1
|
Li W, Fan W, Zhang S, Zhang H, Zhang D, Wen L. Aberrant cerebral activity in patients with unruptured intracranial aneurysm: a resting-state functional MRI study. Brain Struct Funct 2025; 230:68. [PMID: 40394222 DOI: 10.1007/s00429-025-02934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 05/07/2025] [Indexed: 05/22/2025]
Abstract
Patients carrying unruptured intracranial aneurysm (UIA) often experience emotional alterations and cognitive impairments. While the specific mechanisms underlying these impairments are still not fully understood. The study measured the amplitude of low-frequency fluctuation (ALFF) and functional connectivity (FC) to investigate the abnormal brain functional alterations in 49 UIA patients compared with 50 healthy controls, and also analyzed the correlations among neuroimaging indices, the clinical data, and the neuropsychological test results. UIA patients exhibited more active brain region activity in the right hippocampus than the healthy group and showed negatively activated brain regions, including the cuneus, left paracentral lobule, and right postcentral gyrus. Furthermore, the strength of FC decreased in the bilateral middle cingulate gyrus; right superior temporal gyrus and insula; and left parahippocampal gyrus, fusiform gyrus, lingual gyrus, inferior frontal gyrus, and middle frontal gyrus. The abnormal activities in the aforementioned brain regions were closely linked to worse performance in emotion and cognition. The study presents a potential neuroimaging-based mechanism of brain function that could explain the emotional alterations and cognitive impairments in UIA patients.
Collapse
Affiliation(s)
- Wei Li
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
- Department of Radiology, 987th Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Baoji, 721015, Shaanxi Province, People's Republic of China
| | - Weijie Fan
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Si Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Haiyu Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Dong Zhang
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China
| | - Li Wen
- Department of Radiology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, People's Republic of China.
| |
Collapse
|
2
|
Ji R, Deng C, Zhang J, Chen H, Xu Z, Hao Z, Luo B. Abnormalities of regional brain activity in patients with asymptomatic internal carotid artery occlusion: a resting-state fMRI study. BMC Neurol 2025; 25:182. [PMID: 40281414 PMCID: PMC12023367 DOI: 10.1186/s12883-025-04156-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Asymptomatic internal carotid artery occlusion (aICAO) disrupts cerebral blood flow and can impair brain function. While previous research has primarily focused on abnormal functional connectivity between brain networks or regions in aICAO patients, less is known about specific regional brain activity alterations. This study investigated changes in local brain activity and their associations with cognitive function in patients with aICAO. METHODS A total of 26 unilateral patients with aICAO without MRI lesions and 25 matched healthy controls (HCs) underwent resting-state functional magnetic resonance imaging and neuropsychological assessment. Local brain activity in patients with aICAO was investigated using percentage amplitude of fluctuation (PerAF) and degree centrality (DC). The association between the abnormal regional brain activity in patients with aICAO and cognitive function was also explored. RESULTS Compared with HCs, patients with aICAO showed decreased PerAF in the ipsilateral (occlusion side, right) superior temporal gyrus (temporal pole), ipsilateral inferior frontal gyrus (triangular part). In addition, decreased DC was detected in the ipsilateral cuneus of patients with aICAO, while increased DC was observed in the contralateral (opposite to occlusion side, left) precuneus and contralateral inferior frontal gyrus (triangular part) among patients with aICAO. Furthermore, the DC value of contralateral precuneus in aICAO group was negatively correlated with Montreal Cognitive Assessment (MoCA) (r = -0.612, p = 0.002), Forward Digit Span Test (FDST) (r = -0.677, p = 0.001), and Backward Digit Span Test (BDST) (r = -0.531, p = 0.011) scores. CONCLUSIONS Our findings revealed abnormal local spontaneous brain activity within brain regions associated with cognitive functions in patients with unilateral aICAO. Notably, some of these abnormalities correlated with their cognitive impairments. This study contributes to the understanding of potential neural mechanisms underlying cognitive dysfunction in unilateral aICAO patients.
