sessions the participants received excitatory anodal, inhibitory cathodal, and sham ctDCS in a double-blind crossover design. Before and after the intervention, motor cortical excitability and motor symptom severity were assessed. RESULTS PAS induced an increase in motor cortical excitability in both healthy control subjects and patients with CD. In healthy subjects this effect was attenuated by both anodal and cathodal ctDCS with a stronger effect of cathodal stimulation. In patients with CD, anodal stimulation suppressed the PAS effect, whereas cathodal stimulation had no influence on PAS. Motor symptom severity was unchanged after the intervention. CONCLUSIONS Cerebellar modulation with cathodal ctDCS had no effect on sensorimotor associative plasticity in patients with CD, in contrast with the net inhibitory effect in healthy subjects. This is further evidence that the cerebello-thalamo-cortical network plays a role in the pathophysiology of dystonia. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kai Grimm
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Prilop
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gerhard Schön
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jonas Misselhorn
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
12
|
Boven E, Cerminara NL. Cerebellar contributions across behavioural timescales: a review from the perspective of cerebro-cerebellar interactions. Front Syst Neurosci 2023; 17:1211530. [PMID: 37745783 PMCID: PMC10512466 DOI: 10.3389/fnsys.2023.1211530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Performing successful adaptive behaviour relies on our ability to process a wide range of temporal intervals with certain precision. Studies on the role of the cerebellum in temporal information processing have adopted the dogma that the cerebellum is involved in sub-second processing. However, emerging evidence shows that the cerebellum might be involved in suprasecond temporal processing as well. Here we review the reciprocal loops between cerebellum and cerebral cortex and provide a theoretical account of cerebro-cerebellar interactions with a focus on how cerebellar output can modulate cerebral processing during learning of complex sequences. Finally, we propose that while the ability of the cerebellum to support millisecond timescales might be intrinsic to cerebellar circuitry, the ability to support supra-second timescales might result from cerebellar interactions with other brain regions, such as the prefrontal cortex.
Collapse
Affiliation(s)
- Ellen Boven
- Sensory and Motor Systems Group, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
- Neural and Machine Learning Group, Bristol Computational Neuroscience Unit, Intelligent Systems Labs, School of Engineering Mathematics and Technology, Faculty of Engineering, University of Bristol, Bristol, United Kingdom
| | - Nadia L. Cerminara
- Sensory and Motor Systems Group, Faculty of Life Sciences, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
13
|
Herzog R, Bolte C, Radecke JO, von Möller K, Lencer R, Tzvi E, Münchau A, Bäumer T, Weissbach A. Neuronavigated Cerebellar 50 Hz tACS: Attenuation of Stimulation Effects by Motor Sequence Learning. Biomedicines 2023; 11:2218. [PMID: 37626715 PMCID: PMC10452137 DOI: 10.3390/biomedicines11082218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Cerebellar transcranial alternating current stimulation (tACS) is an emerging non-invasive technique that induces electric fields to modulate cerebellar function. Although the effect of cortical tACS seems to be state-dependent, the impact of concurrent motor activation and the duration of stimulation on the effects of cerebellar tACS has not yet been examined. In our study, 20 healthy subjects received neuronavigated 50 Hz cerebellar tACS for 40 s or 20 min, each during performance using a motor sequence learning task (MSL) and at rest. We measured the motor evoked potential (MEP) before and at two time points after tACS application to assess corticospinal excitability. Additionally, we investigated the online effect of tACS on MSL. Individual electric field simulations were computed to evaluate the distribution of electric fields, showing a focal electric field in the right cerebellar hemisphere with the highest intensities in lobe VIIb, VIII and IX. Corticospinal excitability was only increased after tACS was applied for 40 s or 20 min at rest, and motor activation during tACS (MSL) cancelled this effect. In addition, performance was better (shorter reaction times) for the learned sequences after 20 min of tACS, indicating more pronounced learning under 20 min of tACS compared to tACS applied only in the first 40 s.
Collapse
Affiliation(s)
- Rebecca Herzog
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Neurology, University Hospital Schleswig Holstein, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Christina Bolte
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jan-Ole Radecke
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Kathinka von Möller
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Rebekka Lencer
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
- Department of Psychiatry and Psychotherapy, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Elinor Tzvi
- Department of Neurology, Leipzig University, Liebigstraße 20, 04103 Leipzig, Germany
- Syte Institute, Hohe Bleichen 8, 20354 Hamburg, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany; (R.H.); (C.B.)
- Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
14
|
Liu B, Mao Z, Cui Z, Ling Z, Xu X, He K, Cui M, Feng Z, Yu X, Zhang Y. Cerebellar gray matter alterations predict deep brain stimulation outcomes in Meige syndrome. Neuroimage Clin 2023; 37:103316. [PMID: 36610311 PMCID: PMC9827385 DOI: 10.1016/j.nicl.2023.103316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/21/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
BACKGROUND The physiopathologic mechanism of Meige syndrome (MS) has not been clarified, and neuroimaging studies centering on cerebellar changes in MS are scarce. Moreover, even though deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been recognized as an effective surgical treatment for MS, there has been no reliable biomarker to predict its efficacy. OBJECTIVE To characterize the volumetric alterations of gray matter (GM) in the cerebellum in MS and to identify GM measurements related to a good STN-DBS outcome. METHODS We used voxel-based morphometry and lobule-based morphometry to compare the regional and lobular GM differences in the cerebellum between 47 MS patients and 52 normal human controls (HCs), as well as between 31 DBS responders and 10 DBS non-responders. Both volumetric analyses were achieved using the Spatially Unbiased Infratentorial Toolbox (SUIT). Further, we performed partial correlation analyses to probe the relationship between the cerebellar GM changes and clinical scores. Finally, we plotted the receiver operating characteristic (ROC) curve to select biomarkers for MS diagnosis and DBS outcomes prediction. RESULTS Compared to HCs, MS patients had GM atrophy in lobule Crus I, lobule VI, lobule VIIb, lobule VIIIa, and lobule VIIIb. Compared to DBS responders, DBS non-responders had lower GM volume in the left lobule VIIIb. Moreover, partial correlation analyses revealed a positive relationship between the GM volume of the significant regions/lobules and the symptom improvement rate after DBS surgery. ROC analyses demonstrated that the GM volume of the significant cluster in the left lobule VIIIb could not only distinguish MS patients from HCs but also predict the outcomes of STN-DBS surgery with high accuracy. CONCLUSION MS patients display bilateral GM shrinkage in the cerebellum relative to HCs. Regional GM volume of the left lobule VIIIb can be a reliable biomarker for MS diagnosis and DBS outcomes prediction.
Collapse
Affiliation(s)
- Bin Liu
- Medical School of Chinese PLA, Beijing, PR China; Department of Neurosurgery, Chinese PLA General Hospital, Beijing, PR China
| | - Zhiqi Mao
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, PR China
| | - Zhiqiang Cui
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, PR China
| | - Zhipei Ling
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, PR China
| | - Xin Xu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, PR China
| | - Kunyu He
- Medical School of Chinese PLA, Beijing, PR China; Department of Neurosurgery, Chinese PLA General Hospital, Beijing, PR China
| | - Mengchu Cui
- Medical School of Chinese PLA, Beijing, PR China; Department of Neurosurgery, Chinese PLA General Hospital, Beijing, PR China
| | - Zhebin Feng
- Medical School of Chinese PLA, Beijing, PR China; Department of Neurosurgery, Chinese PLA General Hospital, Beijing, PR China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, PR China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, PR China.
| | - Yanyang Zhang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing, PR China; Neurosurgery Institute, Chinese PLA General Hospital, Beijing, PR China.
| |
Collapse
|
15
|
Herzog R, Berger TM, Pauly MG, Xue H, Rueckert E, Münchau A, Bäumer T, Weissbach A. Cerebellar transcranial current stimulation – An intraindividual comparison of different techniques. Front Neurosci 2022; 16:987472. [PMID: 36188449 PMCID: PMC9521312 DOI: 10.3389/fnins.2022.987472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial current stimulation (tCS) techniques have been shown to induce cortical plasticity. As an important relay in the motor system, the cerebellum is an interesting target for plasticity induction using tCS, aiming to modulate its excitability and connectivity. However, until now it remains unclear, which is the most effective tCS method for inducing plasticity in the cerebellum. Thus, in this study, the effects of anodal transcranial direct current stimulation (tDCS), 50 Hz transcranial alternating current stimulation (50 Hz tACS), and high frequency transcranial random noise stimulation (tRNS) were compared with sham stimulation in 20 healthy subjects in a within-subject design. tCS was applied targeting the cerebellar lobe VIIIA using neuronavigation. We measured corticospinal excitability, short-interval intracortical inhibition (SICI), short-latency afferent inhibition (SAI), and cerebellar brain inhibition (CBI) and performed a sensor-based movement analysis at baseline and three times after the intervention (post1 = 15 min; post2 = 55 min; post3 = 95 min). Corticospinal excitability increased following cerebellar tACS and tRNS compared to sham stimulation. This effect was most pronounced directly after stimulation but lasted for at least 55 min after tACS. Cortico-cortical and cerebello-cortical conditioning protocols, as well as sensor-based movement analyses, did not change. Our findings suggest that cerebellar 50 Hz tACS is the most effective protocol to change corticospinal excitability.
