1
|
Tendilla-Beltrán H, Perez-Osornio DL, Apam-Castillejos DJ, Flores G. Atypical antipsychotics improve dendritic spine pathology in temporal lobe cortex neurons in a developmental rodent model of schizophrenia. Behav Brain Res 2025; 478:115341. [PMID: 39549876 DOI: 10.1016/j.bbr.2024.115341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024]
Abstract
"Dendritic spine pathology" refers to alterations in density and morphology of dendritic spines, crucial in corticolimbic neurons in schizophrenia. These structural neuroplasticity changes contribute to the disease's neurobiological underpinnings, alongside alterations in other brain regions, such as temporal lobe cortices like the auditory cortex (Au1) and the entorhinal cortex (Ent), involved in sensory processing, memory, and learning. The neonatal ventral hippocampus lesion (NVHL) in rats exhibits behavioral abnormalities akin to schizophrenia symptoms and corticolimbic dendritic spine pathology, mitigated by atypical antipsychotic drugs (AADs) like risperidone (RISP) and olanzapine (OLZ). This study investigated NVHL-induced dendritic spine pathology in Au1 and Ent, evaluating RISP and OLZ effects. NVHL induced dendritic spine pathology mainly by reducing the dendritic spine density in Au1 and Ent neurons; both RISP and OLZ mitigated it, increasing dendritic spine density and mushroom spine population, the ones related with synaptic strengthening, while decreasing stubby spine population. These findings underscore the role of impaired neuroplasticity in the temporal lobe cortices in schizophrenia pathophysiology and highlight the relevance of the NVHL model for studying neuroplasticity mechanisms in the disease. They also contribute to the growing understanding of targeting structural and functional neuroplasticity for novel drugs in the pharmacotherapy of the disease.
Collapse
Affiliation(s)
- Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | | | | | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
2
|
Reyes-Lizaola S, Luna-Zarate U, Tendilla-Beltrán H, Morales-Medina JC, Flores G. Structural and biochemical alterations in dendritic spines as key mechanisms for severe mental illnesses. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110876. [PMID: 37863171 DOI: 10.1016/j.pnpbp.2023.110876] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023]
Abstract
Severe mental illnesses (SMI) collectively affect approximately 20% of the global population, as estimated by the World Health Organization (WHO). Despite having diverse etiologies, clinical symptoms, and pharmacotherapies, these diseases share a common pathophysiological characteristic: the misconnection of brain areas involved in reality perception, executive control, and cognition, including the corticolimbic system. Dendritic spines play a crucial role in excitatory neurotransmission within the central nervous system. These small structures exhibit remarkable plasticity, regulated by factors such as neurotransmitter tone, neurotrophic factors, and innate immunity-related molecules, and other mechanisms - all of which are associated with the pathophysiology of SMI. However, studying dendritic spine mechanisms in both healthy and pathological conditions in patients is fraught with technical limitations. This is where animal models related to these diseases become indispensable. They have played a pivotal role in elucidating the significance of dendritic spines in SMI. In this review, the information regarding the potential role of dendritic spines in SMI was summarized, drawing from clinical and animal model reports. Also, the implications of targeting dendritic spine-related molecules for SMI treatment were explored. Specifically, our focus is on major depressive disorder and the neurodevelopmental disorders schizophrenia and autism spectrum disorder. Abundant clinical and basic research has studied the functional and structural plasticity of dendritic spines in these diseases, along with potential pharmacological targets that modulate the dynamics of these structures. These targets may be associated with the clinical efficacy of the pharmacotherapy.
Collapse
Affiliation(s)
- Sebastian Reyes-Lizaola
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad Popular del Estado de Puebla (UPAEP), Puebla, Mexico
| | - Ulises Luna-Zarate
- Departamento de Ciencias de la Salud, Licenciatura en Medicina, Universidad de las Américas Puebla (UDLAP), Puebla, Mexico
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico
| | - Julio César Morales-Medina
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
3
|
Nath M, Bhardwaj SK, Srivastava LK, Wong TP. Altered excitatory and decreased inhibitory transmission in the prefrontal cortex of male mice with early developmental disruption to the ventral hippocampus. Cereb Cortex 2023; 33:865-880. [PMID: 35297476 PMCID: PMC9890473 DOI: 10.1093/cercor/bhac107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ventral hippocampal (vHPC)-prefrontal cortical (PFC) pathway dysfunction is a core neuroimaging feature of schizophrenia. However, mechanisms underlying impaired connectivity within this pathway remain poorly understood. The vHPC has direct projections to the PFC that help shape its maturation. Here, we wanted to investigate the effects of early developmental vHPC perturbations on long-term functional PFC organization. Using whole-cell recordings to assess PFC cellular activity in transgenic male mouse lines, we show early developmental disconnection of vHPC inputs, by excitotoxic lesion or cell-specific ablations, impairs pyramidal cell firing output and produces a persistent increase in excitatory and decrease in inhibitory synaptic inputs onto pyramidal cells. We show this effect is specific to excitatory vHPC projection cell ablation. We further identify PV-interneurons as a source of deficit in inhibitory transmission. We find PV-interneurons are reduced in density, show a reduced ability to sustain high-frequency firing, and show deficits in excitatory inputs that emerge over time. We additionally show differences in vulnerabilities to early developmental vHPC disconnection, wherein PFC PV-interneurons but not pyramidal cells show deficits in NMDA receptor-mediated current. Our results highlight mechanisms by which the PFC adapts to early developmental vHPC perturbations, providing insights into schizophrenia circuit pathology.