Collapse
Affiliation(s)
- Renjie Ji
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China
| | - Chunlan Deng
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China
| | - Jianxin Zhang
- School of Foreign Studies, China University of Petroleum (East China), Qingdao, China
| | - Hanfeng Chen
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China
| | - Ziqi Xu
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China
| | - Zeqi Hao
- School of Psychology, Zhejiang Normal University, Jinhua, China.
| | - Benyan Luo
- Department of Neurology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China.
| |
Collapse
|
3
|
Cao B, Guo Y, Lu M, Wu X, Deng F, Wang J, Huang R. The long-term intensive gymnastic training influences functional stability and integration: A resting-state fMRI study. PSYCHOLOGY OF SPORT AND EXERCISE 2024; 74:102678. [PMID: 38821251 DOI: 10.1016/j.psychsport.2024.102678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 03/17/2024] [Accepted: 05/22/2024] [Indexed: 06/02/2024]
Abstract
INTRODUCTION Long-term motor skill training has been shown to induce anatomical and functional neuroplasticity. World class gymnasts (WCGs) provide a unique opportunity to investigate the effect of long-term intensive training on neuroplasticity. Previous resting-state fMRI studies have demonstrated a high efficient information processing related to motor and cognitive functions in gymnasts compared with healthy controls (HCs). However, most research treated brain signals as static, overlooking the fact that the brain is a complex and dynamic system. In this study, we employed functional stability, a new metric based on dynamic functional connectivity (FC), to examine the impact of long-term intensive training on the functional architecture in the WCGs. METHODS We first conducted a voxel-wise analysis of functional stability between the WCGs and HCs. Then, we applied FC density (FCD) to explore whether regions with modified functional stability were also accompanied by changes in connection patterns in the WCGs. We identified overlapping regions showing significant differences in both functional stability and FCD. Finally, we applied seed-based correlation analysis (SCA) to determine the detailed changes in connection patterns between the WCGs and HCs within these overlapping regions. RESULTS Compared with the HCs, the WCGs exhibited higher functional stability in the bilateral angular gyrus (AG), bilateral inferior temporal gyrus (ITG), bilateral precentral gyrus, and right superior frontal gyrus and lower functional stability in the bilateral hippocampus, bilateral caudate, right rolandic operculum, left superior temporal gyrus, right middle frontal gyrus, right middle cingular cortex, and right precuneus than the HCs. We found that the bilateral AG and ITG not only showed higher functional stability but also increased global and long-range FCD in the WCGs relative to the HCs. The right precuneus displayed lower functional stability as well as decreased local, long-range, and global FCD in the WCGs. Both AG and ITG showed higher FC with regions in the default mode network (DMN) in the WCGs than in the HCs. CONCLUSIONS The increased functional stability in the AG and ITG might be associated with enhanced functional integration within the DMN in the WCGs. These findings may offer new spatiotemporal evidence for the impact of long-term intensive training on neuroplasticity.
Collapse
Affiliation(s)
- Bolin Cao
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
| | - Yu Guo
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
| | - Min Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyan Wu
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
| | - Feng Deng
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China
| | - Jun Wang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| | - Ruiwang Huang
- School of Psychology, Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, China.