Collapse
Affiliation(s)
- Rebecca Herzog
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Till M. Berger
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Martje G. Pauly
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
- Department of Neurology, University Hospital Schleswig Holstein, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Honghu Xue
- Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Germany
| | | | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- *Correspondence: Anne Weissbach,
| |
Collapse
|
16
|
Mirdamadi JL, Meehan SK. Specific sensorimotor interneuron circuits are sensitive to cerebellar-attention interactions. Front Hum Neurosci 2022; 16:920526. [PMID: 36061499 PMCID: PMC9437336 DOI: 10.3389/fnhum.2022.920526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Short latency afferent inhibition (SAI) provides a method to investigate mechanisms of sensorimotor integration. Cholinergic involvement in the SAI phenomena suggests that SAI may provide a marker of cognitive influence over implicit sensorimotor processes. Consistent with this hypothesis, we previously demonstrated that visual attention load suppresses SAI circuits preferentially recruited by anterior-to-posterior (AP)-, but not posterior-to-anterior (PA)-current induced by transcranial magnetic stimulation. However, cerebellar modulation can also modulate these same AP-sensitive SAI circuits. Yet, the consequences of concurrent cognitive and implicit cerebellar influences over these AP circuits are unknown.Objective: We used cerebellar intermittent theta-burst stimulation (iTBS) to determine whether the cerebellar modulation of sensory to motor projections interacts with the attentional modulation of sensory to motor circuits probed by SAI.Methods: We assessed AP-SAI and PA-SAI during a concurrent visual detection task of varying attention load before and after cerebellar iTBS.Results: Before cerebellar iTBS, a higher visual attention load suppressed AP-SAI, but not PA-SAI, compared to a lower visual attention load. Post-cerebellar iTBS, the pattern of AP-SAI in response to visual attention load, was reversed; a higher visual attention load enhanced AP-SAI compared to a lower visual attention load. Cerebellar iTBS did not affect PA-SAI regardless of visual attention load.Conclusion: These findings suggest that attention and cerebellar networks converge on overlapping AP-sensitive circuitry to influence motor output by controlling the strength of the afferent projections to the motor cortex. This interaction has important implications for understanding the mechanisms of motor performance and learning.
Collapse
Affiliation(s)
- Jasmine L. Mirdamadi
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Sean K. Meehan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Sean K. Meehan
| |
Collapse
|
17
|
Aïssa HB, Sala RW, Georgescu Margarint EL, Frontera JL, Varani AP, Menardy F, Pelosi A, Hervé D, Léna C, Popa D. Functional abnormalities in the cerebello-thalamic pathways in a mouse model of DYT25 dystonia. eLife 2022; 11:79135. [PMID: 35699413 PMCID: PMC9197392 DOI: 10.7554/elife.79135] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 11/18/2022] Open
Abstract
Dystonia is often associated with functional alterations in the cerebello-thalamic pathways, which have been proposed to contribute to the disorder by propagating pathological firing patterns to the forebrain. Here, we examined the function of the cerebello-thalamic pathways in a model of DYT25 dystonia. DYT25 (Gnal+/−) mice carry a heterozygous knockout mutation of the Gnal gene, which notably disrupts striatal function, and systemic or striatal administration of oxotremorine to these mice triggers dystonic symptoms. Our results reveal an increased cerebello-thalamic excitability in the presymptomatic state. Following the first dystonic episode, Gnal+/- mice in the asymptomatic state exhibit a further increase of the cerebello-thalamo-cortical excitability, which is maintained after θ-burst stimulations of the cerebellum. When administered in the symptomatic state induced by a cholinergic activation, these stimulations decreased the cerebello-thalamic excitability and reduced dystonic symptoms. In agreement with dystonia being a multiregional circuit disorder, our results suggest that the increased cerebello-thalamic excitability constitutes an early endophenotype, and that the cerebellum is a gateway for corrective therapies via the depression of cerebello-thalamic pathways.
Collapse
Affiliation(s)
- Hind Baba Aïssa
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Romain W Sala
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Elena Laura Georgescu Margarint
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Jimena Laura Frontera
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Andrés Pablo Varani
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Fabien Menardy
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Assunta Pelosi
- Inserm UMR-S 1270, Paris, France.,Sorbonne Université, Sciences and Technology Faculty, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Denis Hervé
- Inserm UMR-S 1270, Paris, France.,Sorbonne Université, Sciences and Technology Faculty, Paris, France.,Institut du Fer à Moulin, Paris, France
| | - Clément Léna
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Daniela Popa
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, Paris, France
| |
Collapse
|
18
|
Coutant B, Frontera JL, Perrin E, Combes A, Tarpin T, Menardy F, Mailhes-Hamon C, Perez S, Degos B, Venance L, Léna C, Popa D. Cerebellar stimulation prevents Levodopa-induced dyskinesia in mice and normalizes activity in a motor network. Nat Commun 2022; 13:3211. [PMID: 35680891 PMCID: PMC9184492 DOI: 10.1038/s41467-022-30844-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/23/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic Levodopa therapy, the gold-standard treatment for Parkinson's Disease (PD), leads to the emergence of involuntary movements, called levodopa-induced dyskinesia (LID). Cerebellar stimulation has been shown to decrease LID severity in PD patients. Here, in order to determine how cerebellar stimulation induces LID alleviation, we performed daily short trains of optogenetic stimulations of Purkinje cells (PC) in freely moving LID mice. We demonstrated that these stimulations are sufficient to suppress LID or even prevent their development. This symptomatic relief is accompanied by the normalization of aberrant neuronal discharge in the cerebellar nuclei, the motor cortex and the parafascicular thalamus. Inhibition of the cerebello-parafascicular pathway counteracted the beneficial effects of cerebellar stimulation. Moreover, cerebellar stimulation reversed plasticity in D1 striatal neurons and normalized the overexpression of FosB, a transcription factor causally linked to LID. These findings demonstrate LID alleviation and prevention by daily PC stimulations, which restore the function of a wide motor network, and may be valuable for LID treatment.
Collapse
Affiliation(s)
- Bérénice Coutant
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Jimena Laura Frontera
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Elodie Perrin
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Adèle Combes
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Thibault Tarpin
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Fabien Menardy
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Caroline Mailhes-Hamon
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France
| | - Sylvie Perez
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Bertrand Degos
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Laurent Venance
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, Université PSL, Paris, France
| | - Clément Léna
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.
| | - Daniela Popa
- Neurophysiology of Brain Circuits Team, Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Research University, 75005, Paris, France.
| |
Collapse
|
19
|
Kolmančič K, Zupančič NK, Trošt M, Flisar D, Kramberger MG, Pirtošek Z, Kojović M. Continuous Dopaminergic Stimulation Improves Cortical Maladaptive Changes in Advanced Parkinson's Disease. Mov Disord 2022; 37:1465-1473. [PMID: 35436354 DOI: 10.1002/mds.29028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/10/2022] [Accepted: 03/27/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND With the progression of Parkinson's disease (PD), pulsatile treatment with oral levodopa causes maladaptive changes within basal ganglia-thalamo-cortical circuits, which are clinically expressed as motor fluctuations and dyskinesias. At the level of the motor cortex, these changes may be detected using transcranial magnetic stimulation (TMS), as abnormal corticospinal and intracortical excitability and absent response to plasticity protocols. OBJECTIVE We investigated the effect of continuous dopaminergic stimulation on cortical maladaptive changes related to oral levodopa treatment. METHODS Twenty patients with advanced PD were tested using TMS within 1 week before and again 6 months after the introduction of levodopa-carbidopa intestinal gel. We measured resting and active motor thresholds, input/output curve, short interval intracortical inhibition curve, cortical silent period, and response to intermittent theta burst stimulation. Patients were clinically assessed with Part III and Part IV of the Movement Disorders Society Unified Parkinson's Disease Rating Scale. RESULTS Six months after the introduction of levodopa-carbidopa intestinal gel, motor fluctuations scores (P = 0.001) and dyskinesias scores (P < 0.001) were reduced. Resting and active motor threshold (P = 0.012 and P = 0.015) and x-intercept of input/output curve (P = 0.005) were also decreased, while short-interval intracortical inhibition and response to intermittent theta bust stimulation were improved (P = 0.026 and P = 0.031, respectively). Changes in these parameters correlated with clinical improvement. CONCLUSIONS In patients with advanced PD, switching from intermittent to continuous levodopa delivery increased corticospinal excitability and improved deficient intracortical inhibition and abnormal motor cortex plasticity, along with amelioration of motor fluctuations and dyskinesias. Continuous dopaminergic stimulation ameliorates maladaptive changes inflicted by chronic pulsatile dopaminergic stimulation. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Kaja Kolmančič
- Department of Nuclear Medicine, University Clinical Centre, Ljubljana, Slovenia.,Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| | - Nina K Zupančič
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| | - Maja Trošt
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Dušan Flisar
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| | - Milica G Kramberger
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Zvezdan Pirtošek
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia.,Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Kojović
- Department of Neurology, University Clinical Centre, Ljubljana, Slovenia
| |
Collapse
|
20
|
Cerebellar noninvasive neuromodulation influences the reactivity of the contralateral primary motor cortex and surrounding areas: a TMS-EMG-EEG study. CEREBELLUM (LONDON, ENGLAND) 2022; 22:319-331. [PMID: 35355218 DOI: 10.1007/s12311-022-01398-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
Abstract
Understanding cerebellar-cortical physiological interactions is of fundamental importance to advance the efficacy of neurorehabilitation strategies for patients with cerebellar damage. Previous works have aimed to modulate this pathway by applying transcranial electrical or magnetic stimulation (TMS) over the cerebellum and probing the resulting changes in the primary motor cortex (M1) excitability with motor-evoked potentials (MEPs). While these protocols produce changes in cerebellar excitability, their ability to modulate MEPs has produced inconsistent results, mainly due to the MEP being a highly variable outcome measure that is susceptible to fluctuations in the excitability of M1 neurons and spinal interneurons. To overcome this limitation, we combined TMS with electroencephalography (EEG) to directly record TMS-evoked potentials (TEPs) and oscillations from the scalp. In three sessions, we applied intermittent theta-burst stimulation (iTBS), cathodal direct current stimulation (c-DC) or sham stimulation to modulate cerebellar activity. To assess the effects on M1 and nearby cortex, we recorded TMS-EEG and MEPs before, immediately after (T1) and 15 min (T2) following cerebellar neuromodulation. We found that cerebellar iTBS immediately increased TMS-induced alpha oscillations and produced lasting facilitatory effects on TEPs, whereas c-DC immediately decreased TMS-induced alpha oscillations and reduced TEPs. We also found increased MEP following iTBS but not after c-DC. All of the TMS-EEG measures showed high test-retest repeatability. Overall, this work importantly shows that cerebellar neuromodulation influences both cortical and corticospinal physiological measures; however, they are more pronounced and detailed when utilizing TMS-EEG outcome measures. These findings highlight the advantage of using TMS-EEG over MEPs when assessing the effects of neuromodulation.