Collapse
Affiliation(s)
- Moushumi Nath
- Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 0G4, Canada.,Basic Neuroscience Division, Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada
| | - Sanjeev K Bhardwaj
- Basic Neuroscience Division, Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada
| | - Lalit K Srivastava
- Basic Neuroscience Division, Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada.,Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Tak Pan Wong
- Basic Neuroscience Division, Douglas Hospital Research Centre, Montreal, QC H4H 1R3, Canada.,Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
4
|
Apam-Castillejos DJ, Tendilla-Beltrán H, Vázquez-Roque RA, Vázquez-Hernández AJ, Fuentes-Medel E, García-Dolores F, Díaz A, Flores G. Second-generation antipsychotic olanzapine attenuates behavioral and prefrontal cortex synaptic plasticity deficits in a neurodevelopmental schizophrenia-related rat model. J Chem Neuroanat 2022; 125:102166. [PMID: 36156295 DOI: 10.1016/j.jchemneu.2022.102166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/17/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022]
Abstract
Second-generation antipsychotics are the drugs of choice for the treatment of neurodevelopmental-related mental diseases such as schizophrenia. Despite the effectiveness of these drugs to ameliorate some of the symptoms of schizophrenia, specifically the positive ones, the mechanisms beyond their antipsychotic effect are still poorly understood. Specifically, second-generation antipsychotics are reported to have anti-inflammatory, antioxidant and neuroplastic properties. Using the neonatal ventral hippocampus lesion (nVHL) in the rat, an accepted schizophrenia-related model, we evaluated the effect of the second-generation antipsychotic olanzapine (OLZ) in the behavioral, neuroplastic, and neuroinflammatory alterations exhibited in the nVHL animals. OLZ corrected the hyperlocomotion and impaired working memory of the nVHL animals but failed to enhance social disturbances of these animals. In the prefrontal cortex (PFC), OLZ restored the pyramidal cell structural plasticity in the nVHL rats, enhancing the dendritic arbor length, the spinogenesis and the proportion of mature spines. Moreover, OLZ attenuated astrogliosis as well as some pro-inflammatory, oxidative stress, and apoptosis-related molecules in the PFC. These findings reinforce the evidence of anti-inflammatory, antioxidant, and neurotrophic mechanisms of second-generation antipsychotics in the nVHL schizophrenia-related model, which allows for the possibility of developing more specific drugs for this disorder and thus avoiding the side effects of current schizophrenia treatments.
Collapse
Affiliation(s)
| | | | | | | | - Estefania Fuentes-Medel
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Mexico
| | - Fernando García-Dolores
- Instituto de Ciencias Forenses del Tribunal Superior de Justicia de la Ciudad de México (TSJCDMX), Mexico
| | - Alfonso Díaz
- Facultad de Ciencias Químicas (FCQ), Benemérita Universidad Autónoma de Puebla (BUAP), Mexico
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Mexico.
| |
Collapse
|
5
|
Tendilla-Beltrán H, Sanchez-Islas NDC, Marina-Ramos M, Leza JC, Flores G. The prefrontal cortex as a target for atypical antipsychotics in schizophrenia, lessons of neurodevelopmental animal models. Prog Neurobiol 2020; 199:101967. [PMID: 33271238 DOI: 10.1016/j.pneurobio.2020.101967] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 10/10/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Prefrontal cortex (PFC) inflammatory imbalance, oxidative/nitrosative stress (O/NS) and impaired neuroplasticity in schizophrenia are thought to have neurodevelopmental origins. Animal models are not only useful to test this hypothesis, they are also effective to establish a relationship among brain disturbances and behavior with the atypical antipsychotics (AAPs) effects. Here we review data of PFC post-mortem and in vivo neuroimaging, human induced pluripotent stem cells (hiPSC), and peripheral blood studies of inflammatory, O/NS, and neuroplasticity alterations in the disease as well as about their modulation by AAPs. Moreover, we reviewed the PFC alterations and the AAP mechanisms beyond their canonical antipsychotic action in four neurodevelopmental animal models relevant to the study of schizophrenia with a distinct approach in the generation of schizophrenia-like phenotypes, but all converge in O/NS and altered neuroplasticity in the PFC. These animal models not only reinforce the neurodevelopmental risk factor model of schizophrenia but also arouse some novel potential therapeutic targets for the disease including the reestablishment of the antioxidant response by the perineuronal nets (PNNs) and the nuclear factor erythroid 2-related factor (Nrf2) pathway, as well as the dendritic spine dynamics in the PFC pyramidal cells.