| |
Collapse
|
4
|
Amaral L, Thomas P, Amedi A, Striem-Amit E. Longitudinal stability of individual brain plasticity patterns in blindness. Proc Natl Acad Sci U S A 2024; 121:e2320251121. [PMID: 39078671 PMCID: PMC11317565 DOI: 10.1073/pnas.2320251121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/24/2024] [Indexed: 07/31/2024] Open
Abstract
The primary visual cortex (V1) in blindness is engaged in a wide spectrum of tasks and sensory modalities, including audition, touch, language, and memory. This widespread involvement raises questions regarding the constancy of its role and whether it might exhibit flexibility in its function over time, connecting to diverse network functions specific to task demands. This would suggest that reorganized V1 assumes a role like multiple-demand system regions. Alternatively, varying patterns of plasticity in blind V1 may be attributed to individual factors, with different blind individuals recruiting V1 preferentially for different functions. In support of this, we recently showed that V1 functional connectivity (FC) varies greatly across blind individuals. But do these represent stable individual patterns of plasticity, or are they driven more by instantaneous changes, like a multiple-demand system now inhabiting V1? Here, we tested whether individual FC patterns from the V1 of blind individuals are stable over time. We show that over two years, FC from the V1 is unique and highly stable in a small sample of repeatedly sampled congenitally blind individuals. Further, using multivoxel pattern analysis, we demonstrate that the unique reorganization patterns of these individuals allow decoding of participant identity. Together with recent evidence for substantial individual differences in V1 connectivity, this indicates that there may be a consistent role for V1 in blindness, which may differ for each individual. Further, it suggests that the variability in visual reorganization in blindness across individuals could be used to seek stable neuromarkers for sight rehabilitation and assistive approaches.
Collapse
Affiliation(s)
- Lénia Amaral
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC20057
| | - Peyton Thomas
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC20057
| | - Amir Amedi
- Ivcher School of Psychology, The Institute for Brain, Mind and Technology, Reichman University, Herzliya4610101, Israel
- The Ruth & Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya4610101, Israel
| | - Ella Striem-Amit
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC20057
| |
Collapse
|
5
|
Zhang X, Chen Z, Li Y, Xie C, Liu Z, Wu Q, Kuang M, Yan R, Wu F, Liu H. Volume development changes in the occipital lobe gyrus assessed by MRI in fetuses with isolated ventriculomegaly correlate with neurological development in infancy and early childhood. J Perinatol 2024; 44:1178-1185. [PMID: 38802655 DOI: 10.1038/s41372-024-02012-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE This study was to systematically assess the occipital lobe gray and white matter volume of isolated ventriculomegaly (IVM) fetuses with MRI and to follow up the neurodevelopment of participants. METHOD MRI was used to evaluate 37 IVM fetuses and 37 control fetuses. The volume of gray and white matter in each fetal occipital gyrus was manually segmented and compared, and neurodevelopment was followed up and assessed in infancy and early childhood. RESULT Compared with the control group, the volume of gray matter in occipital lobe increased in the IVM group, and the incidence of neurodevelopmental delay increased. CONCLUSION We tested the hypothesis that prenatal diagnosis IVM represents a biological marker for development in fetal occipital lobe. Compared with the control group, the IVM group showed differences in occipital gray matter development and had a higher risk of neurodevelopmental delay.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Zhaoji Chen
- Department of Radiology, Hexian Memorial Hospital of PanYu District, Guangzhou, China
| | - Yuchao Li
- Department of Radiology, Longhua District People's Hospital, Shenzhen, China
| | - Chenxin Xie
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Zhenqing Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Qianqian Wu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Minwei Kuang
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Ren Yan
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Fan Wu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China.
| | - Hongsheng Liu
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China.