Collapse
|
21
|
Asan AS, McIntosh JR, Carmel JB. Targeting Sensory and Motor Integration for Recovery of Movement After CNS Injury. Front Neurosci 2022; 15:791824. [PMID: 35126040 PMCID: PMC8813971 DOI: 10.3389/fnins.2021.791824] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 12/27/2021] [Indexed: 12/18/2022] Open
Abstract
The central nervous system (CNS) integrates sensory and motor information to acquire skilled movements, known as sensory-motor integration (SMI). The reciprocal interaction of the sensory and motor systems is a prerequisite for learning and performing skilled movement. Injury to various nodes of the sensorimotor network causes impairment in movement execution and learning. Stimulation methods have been developed to directly recruit the sensorimotor system and modulate neural networks to restore movement after CNS injury. Part 1 reviews the main processes and anatomical interactions responsible for SMI in health. Part 2 details the effects of injury on sites critical for SMI, including the spinal cord, cerebellum, and cerebral cortex. Finally, Part 3 reviews the application of activity-dependent plasticity in ways that specifically target integration of sensory and motor systems. Understanding of each of these components is needed to advance strategies targeting SMI to improve rehabilitation in humans after injury.
Collapse
Affiliation(s)
| | | | - Jason B. Carmel
- Departments of Neurology and Orthopedics, Columbia University, New York, NY, United States
| |
Collapse
|
22
|
Fang TC, Chen CM, Chang MH, Wu CH, Guo YJ. Altered Functional Connectivity and Sensory Processing in Blepharospasm and Hemifacial Spasm: Coexistence and Difference. Front Neurol 2022; 12:759869. [PMID: 34975723 PMCID: PMC8715087 DOI: 10.3389/fneur.2021.759869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/23/2021] [Indexed: 01/12/2023] Open
Abstract
Background: Blepharospasm (BSP) and hemifacial spasm (HFS) are both facial hyperkinesia however BSP is thought to be caused by maladaptation in multiple brain regions in contrast to the peripherally induced cause in HFS. Plausible coexisting pathophysiologies between these two distinct diseases have been proposed. Objectives: In this study, we compared brain resting state functional connectivity (rsFC) and quantitative thermal test (QTT) results between patients with BSP, HFS and heathy controls (HCs). Methods: This study enrolled 12 patients with BSP, 11 patients with HFS, and 15 HCs. All subjects received serial neuropsychiatric evaluations, questionnaires determining disease severity and functional impairment, QTT, and resting state functional MRI. Image data were acquired using seed-based analyses using the CONN toolbox. Results: A higher cold detection threshold was found in the BSP and HFS patients compared to the HCs. The BSP and HFS patients had higher rsFC between the anterior cerebellum network and left occipital regions compared to the HCs. In all subjects, impaired cold detection threshold in the QTT of lower extremities had a correlation with higher rsFC between the anterior cerebellar network and left lingual gyrus. Compared to the HCs, increased rsFC in right postcentral gyrus in the BSP patients and decreased rsFC in the right amygdala and frontal orbital cortex in the HFS subjects were revealed when the anterior cerebellar network was used as seed. Conclusions: Dysfunction of sensory processing detected by the QTT is found in the BSP and HSP patients. Altered functional connectivity between the anterior cerebellar network and left occipital region, especially the Brodmann area 19, may indicate the possibility of shared pathophysiology among BSP, HFS, and impaired cold detection threshold. Further large-scale longitudinal study is needed for testing this theory in the future.
Collapse
Affiliation(s)
- Ting-Chun Fang
- Department of Neurology, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Chun-Ming Chen
- Department of Medical Imaging, China Medical University Hospital, Taichung City, Taiwan
| | - Ming-Hong Chang
- Department of Neurology, Taichung Veterans General Hospital, Taichung City, Taiwan.,College of Life Science, National Chung Hsing University, Taichung City, Taiwan
| | - Chen-Hao Wu
- Department of Radiology, Taichung Veterans General Hospital, Taichung City, Taiwan
| | - Yi-Jen Guo
- Department of Neurology, Taichung Veterans General Hospital, Taichung City, Taiwan
| |
Collapse
|
23
|
Wang X, Novello M, Gao Z, Ruigrok TJH, De Zeeuw CI. Input and output organization of the mesodiencephalic junction for cerebro-cerebellar communication. J Neurosci Res 2021; 100:620-637. [PMID: 34850425 PMCID: PMC9300004 DOI: 10.1002/jnr.24993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 12/18/2022]
Abstract
Most studies investigating the impact of the cerebral cortex (CC) onto the cerebellum highlight the role of the pons, which provides the mossy fibers to the cerebellum. However, cerebro‐cerebellar communication may also be mediated by the nuclei of the mesodiencephalic junction (MDJ) that project to the inferior olive (IO), which in turn provides the climbing fibers to the molecular layer. Here, we uncover the precise topographic relations of the inputs and outputs of the MDJ using multiple, classical, and transneuronal tracing methods as well as analyses of mesoscale cortical injections from Allen Mouse Brain. We show that the caudal parts of the CC predominantly project to the principal olive via the rostral MDJ and that the rostral parts of the CC predominantly project to the rostral medial accessory olive via the caudal MDJ. Moreover, using triple viral tracing technology, we show that the cerebellar nuclei directly innervate the neurons in the MDJ that receive input from CC and project to the IO. By unraveling these topographic and prominent, mono‐ and disynaptic projections through the MDJ, this work establishes that cerebro‐cerebellar communication is not only mediated by the pontine mossy fiber system, but also by the climbing fiber system.
Collapse
Affiliation(s)
- Xiaolu Wang
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.,Netherlands Institute for Neuroscience, Royal Dutch Academy of Arts & Science, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Kishore A, James P, Popa T, Thejaus A, Rajeswari P, Sarma G, Krishnan S, Meunier S. Plastic responsiveness of motor cortex to paired associative stimulation depends on cerebellar input. Clin Neurophysiol 2021; 132:2493-2502. [PMID: 34454278 DOI: 10.1016/j.clinph.2021.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/06/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The extent of plastic responses of motor cortex (M1) to paired associative stimulation (PAS) varies among healthy subjects. Continuous theta-burst stimulation (cTBS) of cerebellum enhances the mean PAS-induced plasticity in groups of healthy subjects. We tested whether the initial status of Responder or Non -Responder to PAS, influenced the effect of cerebellar stimulation on PAS-induced plasticity. METHODS We assessed in 19 young healthy volunteers (8 Responders, 11 Non-Responders to PAS), how cTBS and iTBS (intermittent TBS) applied to the cerebellum before a PAS protocol influenced the plastic responsiveness of M1 to PAS. We tested whether the PAS-induced plastic effects could be depotentiated by a short cTBS protocol applied to M1 shortly after PAS and whether cerebellar stimulation influenced GABA-ergic intracortical inhibition and M1 plasticity in parallel. RESULTS Cerebellar cTBS restored the M1 response to PAS in Non-Responders while cerebellar iTBS turned the potentiating response to PAS to a depressive response in both groups. The depotentiation protocol abolished both responses. CONCLUSION Non-Responder status to PAS is a state of M1 amenable to bidirectional plastic modulation when primed by a change in cerebello-thalamic drive. SIGNIFICANCE The meaning of lack of responsiveness to certain protocols probing plasticity should be reconsidered.
Collapse
Affiliation(s)
- Asha Kishore
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India.
| | - Praveen James
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL), 1202 Geneva, Switzerland; Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Swiss Federal Institute of Technology (EPFL Valais), Clinique Romande de Réadaptation, 1951 Sion, Switzerland
| | - Arun Thejaus
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Parvathy Rajeswari
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Gangadhara Sarma
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Syam Krishnan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology (SCTIMST), Kerala, India
| | - Sabine Meunier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMRS 1127, Institut du Cerveau et de la Moelleépinière, ICM, F-75013 Paris, France
| |
Collapse
|
25
|
Altered motor cortical plasticity in patients with hepatic encephalopathy: A paired associative stimulation study. Clin Neurophysiol 2021; 132:2332-2341. [PMID: 34454259 DOI: 10.1016/j.clinph.2021.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatic encephalopathy (HE) is a potentially reversible brain dysfunction caused by liver failure. Altered synaptic plasticity is supposed to play a major role in the pathophysiology of HE. Here, we used paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), a transcranial magnetic stimulation (TMS) protocol, to test synaptic plasticity of the motor cortex in patients with manifest HE. METHODS 23 HE-patients and 23 healthy controls were enrolled in the study. Motor evoked potential (MEP) amplitudes were assessed as measure for cortical excitability. Time courses of MEP amplitude changes after the PAS25 intervention were compared between both groups. RESULTS MEP-amplitudes increased after PAS25 in the control group, indicating PAS25-induced synaptic plasticity in healthy controls, as expected. In contrast, MEP-amplitudes within the HE group did not change and were lower than in the control group, indicating no induction of plasticity. CONCLUSIONS Our study revealed reduced synaptic plasticity of the primary motor cortex in HE. SIGNIFICANCE Reduced synaptic plasticity in HE provides a link between pathological changes on the molecular level and early clinical symptoms of the disease. This decrease may be caused by disturbances in the glutamatergic neurotransmission due to the known hyperammonemia in HE patients.