Collapse
Affiliation(s)
- Hiram Tendilla-Beltrán
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico; Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, Mexico
| | | | - Mauricio Marina-Ramos
- Departamento de Ciencias de la Salud, Universidad Popular Autónoma del Estado de Puebla, Puebla, Mexico
| | - Juan C Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto Universitario de Investigación en Neuroquímica (IUIN), UCM. Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Sanitaria Hospital, 12 de Octubre (Imas12), Madrid, Spain
| | - Gonzalo Flores
- Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Mexico.
| |
Collapse
|
6
|
Risperidone Ameliorates Prefrontal Cortex Neural Atrophy and Oxidative/Nitrosative Stress in Brain and Peripheral Blood of Rats with Neonatal Ventral Hippocampus Lesion. J Neurosci 2019; 39:8584-8599. [PMID: 31519825 DOI: 10.1523/jneurosci.1249-19.2019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/07/2019] [Accepted: 08/31/2019] [Indexed: 02/08/2023] Open
Abstract
Reduction of the dendritic arbor length and the lack of dendritic spines in the pyramidal cells of the prefrontal cortex (PFC) are prevalent pathological features in schizophrenia (SZ). Neonatal ventral hippocampus lesion (NVHL) in male rats reproduces these neuronal characteristics and here we describe how this is a consequence of BDNF/TrkB pathway disruption. Moreover, COX-2 proinflammatory state, as well as Nrf-2 antioxidant impairment, triggers oxidative/nitrosative stress, which also contributes to dendritic spine impairments in the PFC. Interestingly, oxidative/nitrosative stress was also detected in the periphery of NVHL animals. Furthermore, risperidone treatment had a neurotrophic effect on the PFC and antioxidant effects on the brain and periphery of NVHL animals; these cellular effects were related to behavioral improvement. Our data highlight the link between brain development and immune response, as well as several other factors to understand mechanisms related to the pathophysiology of SZ.SIGNIFICANCE STATEMENT Prefrontal cortex dysfunction in schizophrenia can be a consequence of morphological abnormalities and oxidative/nitrosative stress, among others. Here, we detailed how impaired plasticity-related pathways and oxidative/nitrosative stress are part of the dendritic spine pathology and their modulation by atypical antipsychotic risperidone treatment in rats with neonatal ventral hippocampus lesion. Moreover, we found that animals with neonatal ventral hippocampus lesion had oxidative/nitrosative stress in the brain as well as in the peripheral blood, an important issue for the translational approaches of this model. Then, risperidone restored plasticity and reduced oxidative/nitrosative stress of prefrontal cortex pyramidal cells, and ultimately improved the behavior of lesioned animals. Moreover, risperidone had differential effects than the brain on peripheral blood oxidative/nitrosative stress.
Collapse
|
7
|
Microglia in the developing prefrontal cortex of rats show dynamic changes following neonatal disconnection of the ventral hippocampus. Neuropharmacology 2018; 146:264-275. [PMID: 30537477 DOI: 10.1016/j.neuropharm.2018.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/30/2018] [Accepted: 12/07/2018] [Indexed: 01/19/2023]
Abstract
Impaired ventral hippocampal (VH)-prefrontal cortex (PFC) connectivity is implicated in many cognitive and behavioral disorders. Excitotoxic neonatal VH (nVH) lesion in rat pups has been shown to induce synaptic pruning in the PFC as well as behavioral changes of relevance to developmental neuropsychiatric disorders. In the current study, we hypothesized that microglia, immune cells required for proper brain development and plasticity, may play a role in the development of abnormal behaviors in the nVH-lesioned animals. Ibotenic acid-induced nVH lesion was induced in postnatal day (P)7 male rats. Developmental changes in microglial density, morphology, ultrastructure and gene expression were analyzed in the PFC at P20 and P60. Our results revealed increased microglial reactivity and phagocytic activity in the lesioned rats at P20. Increased mRNA levels of C3 and C1q, complement molecules involved in synaptic pruning, were concomitantly observed. Diminished, but maintained, microglial reactivity and reduced antioxidative defenses were identified in lesioned rats at P60. Behavioral deficits were significantly reduced in the post-pubertal rats by suppressing microglial reactivity by a one-week minocycline treatment immediately after the lesion, These results suggest that early-life disconnection of the VH has long-lasting consequences for microglial functions in the connected structures. Alterations in microglia may underlie synaptic reorganization and behavioral deficits observed following neonatal VH disconnection.