| |
Collapse
|
6
|
Xie B, Yang S, Hao Y, Sun Y, Li L, Guo C, Yang Y. Impaired olfactory identification in dementia-free individuals is associated with the functional abnormality of the precuneus. Neurobiol Dis 2024; 194:106483. [PMID: 38527709 DOI: 10.1016/j.nbd.2024.106483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024] Open
Abstract
OBJECTIVE Olfactory dysfunction indicates a higher risk of developing dementia. However, the potential structural and functional changes are still largely unknown. METHODS A total of 236 participants were enrolled, including 45 Alzheimer's disease (AD) individuals and 191dementia-free individuals. Detailed study methods, comprising neuropsychological assessment and olfactory identification test (University of Pennsylvania smell identification test, UPSIT), as well as structural and functional magnetic resonance imaging (MRI) were applied in this research. The dementia-free individuals were divided into two sub-groups based on olfactory score: dementia-free with olfactory dysfunction (DF-OD) sub-group and dementia-free without olfactory dysfunction (DF-NOD) sub-group. The results were analyzed for subsequent intergroup comparisons and correlations. The cognitive assessment was conducted again three years later. RESULTS (i) At dementia-free stage, there was a positive correlation between olfactory score and cognitive function. (ii) In dementia-free group, the volume of crucial brain structures involved in olfactory recognition and processing (such as amygdala, entorhinal cortex and basal forebrain volumes) are positively associated with olfactory score. (iii) Compared to the DF-NOD group, the DF-OD group showed a significant reduction in olfactory network (ON) function. (iv) Compared to DF-NOD group, there were significant functional connectivity (FC) decline between PCun_L(R)_4_1 in the precuneus of posterior default mode network (pDMN) and the salience network (SN) in DF-OD group, and the FC values decreased with falling olfactory scores. Moreover, in DF-OD group, the noteworthy reduction in FC were observed between PCun_L(R)_4_1 and amygdala, which was a crucial component of ON. (v) The AD conversion rate of DF-OD was 29.41%, while the DF-NOD group was 12.50%. The structural and functional changes in the precuneus were also observed in AD and were more severe. CONCLUSIONS In addition to the olfactory circuit, the precuneus is a critical structure in the odor identification process, whose abnormal function underlies the olfactory identification impairment of dementia-free individuals.
Collapse
Affiliation(s)
- Bo Xie
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Simin Yang
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yitong Hao
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yining Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Ludi Li
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chunjie Guo
- Department of Radiology, The First Hospital of Jilin University, Changchun 130021, China
| | - Yu Yang
- Department of Neurology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
7
|
Wang F, Zhou T, Wang P, Zhang Y, Jiang J. Study of vision-related resting-state activity in suprasellar tumor patients with postoperative visual damage. Brain Behav 2024; 14:e3462. [PMID: 38468484 PMCID: PMC10928331 DOI: 10.1002/brb3.3462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 02/08/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024] Open
Abstract
INTRODUCTION The objective of this study was to investigate changes in vision-related resting-state activity in patients with suprasellar tumors (ST) who experienced vision deterioration after surgery. METHODS Twelve patients with ST and vision deterioration after surgery were included in the study. Resting-state functional connectivity (FC) was compared before and after surgery using a seed-based analysis with a priori specified regions of interest (ROIs) within the visual areas. The differences between the two groups were identified using a paired t-test. RESULTS The data showed a decrease in FC within and between the dorsal and ventral pathways, as well as in the third pathway in ST patients. The middle temporal visual cortex (MT+) showed a decreased FC with more regions than other visual ROIs. The data also revealed an increase in FC between the visual ROIs and higher-order cortex. The superior frontal gyrus/BA8 showed an increased FC with more ROIs than other high-order regions, and the hOC4d was involved in an increased FC with more high-order regions than other ROIs. CONCLUSIONS The study results indicate significant neural reorganization in the vision-related cortex of ST patients with postoperative vision damage. Most subareas within the visual cortex showed remarkable neural dysfunction, and some highe-order cortex may be primarily involved in top-down control of the subareas within the visual cortex. The hot zones may arise in the processing of "top-down" influence.