Collapse
|
26
|
Opie GM, Liao WY, Semmler JG. Interactions Between Cerebellum and the Intracortical Excitatory Circuits of Motor Cortex: a Mini-Review. CEREBELLUM (LONDON, ENGLAND) 2021; 21:159-166. [PMID: 33978934 DOI: 10.1007/s12311-021-01278-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 12/28/2022]
Abstract
Interactions between cerebellum (CB) and primary motor cortex (M1) are critical for effective motor function. Although the associated neurophysiological processes are yet to be fully characterised, a growing body of work using non-invasive brain stimulation (NIBS) techniques has significantly progressed our current understanding. In particular, recent developments with both transcranial magnetic (TMS) and direct current (tDCS) stimulation suggest that CB modulates the activity of local excitatory interneuronal circuits within M1. These circuits are known to be important both physiologically and functionally, and understanding the nature of their connectivity with CB therefore has the potential to provide important insight for NIBS applications. Consequently, this mini-review provides an overview of the emerging literature that has investigated interactions between CB and the intracortical excitatory circuits of M1.
Collapse
Affiliation(s)
- George M Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Wei-Yeh Liao
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - John G Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
27
|
Mirdamadi JL, Block HJ. Somatosensory versus cerebellar contributions to proprioceptive changes associated with motor skill learning: A theta burst stimulation study. Cortex 2021; 140:98-109. [PMID: 33962318 DOI: 10.1016/j.cortex.2021.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 11/22/2020] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND It is well established that proprioception (position sense) is important for motor control, yet its role in motor learning and associated plasticity is not well understood. We previously demonstrated that motor skill learning is associated with enhanced proprioception and changes in sensorimotor neurophysiology. However, the neural substrates mediating these effects are unclear. OBJECTIVE To determine whether suppressing activity in the cerebellum and somatosensory cortex (S1) affects proprioceptive changes associated with motor skill learning. METHODS 54 healthy young adults practiced a skill involving visually-guided 2D reaching movements through an irregular-shaped track using a robotic manipulandum with their right hand. Proprioception was measured using a passive two-alternative choice task before and after motor practice. Continuous theta burst stimulation (cTBS) was delivered over S1 or the cerebellum (CB) at the end of training for two consecutive days. We compared group differences (S1, CB, Sham) in proprioception and motor skill, quantified by a speed-accuracy function, measured on a third consecutive day (retention). RESULTS As shown previously, the Sham group demonstrated enhanced proprioceptive sensitivity after training and at retention. The S1 group had impaired proprioceptive function at retention through online changes during practice, whereas the CB group demonstrated offline decrements in proprioceptive function. All groups demonstrated motor skill learning. However, the magnitude of learning differed between the CB and Sham groups, consistent with a role for the cerebellum in motor learning. CONCLUSION Overall, these findings suggest that the cerebellum and S1 are important for distinct aspects of proprioceptive changes during skill learning.
Collapse
Affiliation(s)
- Jasmine L Mirdamadi
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| | - Hannah J Block
- Program in Neuroscience, Indiana University, Bloomington, IN, USA; Department of Kinesiology, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
28
|
Billeri L, Naro A. A narrative review on non-invasive stimulation of the cerebellum in neurological diseases. Neurol Sci 2021; 42:2191-2209. [PMID: 33759055 DOI: 10.1007/s10072-021-05187-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022]
Abstract
IMPORTANCE The cerebellum plays an important role in motor, cognitive, and affective functions owing to its dense interconnections with basal ganglia and cerebral cortex. This review aimed at summarizing the non-invasive cerebellar stimulation (NICS) approaches used to modulate cerebellar output and treat cerebellar dysfunction in the motor domain. OBSERVATION The utility of NICS in the treatment of cerebellar and non-cerebellar neurological diseases (including Parkinson's disease, dementia, cerebellar ataxia, and stroke) is discussed. NICS induces meaningful clinical effects from repeated sessions alone in both cerebellar and non-cerebellar diseases. However, there are no conclusive data on this issue and several concerns need to be still addressed before NICS could be considered a valuable, standard therapeutic tool. CONCLUSIONS AND RELEVANCE Even though some challenges must be overcome to adopt NICS in a wider clinical setting, this tool might become a useful strategy to help patients with lesions in the cerebellum and cerebral areas that are connected with the cerebellum whether one could enhance cerebellar activity with the intention of facilitating the cerebellum and the entire, related network, rather than attempting to facilitate a partially damaged cortical region or inhibiting the homologs' contralateral area. The different outcome of each approach would depend on the residual functional reserve of the cerebellum, which is confirmed as a critical element to be probed preliminary in order to define the best patient-tailored NICS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, SS113, Ctr. Casazza, 98124, Messina, Italy.
| |
Collapse
|
29
|
Pauly MG, Steinmeier A, Bolte C, Hamami F, Tzvi E, Münchau A, Bäumer T, Weissbach A. Cerebellar rTMS and PAS effectively induce cerebellar plasticity. Sci Rep 2021; 11:3070. [PMID: 33542291 PMCID: PMC7862239 DOI: 10.1038/s41598-021-82496-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/30/2020] [Indexed: 12/22/2022] Open
Abstract
Non-invasive brain stimulation techniques including repetitive transcranial magnetic stimulation (rTMS), continuous theta-burst stimulation (cTBS), paired associative stimulation (PAS), and transcranial direct current stimulation (tDCS) have been applied over the cerebellum to induce plasticity and gain insights into the interaction of the cerebellum with neo-cortical structures including the motor cortex. We compared the effects of 1 Hz rTMS, cTBS, PAS and tDCS given over the cerebellum on motor cortical excitability and interactions between the cerebellum and dorsal premotor cortex / primary motor cortex in two within subject designs in healthy controls. In experiment 1, rTMS, cTBS, PAS, and tDCS were applied over the cerebellum in 20 healthy subjects. In experiment 2, rTMS and PAS were compared to sham conditions in another group of 20 healthy subjects. In experiment 1, PAS reduced cortical excitability determined by motor evoked potentials (MEP) amplitudes, whereas rTMS increased motor thresholds and facilitated dorsal premotor-motor and cerebellum-motor cortex interactions. TDCS and cTBS had no significant effects. In experiment 2, MEP amplitudes increased after rTMS and motor thresholds following PAS. Analysis of all participants who received rTMS and PAS showed that MEP amplitudes were reduced after PAS and increased following rTMS. rTMS also caused facilitation of dorsal premotor-motor cortex and cerebellum-motor cortex interactions. In summary, cerebellar 1 Hz rTMS and PAS can effectively induce plasticity in cerebello-(premotor)-motor pathways provided larger samples are studied.
Collapse
Affiliation(s)
- Martje G Pauly
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.,Department of Neurology, University Hospital Schleswig Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Annika Steinmeier
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Christina Bolte
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Feline Hamami
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Elinor Tzvi
- Department of Neurology, University of Leipzig, Liebigstraße 20, 04103, Leipzig, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Tobias Bäumer
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany
| | - Anne Weissbach
- Institute of Systems Motor Science, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany. .,Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, 23562, Lübeck, Germany.
| |
Collapse
|
30
|
Alibazi RJ, Pearce AJ, Rostami M, Frazer AK, Brownstein C, Kidgell DJ. Determining the Intracortical Responses After a Single Session of Aerobic Exercise in Young Healthy Individuals: A Systematic Review and Best Evidence Synthesis. J Strength Cond Res 2021; 35:562-575. [PMID: 33201155 DOI: 10.1519/jsc.0000000000003884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Alibazi, RJ, Pearce, AJ, Rostami, M, Frazer, AK, Brownstein, C, and Kidgell, DJ. Determining the intracortical responses after a single session of aerobic exercise in young healthy individuals: a systematic review and best evidence synthesis. J Strength Cond Res 35(2): 562-575, 2021-A single bout of aerobic exercise (AE) may induce changes in the excitability of the intracortical circuits of the primary motor cortex (M1). Similar to noninvasive brain stimulation techniques, such as transcranial direct current stimulation, AE could be used as a priming technique to facilitate motor learning. This review examined the effect of AE on modulating intracortical excitability and inhibition in human subjects. A systematic review, according to PRISMA guidelines, identified studies by database searching, hand searching, and citation tracking between inception and the last week of February 2020. Methodological quality of included studies was determined using the Downs and Black quality index and Cochrane Collaboration of risk of bias tool. Data were synthesized and analyzed using best-evidence synthesis. There was strong evidence for AE not to change corticospinal excitability and conflicting evidence for increasing intracortical facilitation and reducing silent period and long-interval cortical inhibition. Aerobic exercise did reduce short-interval cortical inhibition, which suggests AE modulates the excitability of the short-latency inhibitory circuits within the M1; however, given the small number of included studies, it remains unclear how AE affects all circuits. In light of the above, AE may have important implications during periods of rehabilitation, whereby priming AE could be used to facilitate motor learning.
Collapse
Affiliation(s)
- Razie J Alibazi
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne, Victoria, Australia
| | - Mohamad Rostami
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran; and
| | - Ashlyn K Frazer
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| | - Callum Brownstein
- University of Lyon, University Jean Monnet Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France
| | - Dawson J Kidgell
- Non-invasive Brain Stimulation & Neuroplasticity Laboratory, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
31
|
de Faria DD, Paulo AJM, Balardin J, Sato JR, Junior EA, Baltazar CA, Lucca RPD, Borges V, Silva SMCA, Ferraz HB, de Carvalho Aguiar P. Task-related brain activity and functional connectivity in upper limb dystonia: a functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS) study. NEUROPHOTONICS 2020; 7:045004. [PMID: 33094125 PMCID: PMC7569470 DOI: 10.1117/1.nph.7.4.045004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Significance: Dystonia is a dynamic and complex disorder. Real-time analysis of brain activity during motor tasks may increase our knowledge on its pathophysiology. Functional near-infrared spectroscopy (fNIRS) is a noninvasive method that enables the measurement of cortical hemodynamic activity in unconstrained environments. Aim: We aimed to explore the feasibility of using fNIRS for the study of task-related brain activity in dystonia. Task-related functional magnetic resonance imaging (fMRI) and resting-state functional connectivity were also analyzed. Approach: Patients with idiopathic right-upper limb dystonia and controls were assessed through nonsimultaneous fMRI and fNIRS during a finger-tapping task. Seed-based connectivity analysis of resting-state fMRI was performed in both groups. Results: The fMRI results suggest nonspecific activation of the cerebellum and occipital lobe in dystonia patients during the finger-tapping task with the affected hand. Moreover, fNIRS data show lower activation in terms of oxyhemoglobin and total hemoglobin in the frontal, ipsilateral cortex, and somatosensory areas during this task. In dystonia, both fMRI and fNIRS data resulted in hypoactivation of the frontal cortex during finger tapping with both hands simultaneously. Resting-state functional connectivity analysis suggests that the cerebellar somatomotor network in dystonia has an increased correlation with the medial prefrontal cortex and the paracingulate gyrus. Conclusions: These data suggest that unbalanced activation of the cerebellum, somatosensory, and frontal cortical areas are associated with dystonia. To our knowledge, this is the first study using fNIRS to explore the pathophysiology of dystonia. We show that fNIRS and fMRI are complementary methods and highlight the potential of fNIRS for the study of dystonia and other movement disorders as it can overcome movement restrictions, enabling experiments in more naturalistic conditions.