Collapse
|
8
|
Joseph AT, Bhardwaj SK, Srivastava LK. Role of Prefrontal Cortex Anti- and Pro-inflammatory Cytokines in the Development of Abnormal Behaviors Induced by Disconnection of the Ventral Hippocampus in Neonate Rats. Front Behav Neurosci 2018; 12:244. [PMID: 30459571 PMCID: PMC6232928 DOI: 10.3389/fnbeh.2018.00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022] Open
Abstract
Neonatal disconnection of ventral hippocampus (VH) outputs in rats has been reported to lead to post-pubertal behavioral and synaptic changes of relevance to schizophrenia. Increased oxidative and inflammatory load in the prefrontal cortex (PFC) has been suggested to mediate some of the effects of neonatal VH lesion (NVHL). In this study, we hypothesized that developmental imbalance of anti- and pro-inflammatory factors within the PFC might affect synaptic development thus contributing to the adult NVHL-induced behavioral deficits. Ibotenic acid-induced excitotoxic NVHL was performed in postnatal day (PD) 7 male Sprague-Dawley rats and the mRNA levels of select pro- and anti-inflammatory cytokines were measured in the medial PFC (mPFC) at two developmental time points (PD15 and PD60). We observed a development-specific increase of pro-inflammatory cytokine, interleukin (IL)-1β mRNA at PD15, and an overall reduction in the expression and signaling of transforming growth factor beta 1 (TGF-β1), an anti-inflammatory cytokine, at both PD15 and PD60 in the NVHL animals. These cytokine changes were not seen in the somatosensory cortex (SSC) or tissue surrounding the lesion site. Daily administration of systemic recombinant TGF-β1 from PD7-14 prevented the appearance of hyperlocomotion, deficits in prepulse inhibition (PPI) of startle and social interaction (SI) in post-pubertal (PD60) NVHL rats. Neonatal supplementation of TGF-β1 was also able to attenuate dendritic spine loss in the layer 3 mPFC pyramidal neurons of NVHL animals. These results suggest that early damage of the VH has long-lasting inflammatory consequences in distant connected structures, and that TGF-β1 has potential to confer protection against the deleterious effects of developmental hippocampal damage.
Collapse
Affiliation(s)
- Antoneta T Joseph
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Sanjeev K Bhardwaj
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| | - Lalit K Srivastava
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
9
|
Kelly CJ, Martina M. Circuit-selective properties of glutamatergic inputs to the rat prelimbic cortex and their alterations in neuropathic pain. Brain Struct Funct 2018; 223:2627-2639. [PMID: 29550939 DOI: 10.1007/s00429-018-1648-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 03/12/2018] [Indexed: 11/24/2022]
Abstract
Functional deactivation of the prefrontal cortex (PFC) is a critical step in the neuropathic pain phenotype. We performed optogenetic circuit dissection to study the properties of ventral hippocampal (vHipp) and thalamic (MDTh) inputs to L5 pyramidal cells in acute mPFC slices and to test whether alterations in these inputs contribute to mPFC deactivation in neuropathic pain. We found that: (1) both the vHipp and MDTh inputs elicit monosynaptic excitatory and polysynaptic inhibitory currents. (2) The strength of the excitatory MDTh input is uniform, while the vHipp input becomes progressively stronger along the dorsal-ventral axis. (3) Synaptic current kinetics suggests that the MDTh inputs contact distal, while the vHipp inputs contact proximal dendritic sections. (4) The longer delay of inhibitory currents in response to vHipp compared to MDTh inputs suggests that they are activated by feedback and feed-forward circuitries, respectively. (5) One week after a peripheral neuropathic injury, both glutamatergic inputs are modified: MDTh responses are smaller, without evidence of presynaptic changes, while the probability of release at vHipp-mPFC synapses becomes lower, without significant change in current amplitude. Thus, dysregulation of both these inputs likely contributes to the mPFC deactivation in neuropathic pain and may impair PFC-dependent cognitive tasks.
Collapse
Affiliation(s)
- Crystle J Kelly
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA
| | - Marco Martina
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL, 60611, USA.
| |
Collapse
|
10
|
Guadagno A, Wong TP, Walker CD. Morphological and functional changes in the preweaning basolateral amygdala induced by early chronic stress associate with anxiety and fear behavior in adult male, but not female rats. Prog Neuropsychopharmacol Biol Psychiatry 2018; 81:25-37. [PMID: 28963066 DOI: 10.1016/j.pnpbp.2017.09.025] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/12/2017] [Accepted: 09/24/2017] [Indexed: 12/27/2022]
Abstract
Suboptimal maternal care is a form of chronic early-life stress (ELS) and a risk factor for mental illness and behavioral impairments throughout the life span. The amygdala, particularly the basolateral amygdala (BLA), exhibits exquisite sensitivity to ELS and could promote dysregulation of stress reactivity and anxiety-related disorders. While ELS has profound impacts on the adult or adolescent amygdala, less is known regarding the sensitivity of the preweaning BLA to ELS. We employed a naturalistic rodent model of chronic ELS that limits the amount of bedding/nesting material (LB) available to the mother between postnatal day (PND) 1-9 and examined the morphological and functional effects in the preweaning BLA on PND10 and 18-22. BLA neurons displayed dendritic hypertrophy and increased spine numbers in male, but not female, LB pups already by PND10 and BLA volume tended to increase after LB exposure in preweaning rats, suggesting an accelerated and long-lasting recruitment of the amygdala. Morphological changes seen in male LB pups were paralleled with increased evoked synaptic responses recorded from BLA neurons in vitro, suggesting enhanced excitatory inputs to these neurons. Interestingly, morphological and functional changes in the preweaning BLA were not associated with basal hypercorticosteronemia or enhanced stress responsiveness in LB pups, perhaps due to a differential sensitivity of the neuroendocrine stress axis to the effects of LB exposure. Early changes in the synaptic organization and excitability of the neonatal amygdala might contribute to the increased anxiety-like and fear behavior observed in adulthood, specifically in male offspring.