Collapse
Affiliation(s)
- Fuyu Wang
- Department of NeurosurgeryThe First Medical Center, Chinese PLA General HospitalBeijingChina
| | - Tao Zhou
- Department of NeurosurgeryThe First Medical Center, Chinese PLA General HospitalBeijingChina
| | - Peng Wang
- Department of NeurosurgeryThe First Medical Center, Chinese PLA General HospitalBeijingChina
| | - Yanyang Zhang
- Department of NeurosurgeryThe First Medical Center, Chinese PLA General HospitalBeijingChina
| | - Jinli Jiang
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalSanyaChina
| |
Collapse
|
8
|
Landmann E, Krahmer A, Böckler A. Social Understanding beyond the Familiar: Disparity in Visual Abilities Does Not Impede Empathy and Theory of Mind. J Intell 2023; 12:2. [PMID: 38248900 PMCID: PMC10816830 DOI: 10.3390/jintelligence12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 01/23/2024] Open
Abstract
Feeling with our conspecifics and understanding their sentiments and intentions is a crucial part of our lives. What is the basis for these forms of social understanding? If individuals ground their understanding of others' thoughts and feelings in their own perceptual and factual experiences, it could present a challenge to empathize and mentalize with those whose reality of life is significantly different. This preregistered study compared two groups of participants who differed in a central perceptual feature, their visual abilities (visually impaired vs. unimpaired; total N = 56), concerning their social understanding of others who were themselves either visually impaired or unimpaired. Employing an adjusted version of the EmpaToM task, participants heard short, autobiographic narrations by visually impaired or unimpaired individuals, and we assessed their empathic responding and mentalizing performance. Our findings did not reveal heightened empathy and mentalizing proclivities when the narrator's visual abilities aligned with those of the participant. However, in some circumstances, cognitive understanding of others' narrations benefitted from familiarity with the situation. Overall, our findings suggest that social understanding does not mainly rely on perceptual familiarity with concrete situations but is likely grounded in sharing emotions and experiences on a more fundamental level.
Collapse
Affiliation(s)
- Eva Landmann
- Department of Psychology, University of Würzburg, 97070 Würzburg, Germany (A.B.)
| | | | | |
Collapse
|
9
|
Amaral L, Thomas P, Amedi A, Striem-Amit E. Longitudinal stability of individual brain plasticity patterns in blindness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565196. [PMID: 37986779 PMCID: PMC10659359 DOI: 10.1101/2023.11.01.565196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The primary visual cortex (V1) in individuals born blind is engaged in a wide spectrum of tasks and sensory modalities, including audition, touch, language, and memory. This widespread involvement raises questions regarding the constancy of its role and whether it might exhibit flexibility in its function over time, connecting to diverse network functions in response to task-specific demands. This would suggest that reorganized V1 takes on a role similar to cognitive multiple-demand system regions. Alternatively, it is possible that the varying patterns of plasticity observed in the blind V1 can be attributed to individual factors, whereby different blind individuals recruit V1 for different functions, highlighting the immense idiosyncrasy of plasticity. In support of this second account, we have recently shown that V1 functional connectivity varies greatly across blind individuals. But do these represent stable individual patterns of plasticity or merely instantaneous changes, for a multiple-demand system now inhabiting V1? Here we tested if individual connectivity patterns from the visual cortex of blind individuals are stable over time. We show that over two years, fMRI functional connectivity from the primary visual cortex is unique and highly stable in a small sample of repeatedly sampled congenitally blind individuals. Further, using multivoxel pattern analysis, we demonstrate that the unique reorganization patterns of these individuals allow decoding of participant identity. Together with recent evidence for substantial individual differences in visual cortex connectivity, this indicates there may be a consistent role for the visual cortex in blindness, which may differ for each individual. Further, it suggests that the variability in visual reorganization in blindness across individuals could be used to seek stable neuromarkers for sight rehabilitation and assistive approaches.