Collapse
Affiliation(s)
- Danilo Donizete de Faria
- Hospital Israelita Albert Einstein, Instituto de Ensino e Pesquisa, São Paulo, SP, Brazil
- Universidade Federal de São Paulo, Department of Neurology and Neurosurgery, R. Pedro de Toledo, São Paulo, SP, Brazil
- Hospital do Servidor Público Estadual, Vila Clementino, São Paulo, SP, Brazil
| | - Artur José Marques Paulo
- Hospital Israelita Albert Einstein, Instituto de Ensino e Pesquisa, São Paulo, SP, Brazil
- Universidade Federal do ABC, Centro de Matemática, Computação e Cognição Av. dos Estados, Bangú, Santo André, SP, Brazil
| | - Joana Balardin
- Hospital Israelita Albert Einstein, Instituto de Ensino e Pesquisa, São Paulo, SP, Brazil
| | - João Ricardo Sato
- Universidade Federal do ABC, Centro de Matemática, Computação e Cognição Av. dos Estados, Bangú, Santo André, SP, Brazil
| | - Edson Amaro Junior
- Hospital Israelita Albert Einstein, Instituto de Ensino e Pesquisa, São Paulo, SP, Brazil
| | - Carlos Arruda Baltazar
- Hospital Israelita Albert Einstein, Instituto de Ensino e Pesquisa, São Paulo, SP, Brazil
| | | | - Vanderci Borges
- Universidade Federal de São Paulo, Department of Neurology and Neurosurgery, R. Pedro de Toledo, São Paulo, SP, Brazil
| | - Sonia Maria Cesar Azevedo Silva
- Universidade Federal de São Paulo, Department of Neurology and Neurosurgery, R. Pedro de Toledo, São Paulo, SP, Brazil
- Hospital do Servidor Público Estadual, Vila Clementino, São Paulo, SP, Brazil
| | - Henrique Ballalai Ferraz
- Universidade Federal de São Paulo, Department of Neurology and Neurosurgery, R. Pedro de Toledo, São Paulo, SP, Brazil
| | - Patrícia de Carvalho Aguiar
- Hospital Israelita Albert Einstein, Instituto de Ensino e Pesquisa, São Paulo, SP, Brazil
- Universidade Federal de São Paulo, Department of Neurology and Neurosurgery, R. Pedro de Toledo, São Paulo, SP, Brazil
| |
Collapse
|
32
|
Brihmat N, Loubinoux I, Castel-Lacanal E, Marque P, Gasq D. Kinematic parameters obtained with the ArmeoSpring for upper-limb assessment after stroke: a reliability and learning effect study for guiding parameter use. J Neuroeng Rehabil 2020; 17:130. [PMID: 32993695 PMCID: PMC7523068 DOI: 10.1186/s12984-020-00759-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/10/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND After stroke, kinematic measures obtained with non-robotic and robotic devices are highly recommended to precisely quantify the sensorimotor impairments of the upper-extremity and select the most relevant therapeutic strategies. Although the ArmeoSpring exoskeleton has demonstrated its effectiveness in stroke motor rehabilitation, its interest as an assessment tool has not been sufficiently documented. The aim of this study was to investigate the psychometric properties of selected kinematic parameters obtained with the ArmeoSpring in post-stroke patients. METHODS This study involved 30 post-stroke patients (mean age = 54.5 ± 16.4 years; time post-stroke = 14.7 ± 26.7 weeks; Upper-Extremity Fugl-Meyer Score (UE-FMS) = 40.7 ± 14.5/66) who participated in 3 assessment sessions, each consisting of 10 repetitions of the 'horizontal catch' exercise. Five kinematic parameters (task and movement time, hand path ratio, peak velocity, number of peak velocity) and a global Score were computed from raw ArmeoSpring' data. Learning effect and retention were analyzed using a 2-way repeated-measures ANOVA, and reliability was investigated using the intra-class correlation coefficient (ICC) and minimal detectable change (MDC). RESULTS We observed significant inter- and intra-session learning effects for most parameters except peak velocity. The measures performed in sessions 2 and 3 were significantly different from those of session 1. No additional significant difference was observed after the first 6 trials of each session and successful retention was also highlighted for all the parameters. Relative reliability was moderate to excellent for all the parameters, and MDC values expressed in percentage ranged from 42.6 to 102.8%. CONCLUSIONS After a familiarization session, the ArmeoSpring can be used to reliably and sensitively assess motor impairment and intervention effects on motor learning processes after a stroke. Trial registration The study was approved by the local hospital ethics committee in September 2016 and was registered under number 05-0916.
Collapse
Affiliation(s)
- Nabila Brihmat
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Evelyne Castel-Lacanal
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Physical and Rehabilitation Medicine, University Hospital of Toulouse, Toulouse, France
| | - Philippe Marque
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France.,Department of Physical and Rehabilitation Medicine, University Hospital of Toulouse, Toulouse, France
| | - David Gasq
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France. .,Department of Physiological Explorations, University Hospital of Toulouse, Toulouse, France. .,Service des Explorations Fonctionnelles Physiologiques, Hôpital Rangueil, 1 Avenue du Pr Poulhes, 31059, Toulouse, France.
| |
Collapse
|
33
|
Hurtado-Puerto AM, Nestor K, Eldaief M, Camprodon JA. Safety Considerations for Cerebellar Theta Burst Stimulation. Clin Ther 2020; 42:1169-1190.e1. [PMID: 32674957 DOI: 10.1016/j.clinthera.2020.06.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE The cerebellum is an intricate neural structure that orchestrates various cognitive and behavioral functions. In recent years, there has been an increasing interest in neuromodulation of the cerebellum with transcranial magnetic stimulation (TMS) for therapeutic and basic science applications. Theta burst stimulation (TBS) is an efficient and powerful TMS protocol that is able to induce longer-lasting effects with shorter stimulation times compared with traditional TMS. Parameters for cerebellar TBS are traditionally framed in the bounds of TBS to the cerebral cortex, even when the 2 have distinct histologic, anatomical, and functional characteristics. Tolerability limits have not been systematically explored in the literature for this specific application. Therefore, we aimed to determine the stimulation parameters that have been used for cerebellar. TBS to date and evaluate adverse events and adverse effects related to stimulation parameters. METHODS We used PubMed to perform a critical review of the literature based on a systematic review of original research studies published between September 2008 and November 2019 that reported on cerebellar TBS. We recovered information from these publications and communication with authors about the stimulation parameters used and the occurrence of adverse events. FINDINGS We identified 61 research articles on interventions of TBS to the cerebellum. These articles described 3176 active sessions of cerebellar TBS in 1203 individuals, including healthy participants and patients with various neurologic conditions, including brain injuries. Some studies used substantial doses (eg, pulse intensity and number of pulses) in short periods. No serious adverse events were reported. The specific number of patients who experienced adverse events was established for 48 studies. The risk of an adverse event in this population (n = 885) was 4.1%. Adverse events consisted mostly of discomfort attributable to involuntary muscle contractions. Authors used a variety of methods for calculating stimulation dosages, ranging from the long-established reference of electromyography of a hand muscle to techniques that atone for some of the differences between cerebrum and cerebellum. IMPLICATIONS No serious adverse events have been reported for cerebellar TBS. There is no substantial evidence of a tolerable maximal-efficacy stimulation dose in humans. There is no assurance of equivalence in the translation of cortical excitability and stimulation intensities from the cerebral cortex to cerebellar regions. Further research for the stimulation dose in cerebellar TBS is warranted, along with consistent report of adverse events. © 2020 Elsevier HS Journals, Inc.
Collapse
Affiliation(s)
- Aura M Hurtado-Puerto
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Centro de Estudios Cerebrales, Facultad de Ciencias, Universidad del Valle, Cali, Colombia.
| | - Kimberly Nestor
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark Eldaief
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Joan A Camprodon
- Laboratory of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
34
|
Opie GM, Semmler JG. Characterising the influence of cerebellum on the neuroplastic modulation of intracortical motor circuits. PLoS One 2020; 15:e0236005. [PMID: 32649711 PMCID: PMC7351163 DOI: 10.1371/journal.pone.0236005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/19/2020] [Indexed: 11/19/2022] Open
Abstract
The cerebellum (CB) has extensive connections with both cortical and subcortical areas of the brain, and is known to strongly influence function in areas it projects to. In particular, research using non-invasive brain stimulation (NIBS) has shown that CB projections to primary motor cortex (M1) are likely important for facilitating the learning of new motor skills, and that this process may involve modulation of late indirect (I) wave inputs in M1. However, the nature of this relationship remains unclear, particularly in regards to how CB influences the contribution of the I-wave circuits to neuroplastic changes in M1. Within the proposed research, we will therefore investigate how CB effects neuroplasticity of the I-wave generating circuits. This will be achieved by downregulating CB excitability while concurrently applying a neuroplastic intervention that specifically targets the I-wave circuitry. The outcomes of this study will provide valuable neurophysiological insight into key aspects of the motor network, and may inform the development of optimized interventions for modifying motor learning in a targeted way.