Collapse
Affiliation(s)
- Angela Guadagno
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Claire-Dominique Walker
- Neuroscience Division, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Keshavan S, Naskar S, Diaspro A, Cancedda L, Dante S. Developmental refinement of synaptic transmission on micropatterned single layer graphene. Acta Biomater 2018; 65:363-375. [PMID: 29122711 DOI: 10.1016/j.actbio.2017.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/30/2017] [Accepted: 11/05/2017] [Indexed: 12/11/2022]
Abstract
Interfacing neurons with graphene, a single atomic layer of sp2 hybridized C-atoms, is a key paradigm in understanding how to exploit the unique properties of such a two-dimensional system for neural prosthetics and biosensors development. In order to fabricate graphene-based circuitry, a reliable large area patterning method is a requirement. Following a previously developed protocol, we monitored the in vitro neuronal development of geometrically ordered neural network growing onto patterned Single Layer Graphene (SLG) coated with poly-D-lysine. The microscale patterns were fabricated via laser micromachining and consisted of SLG stripes separated by micrometric ablated stripes. A comprehensive analysis of the biointerface was carried out combining the surface characterization of SLG transferred on the glass substrates and Immunohistochemical (IHC) staining of the developing neural network. Neuronal and glial cells proliferation, as well as cell viability, were compared on glass, SLG and SLG-patterned surfaces. Further, we present a comparative developmental study on the efficacy of synaptic transmission on control glass, on transferred SLG, and on the micropatterned SLG substrates by recording miniature post synaptic currents (mPSCs). The mPSC frequencies and amplitudes obtained on SLG-stripes, SLG only and on glass were compared. Our results indicate a very similar developmental trend in the three groups, indicating that both SLG and patterned SLG preserve synaptic efficacy and can be potentially exploited for the fabrication of large area devices for neuron sensing or stimulation. STATEMENT OF SIGNIFICANCE This paper compares the morphological and functional development of neural networks forming on glass, on Single Layer Graphene (SLG) and on microsized patterned SLG substrates after neuron spontaneous migration. Neurons developing on SLG are viable after two weeks in vitro, and, on SLG, glial cell proliferation is enhanced. The functionality of the neural networks is demonstrated by measuring the development of neuron synapses in the first and second week in vitro. Preserving the neuron synaptic efficacy, both homogeneous and patterned interfaces based on graphene can be potentially exploited for the fabrication of large area devices for neuron sensing or stimulation, as well as for next generation of bio-electronic systems, to be used as brain-interfaces.
Collapse
Affiliation(s)
- Sandeep Keshavan
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy.
| | - Shovan Naskar
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; Department of Physics, University of Genova, Genova, Italy
| | - Laura Cancedda
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, Genova, Italy
| | - Silvia Dante
- Department of Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
12
|
Research Domain Criteria versus DSM V: How does this debate affect attempts to model corticostriatal dysfunction in animals? Neurosci Biobehav Rev 2016; 76:301-316. [PMID: 27826070 DOI: 10.1016/j.neubiorev.2016.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/03/2016] [Accepted: 10/31/2016] [Indexed: 01/29/2023]
Abstract
For decades, the nosology of mental illness has been based largely upon the descriptions in the Diagnostic and Statistical Manual of the American Psychiatric Association (DSM). A recent challenge to the DSM approach to psychiatric nosology from the National Institute on Mental Health (USA) defines Research Domain Criteria (RDoC) as an alternative. For RDoC, psychiatric illnesses are not defined as discrete categories, but instead as specific behavioral dysfunctions irrespective of DSM diagnostic categories. This approach was driven by two primary weaknesses noted in the DSM: (1) the same symptoms occur in very different disease states; and (2) DSM criteria lack grounding in the underlying biological causes of mental illness. RDoC intends to ground psychiatric nosology in those underlying mechanisms. This review addresses the suitability of RDoC vs. DSM from the view of modeling mental illness in animals. A consideration of all types of psychiatric dysfunction is beyond the scope of this review, which will focus on models of conditions associated with frontostriatal dysfunction.
Collapse
|
13
|
Beas BS, McQuail JA, Ban Uelos C, Setlow B, Bizon JL. Prefrontal cortical GABAergic signaling and impaired behavioral flexibility in aged F344 rats. Neuroscience 2016; 345:274-286. [PMID: 26873002 DOI: 10.1016/j.neuroscience.2016.02.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 02/07/2023]
Abstract
The prefrontal cortex (PFC) is critical for the ability to flexibly adapt established patterns of behavior in response to a change in environmental contingencies. Impaired behavioral flexibility results in maladaptive strategies such as perseveration on response options that no longer produce a desired outcome. Pharmacological manipulations of prefrontal cortical GABAergic signaling modulate behavioral flexibility in animal models, and prefrontal cortical interneuron dysfunction is implicated in impaired behavioral flexibility that accompanies neuropsychiatric disease. As deficits in behavioral flexibility also emerge during the normal aging process, the goal of this study was to determine the role of GABAergic signaling, specifically via prefrontal cortical GABA(B) receptors, in such age-related deficits. Young and aged rats were trained in a set shifting task performed in operant chambers. First, rats learned to discriminate between two response levers to obtain a food reward on the basis of a cue light illuminated above the correct lever. Upon acquisition of this initial discrimination, the contingencies were shifted such that rats had to ignore the cue light and respond on the levers according to their left/right positions. Both young and aged rats acquired the initial discrimination similarly; however, aged rats were impaired relative to young following the set shift. Among aged rats, GABA(B) receptor expression in the medial prefrontal cortex (mPFC) was strongly correlated with set shifting, such that lower expression was associated with worse performance. Subsequent experiments showed that intra-mPFC administration of the GABA(B) receptor agonist baclofen enhanced set shifting performance in aged rats. These data directly link GABAergic signaling via GABA(B) receptors to impaired behavioral flexibility associated with normal aging.
Collapse
Affiliation(s)
- B S Beas
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| | - J A McQuail
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| | - C Ban Uelos
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| | - B Setlow
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States; Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, United States; Department of Psychology, University of Florida, Gainesville, FL, United States.
| | - J L Bizon
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States; Department of Psychiatry, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
14
|
Tse MT, Piantadosi PT, Floresco SB. Prefrontal cortical gamma-aminobutyric acid transmission and cognitive function: drawing links to schizophrenia from preclinical research. Biol Psychiatry 2015; 77:929-39. [PMID: 25442792 DOI: 10.1016/j.biopsych.2014.09.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/22/2014] [Accepted: 09/15/2014] [Indexed: 12/28/2022]
Abstract
Cognitive dysfunction in schizophrenia is one of the most pervasive and debilitating aspects of the disorder. Among the numerous neural abnormalities that may contribute to schizophrenia symptoms, perturbations in markers for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA), particularly within the frontal lobes, are some of the most reliable alterations observed at postmortem examination. However, how prefrontal GABA dysfunction contributes to cognitive impairment in schizophrenia remains unclear. We provide an overview of postmortem GABAergic perturbations in the brain affected by schizophrenia and describe circumstantial evidence linking these alterations to cognitive dysfunction. In addition, we conduct a survey of studies using neurodevelopmental, genetic, and pharmacologic rodent models that induce schizophrenia-like cognitive impairments, highlighting the convergence of these mechanistically distinct approaches to prefrontal GABAergic disruption. We review preclinical studies that have directly targeted prefrontal cortical GABAergic transmission using local application of GABAA receptor antagonists. These studies have provided an important link between GABA transmission and cognitive dysfunction in schizophrenia because they show that reducing prefrontal inhibitory transmission induces various cognitive, emotional, and dopaminergic abnormalities that resemble aspects of the disorder. These converging clinical and preclinical findings provide strong support for the idea that perturbations in GABA signaling drive certain forms of cognitive dysfunction in schizophrenia. Future studies using this approach will yield information to refine further a putative "GABA hypothesis" of schizophrenia.
Collapse
Affiliation(s)
- Maric T Tse
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Patrick T Piantadosi
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stan B Floresco
- Department of Psychology and Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
15
|
Swerdlow NR, Light GA. Animal Models of Deficient Sensorimotor Gating in Schizophrenia: Are They Still Relevant? Curr Top Behav Neurosci 2015; 28:305-25. [PMID: 27311762 DOI: 10.1007/7854_2015_5012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Animal models of impaired sensorimotor gating, as assessed by prepulse inhibition (PPI) of startle, have demonstrated clear validity at face, predictive, and construct levels for schizophrenia therapeutics, neurophysiological endophenotypes, and potential causative insults for this group of disorders. However, with the growing recognition of the heterogeneity of the schizophrenias, and the less sanguine view of the clinical value of antipsychotic (AP) medications, our field must look beyond "validity," to assess the actual utility of these models. At a substantial cost in terms of research support and intellectual capital, what has come from these models, that we can say has actually helped schizophrenia patients? Such introspection is timely, as we are reassessing not only our view of the genetic and pathophysiological diversity of these disorders, but also the predominant strategies for SZ therapeutics; indeed, our field is gaining awareness that we must move away from a "find what's broke and fix it" approach, toward identifying spared neural and cognitive function in SZ patients, and matching these residual neural assets with learning-based therapies. Perhaps, construct-valid models that identify evidence of "spared function" in neural substrates might reveal opportunities for future therapeutics and allow us to study these substrates at a mechanistic level to maximize opportunities for neuroplasticity. Such an effort will require a retooling of our models, and more importantly, a re-evaluation of their utility. For animal models to remain relevant in the search for schizophrenia therapeutics, they will need to focus less on what is valid and focus more on what is useful.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0804, USA.