Collapse
Affiliation(s)
- George M. Opie
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
- * E-mail:
| | - John G. Semmler
- Discipline of Physiology, Adelaide Medical School, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
35
|
Drum training induces long-term plasticity in the cerebellum and connected cortical thickness. Sci Rep 2020; 10:10116. [PMID: 32572037 PMCID: PMC7308330 DOI: 10.1038/s41598-020-65877-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/06/2020] [Indexed: 11/24/2022] Open
Abstract
It is unclear to what extent cerebellar networks show long-term plasticity and accompanied changes in cortical structures. Using drumming as a demanding multimodal motor training, we compared cerebellar lobular volume and white matter microstructure, as well as cortical thickness of 15 healthy non-musicians before and after learning to drum, and 16 age matched novice control participants. After 8 weeks of group drumming instruction, 3 ×30 minutes per week, we observed the cerebellum significantly changing its grey (volume increase of left VIIIa, relative decrease of VIIIb and vermis Crus I volume) and white matter microstructure in the inferior cerebellar peduncle. These plastic cerebellar changes were complemented by changes in cortical thickness (increase in left paracentral, right precuneus and right but not left superior frontal thickness), suggesting an interplay of cerebellar learning with cortical structures enabled through cerebellar pathways.
Collapse
|
36
|
Brihmat N, Tarri M, Gasq D, Marque P, Castel-Lacanal E, Loubinoux I. Cross-Modal Functional Connectivity of the Premotor Cortex Reflects Residual Motor Output After Stroke. Brain Connect 2020; 10:236-249. [PMID: 32414294 DOI: 10.1089/brain.2020.0750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Stroke is known to cause widespread activation and connectivity changes resulting in different levels of functional impairment. Recovery of motor functions is thought to rely mainly on reorganizations within the sensorimotor cortex, but increasing attention is being paid to other cerebral regions. To investigate the motor task-related functional connectivity (FC) of the ipsilesional premotor cortex (PMC) and its relation to residual motor output after stroke in a population of mostly poorly recoverd patients. Twenty-four stroke patients (23 right handed, mean age = 52.4 ± 12.6 years) with varying levels of motor deficits underwent functional magnetic resonance imaging while performing different motor tasks (passive mobilization, motor execution, and motor imagery of an extension movement of the unaffected hand [UH] or affected hand [AH]). For the different motor tasks, analyses of cerebral activation and task-related FC of the ipsilesional lateral sensorimotor network (SMN), and particularly the premotor cortex (PMC), were performed. Compared with UH data, FC of the ipsilesional lateral SMN during the passive or active motor tasks involving the AH was decreased with regions of the ipsilesional SMN and was increased with regions of the bilateral frontal and the ipsilesional posterior parietal cortices such as the precuneus (Pcu). During passive wrist mobilization, FC between the ipsilesional PMC and the contralesional SMN was negatively correlated with residual motor function, whereas that with nonmotor regions such as the bilateral Pcu and the contralesional dorsolateral prefrontal cortex was positively correlated with the residual motor function. Cross-modal FC of the ipsilesional PMC may reflect compensation strategies after stroke. The results emphasize the importance of the PMC and other nonmotor regions as prominent nodes involved in reorganization processes after a stroke.
Collapse
Affiliation(s)
- Nabila Brihmat
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Mohamed Tarri
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - David Gasq
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Functional and Physiological Explorations, University Hospital of Toulouse, Toulouse, France
| | - Philippe Marque
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Rehabilitation and Physical Medicine, University Hospital of Toulouse, Toulouse, France
| | - Evelyne Castel-Lacanal
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France.,Department of Rehabilitation and Physical Medicine, University Hospital of Toulouse, Toulouse, France
| | - Isabelle Loubinoux
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| |
Collapse
|
37
|
Rezaee Z, Ruszala B, Dutta A. A computational pipeline to find lobule-specific electric field distribution during non-invasive cerebellar stimulation. IEEE Int Conf Rehabil Robot 2020; 2019:1191-1196. [PMID: 31374791 DOI: 10.1109/icorr.2019.8779453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Cerebellar Transcranial direct current stimulation (ctDCS) of cerebellar lobules is challenging due to the complexity of the cerebellar structure. Therefore, we present a freely available computational pipeline to determine the subject-specific lobule-specific electric field distribution during ctDCS. METHODS The computational pipeline isolates subject-specific cerebellar lobules based on a spatially unbiased atlas template (SUIT) for the cerebellum, and then calculates the lobule-specific electric field distribution during ctDCS. The computational pipeline was tested using Colin27 Average Brain. The 5 cm × 5 cm anode was placed 3 cm lateral to inion, and the same sized cathode was placed on the contralateral supra-orbital area (called Manto montage) and buccinators muscle (called Celnik montage). A published 4x1 HD-ctDCS electrode montage was also implemented for a comparison using analysis of variance. RESULTS The electric field strength of both the Celnik and the Manto montages affected the lobules Crus II, VIIb, VIII, and IX of the targeted cerebellar hemispheres while Manto montage had a more bilateral effect. The HD-ctDCS montage primarily affected the lobules Crus I, Crus II, VIIb of the targeted cerebellar hemisphere. DISCUSSION Our freely available subject-specific computational modeling pipeline can be used to analyze lobulespecific electric field distribution to select an optimal ctDCS electrode montage.
Collapse
|
38
|
Sato D, Yamashiro K, Yamazaki Y, Ikarashi K, Onishi H, Baba Y, Maruyama A. Priming Effects of Water Immersion on Paired Associative Stimulation-Induced Neural Plasticity in the Primary Motor Cortex. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010215. [PMID: 31892253 PMCID: PMC6982345 DOI: 10.3390/ijerph17010215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 11/16/2022]
Abstract
We aimed to verify whether indirect-wave (I-wave) recruitment and cortical inhibition can regulate or predict the plastic response to paired associative stimulation with an inter-stimulus interval of 25 ms (PAS25), and also whether water immersion (WI) can facilitate the subsequent PAS25-induced plasticity. To address the first question, we applied transcranial magnetic stimulation (TMS) to the M1 hand area, while alternating the direction of the induced current between posterior-to-anterior and anterior-to-posterior to activate two independent synaptic inputs to the corticospinal neurons. Moreover, we used a paired stimulation paradigm to evaluate the short-latency afferent inhibition (SAI) and short-interval intracortical inhibition (SICI). To address the second question, we examined the motor evoked potential (MEP) amplitudes before and after PAS25, with and without WI, and used the SAI, SICI, and MEP recruitment curves to determine the mechanism underlying priming by WI on PAS25. We demonstrated that SAI, with an inter-stimulus interval of 25 ms, might serve as a predictor of the response to PAS25, whereas I-wave recruitment evaluated by the MEP latency difference was not predictive of the PAS25 response, and found that 15 min WI prior to PAS25 facilitated long-term potentiation (LTP)-like plasticity due to a homeostatic increase in cholinergic activity.
Collapse
Affiliation(s)
- Daisuke Sato
- Department of Health and Sports, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (K.Y.); (Y.B.)
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
- Correspondence:
| | - Koya Yamashiro
- Department of Health and Sports, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (K.Y.); (Y.B.)
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
| | - Yudai Yamazaki
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
- Graduate School, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Koyuki Ikarashi
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
- Graduate School, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Science, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (Y.Y.); (K.I.); (H.O.)
| | - Yasuhiro Baba
- Department of Health and Sports, Niigata University of Health and Welfare, Shimamicho 1398, Kita-ku, Niigata City, Niigata 950-3198, Japan; (K.Y.); (Y.B.)
| | - Atsuo Maruyama
- Department of Rehabilitation Medicine, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima City, Kagoshima 890-8520, Japan;
| |
Collapse
|
39
|
Miterko LN, Baker KB, Beckinghausen J, Bradnam LV, Cheng MY, Cooperrider J, DeLong MR, Gornati SV, Hallett M, Heck DH, Hoebeek FE, Kouzani AZ, Kuo SH, Louis ED, Machado A, Manto M, McCambridge AB, Nitsche MA, Taib NOB, Popa T, Tanaka M, Timmann D, Steinberg GK, Wang EH, Wichmann T, Xie T, Sillitoe RV. Consensus Paper: Experimental Neurostimulation of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2019; 18:1064-1097. [PMID: 31165428 PMCID: PMC6867990 DOI: 10.1007/s12311-019-01041-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebellum is best known for its role in controlling motor behaviors. However, recent work supports the view that it also influences non-motor behaviors. The contribution of the cerebellum towards different brain functions is underscored by its involvement in a diverse and increasing number of neurological and neuropsychiatric conditions including ataxia, dystonia, essential tremor, Parkinson's disease (PD), epilepsy, stroke, multiple sclerosis, autism spectrum disorders, dyslexia, attention deficit hyperactivity disorder (ADHD), and schizophrenia. Although there are no cures for these conditions, cerebellar stimulation is quickly gaining attention for symptomatic alleviation, as cerebellar circuitry has arisen as a promising target for invasive and non-invasive neuromodulation. This consensus paper brings together experts from the fields of neurophysiology, neurology, and neurosurgery to discuss recent efforts in using the cerebellum as a therapeutic intervention. We report on the most advanced techniques for manipulating cerebellar circuits in humans and animal models and define key hurdles and questions for moving forward.