| | - Gregory A Light
- Department of Psychiatry, School of Medicine, University of California, San Diego, 9500 Gilman Dr. La Jolla, San Diego, CA, 92093-0804, USA
| |
Collapse
|
16
|
Impaired adrenergic-mediated plasticity of prefrontal cortical glutamate synapses in rats with developmental disruption of the ventral hippocampus. Neuropsychopharmacology 2014; 39:2963-73. [PMID: 24917197 PMCID: PMC4229566 DOI: 10.1038/npp.2014.142] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 01/21/2023]
Abstract
Neonatal ventral hippocampus (nVH) lesion in rats is a useful model to study developmental origins of adult cognitive deficits and certain features of schizophrenia. nVH lesion-induced reorganization of excitatory and inhibitory neurotransmissions within prefrontal cortical (PFC) circuits is widely believed to be responsible for many of the behavioral abnormalities in these animals. Here we provide evidence that development of an aberrant medial PFC (mPFC) α-1 adrenergic receptor (α-1AR) function following neonatal lesion markedly affects glutamatergic synaptic plasticity within PFC microcircuits and contributes to PFC-related behavior abnormalities. Using whole-cell patch-clamp recording, we report that norepinephrine-induced α-1AR-dependent long-term depression (LTD) in a subset of cortico-cortical glutamatergic inputs is strikingly diminished in mPFC slices from nVH-lesioned rats. The LTD impairment occurs in conjunction with completely blunted α-1AR signaling through extracellular signal-regulated kinase 1/2. These α-1AR abnormalities have functional significance in a mPFC-related function, that is, extinction of conditioned fear memory. Post-pubertal animals with nVH lesion show significant resistance to extinction of fear by repeated presentations of the conditioned tone stimulus. mPFC infusion of an α-1AR antagonist (benoxathian) or LTD blocking peptide (Tat-GluR23Y) impaired fear extinction in sham controls, but had no significant effect in the lesioned animals. The data suggest that impaired α-1 adrenergic regulation of cortical glutamatergic synaptic plasticity may be an important mechanism in cognitive dysfunctions reported in neurodevelopmental psychiatric disorders.
Collapse
|
17
|
Okine BN, Rea K, Olango WM, Price J, Herdman S, Madasu MK, Roche M, Finn DP. A role for PPARα in the medial prefrontal cortex in formalin-evoked nociceptive responding in rats. Br J Pharmacol 2014; 171:1462-71. [PMID: 24303983 DOI: 10.1111/bph.12540] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 10/02/2013] [Accepted: 10/27/2013] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE The nuclear hormone receptor, PPARα, and its endogenous ligands, are involved in pain modulation. PPARα is expressed in the medial prefrontal cortex (mPFC), a key brain region involved in both the cognitive-affective component of pain and in descending modulation of pain. However, the role of PPARα in the mPFC in pain responding has not been investigated. Here, we investigated the effects of pharmacological modulation of PPARα in the rat mPFC on formalin-evoked nociceptive behaviour and the impact of formalin-induced nociception on components of PPARα signalling in the mPFC. EXPERIMENTAL APPROACH The effects of intra-mPFC microinjection of a PPARα agonist (GW7647) or a PPARα antagonist (GW6471) on formalin-evoked nociceptive behaviour in rats were studied. Quantitative real-time PCR and LC-MS/MS were used to study the effects of intraplantar injection of formalin on PPARα mRNA expression and levels of endogenous ligands, respectively, in the mPFC. KEY RESULTS Intra-mPFC administration of GW6471, but not GW7647, resulted in delayed onset of the early second phase of formalin-evoked nociceptive behaviour. Furthermore, formalin-evoked nociceptive behaviour was associated with significant reductions in mPFC levels of endogenous PPARα ligands (N-palmitoylethanolamide and N-oleoylethanolamide) and a 70% reduction in PPARα mRNA but not protein expression. CONCLUSIONS AND IMPLICATIONS These data suggest that endogenous ligands may act at PPARα in the mPFC to play a facilitatory/permissive role in second phase formalin-evoked nociceptive behaviour in rats. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6.
Collapse
Affiliation(s)
- B N Okine
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland Galway, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, Galway, Ireland
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Changes in long-range connectivity and neuronal reorganization in partial cortical deafferentation model of epileptogenesis. Neuroscience 2014; 284:153-164. [PMID: 25304932 DOI: 10.1016/j.neuroscience.2014.09.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/22/2014] [Accepted: 09/30/2014] [Indexed: 12/22/2022]
Abstract
Severe brain injuries can trigger epileptogenesis, a latent period that eventually leads to epilepsy. Previous studies have demonstrated that changes in local connectivity between cortical neurons are a part of the epileptogenic processes. In the present study we aimed to investigate whether changes in long-range connectivity are also involved in epileptogenesis. We performed a large unilateral transection (undercut) of the white matter below the suprasylvian gyrus in cats. After about 2 months, we either injected retrograde tracer (cholera toxin, sub-unit B, CTB) or performed Golgi staining. We analyzed distribution of retrogradely labeled neurons, counted dendritic spines in the neocortex (Golgi staining), and analyzed dendritic orientation in control conditions and after the injury. We found a significant increase in the number of detected cells at the frontal parts of the injured hemisphere, which suggests that the process of axonal sprouting occurs in the deafferented area. The increase in the number of retrogradely stained neurons was accompanied with a significant decrease in neocortical spine density in the undercut area, a reduction in vertical and an increase in horizontal orientation of neuronal processes. The present study shows global morphological changes underlying epileptogenesis. An increased connectivity in the injured cortical regions accompanied with a decrease in spine density suggests that excitatory synapses might be formed on dendritic shafts, which probably contributes to the altered neuronal excitability that was described in previous studies on epileptogenesis.
Collapse
|
19
|
Impairments in set-shifting but not reversal learning in the neonatal ventral hippocampal lesion model of schizophrenia: Further evidence for medial prefrontal deficits. Behav Brain Res 2013; 256:405-13. [DOI: 10.1016/j.bbr.2013.08.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/15/2013] [Accepted: 08/19/2013] [Indexed: 01/16/2023]
|
20
|
Swerdlow NR, Powell SB, Breier MR, Hines SR, Light GA. Coupling of gene expression in medial prefrontal cortex and nucleus accumbens after neonatal ventral hippocampal lesions accompanies deficits in sensorimotor gating and auditory processing in rats. Neuropharmacology 2013; 75:38-46. [PMID: 23810830 DOI: 10.1016/j.neuropharm.2013.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 05/30/2013] [Accepted: 06/03/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND After neonatal ventral hippocampal lesions (NVHLs), adult rats exhibit evidence of neural processing deficits relevant to schizophrenia, including reduced prepulse inhibition (PPI) of acoustic startle and impaired sensory processing. In intact rats, the regulation of PPI by the ventral hippocampus (VH) is mediated via interactions with medial prefrontal cortex (mPFC) and nucleus accumbens (NAC). We assessed PPI, auditory-evoked responses and expression of 7 schizophrenia-related genes in mPFC and NAC, in adult rats after sham- or real NVHLs. METHODS Male inbred Buffalo (BUF) rat pups (d7; n=36) received either vehicle or ibotenic acid infusion into the VH. PPI and auditory-evoked dentate gyrus local field potentials (LFPs) were measured on d56 and d66, respectively. Brains were processed for RT-PCR measures of mPFC and NAC Comt, Erbb4, Grid2, Ncam1, Slc1a2, Nrg1 and Reln. RESULTS NVHL rats exhibited significant deficits in PPI (p=0.005) and LFPs (p<0.015) proportional to lesion size. Sham vs. NVHL rats did not differ in gene expression levels in mPFC or NAC. As we previously reported, multiple gene expression levels were highly correlated within- (mean r's≈0.5), but not across-brain regions (mean r's≈0). However, for three genes--Comt, Slc1a2 and Ncam1--after NVHLs, expression levels became significantly correlated, or "coupled," across the mPFC and NAC (p's<0.03, 0.002 and 0.05, respectively), and the degree of "coupling" increased with VH lesion size. CONCLUSIONS After NVHLs that disrupt PPI and auditory processing, specific gene expression levels suggest an abnormal functional coupling of the mPFC and NAC. This model of VH-mPFC-NAC network dysfunction after NVHLs may have implications for understanding the neural basis for PPI- and related sensory processing deficits in schizophrenia patients.
Collapse
Affiliation(s)
- Neal R Swerdlow
- Department of Psychiatry, UCSD School of Medicine, 9500 Gilman Dr., Mail Code 0804, La Jolla, CA 92093-0804, USA.
| | - Susan B Powell
- Department of Psychiatry, UCSD School of Medicine, 9500 Gilman Dr., Mail Code 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| | - Michelle R Breier
- Department of Psychiatry, UCSD School of Medicine, 9500 Gilman Dr., Mail Code 0804, La Jolla, CA 92093-0804, USA
| | - Samantha R Hines
- Department of Psychiatry, UCSD School of Medicine, 9500 Gilman Dr., Mail Code 0804, La Jolla, CA 92093-0804, USA
| | - Gregory A Light
- Department of Psychiatry, UCSD School of Medicine, 9500 Gilman Dr., Mail Code 0804, La Jolla, CA 92093-0804, USA; Research Service, VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
21
|
Dendritic morphology changes in neurons from the prefrontal cortex, hippocampus and nucleus accumbens in rats after lesion of the thalamic reticular nucleus. Neuroscience 2012; 223:429-38. [DOI: 10.1016/j.neuroscience.2012.07.042] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/01/2012] [Accepted: 07/20/2012] [Indexed: 12/22/2022]
|