Collapse
Affiliation(s)
- Lauren N Miterko
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Kenneth B Baker
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Jaclyn Beckinghausen
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Lynley V Bradnam
- Department of Exercise Science, Faculty of Science, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Michelle Y Cheng
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Jessica Cooperrider
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mahlon R DeLong
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
| | - Simona V Gornati
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
| | - Mark Hallett
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
| | - Detlef H Heck
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, TN, 38163, USA
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus Medical Center, 3015 AA, Rotterdam, Netherlands
- NIDOD Department, Wilhelmina Children's Hospital, University Medical Center Utrecht Brain Center, Utrecht, Netherlands
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong, VIC, 3216, Australia
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Department of Chronic Disease Epidemiology, Yale School of Public Health, Center for Neuroepidemiology and Clinical Research, Yale School of Medicine, Yale University, New Haven, CT, 06520, USA
| | - Andre Machado
- Neurological Institute, Department of Neurosurgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Mario Manto
- Service de Neurologie, CHU-Charleroi, 6000, Charleroi, Belgium
- Service des Neurosciences, Université de Mons, 7000, Mons, Belgium
| | - Alana B McCambridge
- Graduate School of Health, Physiotherapy, University of Technology Sydney, PO Box 123, Broadway, Sydney, NSW, 2007, Australia
| | - Michael A Nitsche
- Department of Psychology and Neurosiences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | | | - Traian Popa
- Human Motor Control Section, NINDS, NIH, Building 10, Room 7D37, 10 Center Dr MSC 1428, Bethesda, MD, 20892-1428, USA
- Defitech Chair of Clinical Neuroengineering, Center for Neuroprosthetics (CNP) and Brain Mind Institute (BMI), Ecole Polytechnique Federale de Lausanne (EPFL), Sion, Switzerland
| | - Masaki Tanaka
- Department of Physiology, Hokkaido University School of Medicine, Sapporo, 060-8638, Japan
| | - Dagmar Timmann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Gary K Steinberg
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
- R281 Department of Neurosurgery, Stanfod University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Eric H Wang
- Department of Neurosurgery, Stanford University School of Medicine, 1201 Welch Road, MSLS P352, Stanford, CA, 94305-5487, USA
| | - Thomas Wichmann
- Department of Neurology, Emory University, Atlanta, GA, 30322, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30322, USA
| | - Tao Xie
- Department of Neurology, University of Chicago, 5841 S. Maryland Avenue, MC 2030, Chicago, IL, 60637-1470, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, Department of Neuroscience, Program in Developmental Biology, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Yoo HS, Choi YH, Chung SJ, Lee YH, Ye BS, Sohn YH, Lee JM, Lee PH. Cerebellar connectivity in Parkinson's disease with levodopa-induced dyskinesia. Ann Clin Transl Neurol 2019; 6:2251-2260. [PMID: 31643140 PMCID: PMC6856615 DOI: 10.1002/acn3.50918] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/06/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE The precise pathogenesis or neural correlates underlying levodopa-induced dyskinesia (LID) remains poorly understood. There is growing evidence of the involvement of the cerebellum in Parkinson's disease (PD). The present study evaluated the role of motor cerebellar connectivity in determining vulnerability to LID. METHODS We enrolled 25 de novo patients with PD who developed LID within 5 years of levodopa treatment, 26 propensity score-matched PD patients who had not developed LID, and 24 age- and sex-matched healthy controls. We performed a comparative analysis of resting-state functional connectivity (FC) between the motor cerebellum and whole brain between the groups. RESULTS The patients with PD had increased FC bewteen the motor cerebellum and posterior cortical and cerebellar regions, while no gray matter regions had decreased FC with the motor cerebellum compared to the control participant. The patients with PD who were vulnerable to the development of LID had a significantly higher FC between the motor cerebellum lobule VIIIb and the left inferior frontal gyrus than those who were resistant to LID development. The connectivity of the motor cerebellum and left inferior frontal gyrus was negatively correlated with the latency from PD onset to the occurrence of LID. INTERPRETATION Increased FC between the motor cerebellum and left inferior frontal gyrus in de novo patients with PD could be an important determinant of vulnerability to LID.
Collapse
Affiliation(s)
- Han Soo Yoo
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong Ho Choi
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Yang Hyun Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, South Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, South Korea.,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
41
|
Naro A, Marra A, Billeri L, Portaro S, De Luca R, Maresca G, La Rosa G, Lauria P, Bramanti P, Calabrò RS. New Horizons in Early Dementia Diagnosis: Can Cerebellar Stimulation Untangle the Knot? J Clin Med 2019; 8:E1470. [PMID: 31527392 PMCID: PMC6780127 DOI: 10.3390/jcm8091470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/28/2019] [Accepted: 09/12/2019] [Indexed: 12/26/2022] Open
Abstract
Differentiating Mild Cognitive Impairment (MCI) from dementia and estimating the risk of MCI-to-dementia conversion (MDC) are challenging tasks. Thus, objective tools are mandatory to get early diagnosis and prognosis. About that, there is a growing interest on the role of cerebellum-cerebrum connectivity (CCC). The aim of this study was to differentiate patients with an early diagnosis of dementia and MCI depending on the effects of a transcranial magnetic stimulation protocol (intermittent theta-burst stimulation -iTBS) delivered on the cerebellum able to modify cortico-cortical connectivity. Indeed, the risk of MDC is related to the response to iTBS, being higher in non-responder individuals. All patients with MCI, but eight (labelled as MCI-), showed preserved iTBS aftereffect. Contrariwise, none of the patients with dementia showed iTBS aftereffects. None of the patients showed EEG aftereffects following a sham TBS protocol. Five among the MCI- patients converted to dementia at 6-month follow-up. Our data suggest that cerebellar stimulation by means of iTBS may support the differential diagnosis between MCI and dementia and potentially identify the individuals with MCI who may be at risk of MDC. These findings may help clinicians to adopt a better prevention/follow-up strategy in such patients.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Angela Marra
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Simona Portaro
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Rosaria De Luca
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Giuseppa Maresca
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Gianluca La Rosa
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Paola Lauria
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, via Palermo, S.S. 113, C.da Casazza, 98124 Messina, Italy.
| |
Collapse
|
42
|
Cerasa A, Obeso I, Dileone M, Quattrone A. Transcranial Non-Invasive Brain Stimulation in Parkinson's Disease Patients with Dyskinesias. Where is the Optimal Target? THE CEREBELLUM 2019; 16:276-278. [PMID: 26928908 DOI: 10.1007/s12311-016-0768-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Antonio Cerasa
- IBFM, National Research Council, Catanzaro, 88100, Italy.
| | - Ignacio Obeso
- Centro Integral en Neurociencias A.C. (CINAC), HM Hospitales- Puerta del Sur, Madrid, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Michele Dileone
- Centro Integral en Neurociencias A.C. (CINAC), HM Hospitales- Puerta del Sur, Madrid, Spain.,Department of Neurosciences, San Bortolo Hospital, Vicenza, Italy
| | - Aldo Quattrone
- IBFM, National Research Council, Catanzaro, 88100, Italy.,Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| |
Collapse
|
43
|
Behrangrad S, Zoghi M, Kidgell D, Jaberzadeh S. Does cerebellar non-invasive brain stimulation affect corticospinal excitability in healthy individuals? A systematic review of literature and meta-analysis. Neurosci Lett 2019; 706:128-139. [PMID: 31102706 DOI: 10.1016/j.neulet.2019.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
Numerous studies have indicated that non-invasive brain stimulation (NIBS) of the cerebellum could modulate corticospinal excitability (CSE) in young healthy individuals. However, there is no systematic review and meta-analysis that clarifies the effects of cerebellar NIBS on CSE. The aim of this study was to provide a meta-analytic summary of the effects of cerebellar NIBS on CSE. Seven search engines were used to identify any trial evaluating CSE before and after one session of cerebellar NIBS in healthy individuals up to June 2018. Twenty-six studies investigating the corticospinal responses following cerebellar NIBS were included. Meta-analysis was used to pool the findings from included studies. Effects were expressed as mean differences (MD) and the standard deviation (SD). Risk of bias was assessed with the Cochrane tool. Meta-analysis found that paired associative stimulation (PAS) with 2 ms interval, a combination of PAS with 21.5 ms interval and anodal transcranial direct current stimulation, and repetitive transcranial magnetic stimulation with a frequency of < 5 Hz increase CSE (P PAS2 < 0.00001, P PAS21.5 +a-tDCS = 0.02, P rTMS = 0.04). However, continuous theta burst stimulation, a combination of PAS with 25 ms interval and anodal transcranial direct current stimulation, and PAS with a 6 ms interval decreased CSE (P PAS6 < 0.00001, P cTBS < 0.00001, P PAS25 +a-tDCS = 0.003). The results of this review show that cerebellar NIBS techniques are a promising tool for increasing CSE.
Collapse
Affiliation(s)
- Shabnam Behrangrad
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, P.O. Box 527, Australia.
| | - Maryam Zoghi
- Department of Rehabilitation, Nutrition and Sport, School of Allied Health, La Trobe University, Bundoora, Victoria, Australia
| | - Dawson Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, P.O. Box 527, Australia
| | - Shapour Jaberzadeh
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Victoria, P.O. Box 527, Australia
| |
Collapse
|
44
|
Rezaee Z, Dutta A. Cerebellar Lobules Optimal Stimulation (CLOS): A Computational Pipeline to Optimize Cerebellar Lobule-Specific Electric Field Distribution. Front Neurosci 2019; 13:266. [PMID: 31031578 PMCID: PMC6473058 DOI: 10.3389/fnins.2019.00266] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 03/06/2019] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE Cerebellar transcranial direct current stimulation (ctDCS) is challenging due to the complexity of the cerebellar structure which is reflected by the well-known variability in ctDCS effects. Therefore, our objective is to present a freely available computational modeling pipeline for cerebellar lobules' optimal stimulation (CLOS). METHODS CLOS can optimize lobule-specific electric field distribution following finite element analysis (FEA) using freely available computational modeling pipelines. We modeled published ctDCS montages with 5 cm × 5 cm anode placed 3 cm lateral to inion, and the same sized cathode was placed on the: (1) contralateral supra-orbital area (called Manto montage), and (2) buccinators muscle (called Celnik montage). Also, a published (3) 4×1 HD-ctDCS electrode montage was modeled. We also investigated the effects of the subject-specific head model versus Colin 27 average head model on lobule-specific electric field distribution. Three-way analysis of variance (ANOVA) was used to determine the effects of lobules, montage, and head model on the electric field distribution. The differences in lobule-specific electric field distribution across different freely available computational pipelines were also evaluated using subject-specific head model. We also presented an application of our computational pipeline to optimize a ctDCS electrode montage to deliver peak electric field at the cerebellar lobules VII-IX related to ankle function. RESULTS Eta-squared effect size after three-way ANOVA for electric field strength was 0.05 for lobule, 0.00 for montage, 0.04 for the head model, 0.01 for lobule∗montage interaction, 0.01 for lobule∗ head model interaction, and 0.00 for montage∗head model interaction. The electric field strength of both the Celnik and the Manto montages affected the lobules Crus I/II, VIIb, VIII, and IX of the targeted cerebellar hemisphere where Manto montage had a spillover to the contralateral cerebellar hemisphere. The 4×1 HD-ctDCS montage primarily affected the lobules Crus I/II of the targeted cerebellar hemisphere. All three published ctDCS montages were found to be not optimal for ankle function (lobules VII-IX), so we presented a novel HD-ctDCS electrode montage. DISCUSSION Our freely available CLOS pipeline can be leveraged to optimize electromagnetic stimulation to target cerebellar lobules related to different cognitive and motor functions.
Collapse
Affiliation(s)
- Zeynab Rezaee
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | | |
Collapse
|
45
|
Marek S, Siegel JS, Gordon EM, Raut RV, Gratton C, Newbold DJ, Ortega M, Laumann TO, Adeyemo B, Miller DB, Zheng A, Lopez KC, Berg JJ, Coalson RS, Nguyen AL, Dierker D, Van AN, Hoyt CR, McDermott KB, Norris SA, Shimony JS, Snyder AZ, Nelson SM, Barch DM, Schlaggar BL, Raichle ME, Petersen SE, Greene DJ, Dosenbach NUF. Spatial and Temporal Organization of the Individual Human Cerebellum. Neuron 2018; 100:977-993.e7. [PMID: 30473014 DOI: 10.1016/j.neuron.2018.10.010] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/13/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
The cerebellum contains the majority of neurons in the human brain and is unique for its uniform cytoarchitecture, absence of aerobic glycolysis, and role in adaptive plasticity. Despite anatomical and physiological differences between the cerebellum and cerebral cortex, group-average functional connectivity studies have identified networks related to specific functions in both structures. Recently, precision functional mapping of individuals revealed that functional networks in the cerebral cortex exhibit measurable individual specificity. Using the highly sampled Midnight Scan Club (MSC) dataset, we found the cerebellum contains reliable, individual-specific network organization that is significantly more variable than the cerebral cortex. The frontoparietal network, thought to support adaptive control, was the only network overrepresented in the cerebellum compared to the cerebral cortex (2.3-fold). Temporally, all cerebellar resting state signals lagged behind the cerebral cortex (125-380 ms), supporting the hypothesis that the cerebellum engages in a domain-general function in the adaptive control of all cortical processes.
Collapse
Affiliation(s)
- Scott Marek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Joshua S Siegel
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Evan M Gordon
- VISN17 Center of Excellence for Research on Returning War Veterans, Waco, TX 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Ryan V Raut
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Caterina Gratton
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mario Ortega
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy O Laumann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babatunde Adeyemo
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Derek B Miller
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Katherine C Lopez
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jeffrey J Berg
- Department of Psychology, New York University, New York, NY 10003 USA
| | - Rebecca S Coalson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Annie L Nguyen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Donna Dierker
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine R Hoyt
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kathleen B McDermott
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott A Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abraham Z Snyder
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Nelson
- VISN17 Center of Excellence for Research on Returning War Veterans, Waco, TX 76711, USA; Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX 75235, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706, USA
| | - Deanna M Barch
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bradley L Schlaggar
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Steven E Petersen
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deanna J Greene
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
46
|
Baek H, Pahk KJ, Kim MJ, Youn I, Kim H. Modulation of Cerebellar Cortical Plasticity Using Low-Intensity Focused Ultrasound for Poststroke Sensorimotor Function Recovery. Neurorehabil Neural Repair 2018; 32:777-787. [PMID: 30157709 DOI: 10.1177/1545968318790022] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Stroke affects widespread brain regions through interhemispheric connections by influencing bilateral motor activity. Several noninvasive brain stimulation techniques have proved their capacity to compensate the functional loss by manipulating the neural activity of alternative pathways. Over the past few decades, brain stimulation therapies have been tailored within the theoretical framework of modulation of cortical excitability to enhance adaptive plasticity after stroke. OBJECTIVE However, considering the vast difference between animal and human cerebral cortical structures, it is important to approach specific neuronal target starting from the higher order brain structure for human translation. The present study focuses on stimulating the lateral cerebellar nucleus (LCN), which sends major cerebellar output to extensive cortical regions. METHODS In this study, in vivo stroke mouse LCN was exposed to low-intensity focused ultrasound (LIFU). After the LIFU exposure, animals underwent 4 weeks of rehabilitative training. RESULTS During the cerebellar LIFU session, motor-evoked potentials (MEPs) were generated in both forelimbs accompanying excitatory sonication parameter. LCN stimulation group on day 1 after stroke significantly enhanced sensorimotor recovery compared with the group without stimulation. The recovery has maintained for a 4-week period in 2 behavior tests. Furthermore, we observed a significantly decreased level of brain edema and tissue swelling in the affected hemisphere 3 days after the stroke. CONCLUSIONS This study provides the first evidence showing that LIFU-induced cerebellar modulation could be an important strategy for poststroke recovery. A longer follow-up study is, however, necessary in order to fully confirm the effects of LIFU on poststroke recovery.
Collapse
Affiliation(s)
- Hongchae Baek
- 1 Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,2 Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Ki Joo Pahk
- 1 Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Min-Ju Kim
- 1 Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea
| | - Inchan Youn
- 1 Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,2 Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - Hyungmin Kim
- 1 Center for Bionics, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Republic of Korea.,2 Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| |
Collapse
|
47
|
Popa T, Hubsch C, James P, Richard A, Russo M, Pradeep S, Krishan S, Roze E, Meunier S, Kishore A. Abnormal cerebellar processing of the neck proprioceptive information drives dysfunctions in cervical dystonia. Sci Rep 2018; 8:2263. [PMID: 29396401 PMCID: PMC5797249 DOI: 10.1038/s41598-018-20510-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 12/20/2017] [Indexed: 01/11/2023] Open
Abstract
The cerebellum can influence the responsiveness of the primary motor cortex (M1) to undergo spike timing-dependent plastic changes through a complex mechanism involving multiple relays in the cerebello-thalamo-cortical pathway. Previous TMS studies showed that cerebellar cortex excitation can block the increase in M1 excitability induced by a paired-associative stimulation (PAS), while cerebellar cortex inhibition would enhance it. Since cerebellum is known to be affected in many types of dystonia, this bidirectional modulation was assessed in 22 patients with cervical dystonia and 23 healthy controls. Exactly opposite effects were found in patients: cerebellar inhibition suppressed the effects of PAS, while cerebellar excitation enhanced them. Another experiment comparing healthy subjects maintaining the head straight with subjects maintaining the head turned as the patients found that turning the head is enough to invert the cerebellar modulation of M1 plasticity. A third control experiment in healthy subjects showed that proprioceptive perturbation of the sterno-cleido-mastoid muscle had the same effects as turning the head. We discuss these finding in the light of the recent model of a mesencephalic head integrator. We also suggest that abnormal cerebellar processing of the neck proprioceptive information drives dysfunctions of the integrator in cervical dystonia.
Collapse
Affiliation(s)
- T Popa
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.
| | - C Hubsch
- Department of Neurology, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - P James
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| | - A Richard
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - M Russo
- Department of Neurosciences, University of Messina, Messina, Italy
| | - S Pradeep
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| | - S Krishan
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| | - E Roze
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.,Department of Neurology, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - S Meunier
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - A Kishore
- Comprehensive Care Centre for Movement Disorders, Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Kerala, India
| |
Collapse
|
48
|
Fernandez L, Major BP, Teo WP, Byrne LK, Enticott PG. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): A systematic review. Neurosci Biobehav Rev 2017; 86:176-206. [PMID: 29208533 DOI: 10.1016/j.neubiorev.2017.11.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/10/2017] [Accepted: 11/25/2017] [Indexed: 12/24/2022]
Abstract
The inhibitory tone that the cerebellum exerts on the primary motor cortex (M1) is known as cerebellar brain inhibition (CBI). Studies show CBI to be relevant to several motor functions, including adaptive motor learning and muscle control. CBI can be assessed noninvasively via transcranial magnetic stimulation (TMS) using a double-coil protocol. Variability in parameter choice and controversy surrounding the protocol's ability to isolate the cerebellothalamocortical pathway casts doubt over its validity in neuroscience research. This justifies a systematic review of both the protocol, and its application. The following review examines studies using the double-coil protocol to assess CBI in healthy adults. Parameters and CBI in relation to task-based studies, other non-invasive protocols, over different muscles, and in clinical samples are reviewed. Of the 1398 studies identified, 24 met selection criteria. It was found that methodological design and selection of parameters in several studies may have reduced the validity of outcomes. Further systematic testing of CBI protocols is warranted, both from a parameter and task-based perspective.
Collapse
Affiliation(s)
- Lara Fernandez
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia.
| | - Brendan P Major
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia
| | - Wei-Peng Teo
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Victoria, 3220, Australia
| | - Linda K Byrne
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia; Deakin Child Study Centre, School of Psychology, Deakin University, Geelong, Victoria, 3220, Australia
| |
Collapse
|
49
|
Suppa A, Quartarone A, Siebner H, Chen R, Di Lazzaro V, Del Giudice P, Paulus W, Rothwell J, Ziemann U, Classen J. The associative brain at work: Evidence from paired associative stimulation studies in humans. Clin Neurophysiol 2017; 128:2140-2164. [DOI: 10.1016/j.clinph.2017.08.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/20/2017] [Accepted: 08/03/2017] [Indexed: 12/25/2022]
|
50
|
Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex. THE CEREBELLUM 2017; 16:203-229. [PMID: 26873754 PMCID: PMC5243918 DOI: 10.1007/s12311-016-0763-3] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.
Collapse
|