Collapse
Affiliation(s)
- Lénia Amaral
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Peyton Thomas
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Amir Amedi
- Ivcher School of Psychology, The Institute for Brain, Mind and Technology, Reichman University, Herzliya, Israel
- The Ruth & Meir Rosenthal Brain Imaging Center, Reichman University, Herzliya, Israel
| | - Ella Striem-Amit
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
10
|
Wang L, Ji Y, Ding H, Tian Q, Fan K, Shi D, Yu C, Qin W. Abnormal cerebral blood flow in patients with Leber's hereditary optic neuropathy. Brain Imaging Behav 2023; 17:471-480. [PMID: 37368154 DOI: 10.1007/s11682-023-00775-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2023] [Indexed: 06/28/2023]
Abstract
PURPOSE The study aimed to unravel abnormal cerebral blood flow (CBF) in patients with Leber's hereditary optic neuropathy (LHON) using arterial spin labeling (ASL) and to investigate the associations among disrupted CBF, disease duration, and neuro-ophthalmological impairment. METHODS ASL perfusion imaging data was collected from 20 patients with acute LHON, 29 patients with chronic LHON, and 37 healthy controls. We used a one-way analysis of covariance to test the intergroup differences in CBF. Linear and nonlinear curve fit models were applied to explore the associations among CBF, disease duration, and neuro-ophthalmological metrics. RESULTS Brain regions differed in LHON patients, including the left sensorimotor and bilateral visual areas (p < 0.05, cluster-wise family-wise error correction). Acute and chronic LHON patients demonstrated lower CBF in bilateral calcarine than the healthy controls. Chronic LHON had lower CBF in the left middle frontal gyrus and sensorimotor cortex, and temporal-partial junction than the healthy controls and acute LHON. A significant logarithmic negative correlation was shown between CBF of left middle frontal gyrus and disease duration. A significant linear positive correlation was found between retinal nerve fiber layer thickness and CBF in left middle frontal gyrus, and negative correlations between loss of variance and CBF in left middle frontal gyrus and sensorimotor cortex (p < 0.05, Bonferroni correction). CONCLUSION LHON patients exhibited reduced CBF in the visual pathway, sensorimotor and higher-tier cognitive areas. Disease duration and neuro-ophthalmological impairments can influence the metabolism of non-visual areas.
Collapse
Affiliation(s)
- Ling Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Yi Ji
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Hao Ding
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300070, China
| | - Qin Tian
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Ke Fan
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, China
| | - Dapeng Shi
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
- Department of Medical Imaging, Henan Provincial People's Hospital, Sanquan College of Xinxiang Medical University, Weiwu Road No. 7, Jinshui District, ZhengZhou, Henan Province, China.
| | - Chunshui Yu
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Department of Radiology, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| | - Wen Qin
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Department of Radiology, Tianjin Medical University General Hospital, Anshan Road No. 154, Heping District, Tianjin, 300052, China.
| |
Collapse
|
11
|
Bouguiyoud N, Xie WB, Bronchti G, Frasnelli J, Al Aïn S. Enhanced maternal behaviors in a mouse model of congenital blindness. Dev Psychobiol 2023; 65:e22406. [PMID: 37607896 DOI: 10.1002/dev.22406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 08/24/2023]
Abstract
In mammals, mothering is one of the most important prosocial female behavior to promote survival, proper sensorimotor, and emotional development of the offspring. Different intrinsic and extrinsic factors can initiate and maintain these behaviors, such as hormonal, cerebral, and sensory changes. Infant cues also stimulate multisensory systems and orchestrate complex maternal responsiveness. To understand the maternal behavior driven by complex sensory interactions, it is necessary to comprehend the individual sensory systems by taking out other senses. An excellent model for investigating sensory regulation of maternal behavior is a murine model of congenital blindness, the ZRDBA mice, where both an anophthalmic and sighted mice are generated from the same litter. Therefore, this study aims to assess whether visual inputs are essential to driving maternal behaviors in mice. Maternal behaviors were assessed using three behavioral tests, including the pup retrieval test, the home cage maternal behavior test, and the maternal aggression test. Our results show that blind mothers (1) took less time to retrieve their offspring inside the nest, (2) spent more time nursing and licking their offspring in the second- and third-week postpartum, and (3) exhibited faster aggressive behaviors when exposed to an intruder male, compared to the sighted counterparts. This study provides evidence that congenitally blind mothers show more motivation to retrieve the pups, care, and protection towards their pups than sighted ones, likely due to a phenomenon of sensory compensation.
Collapse
Affiliation(s)
- Nouhaila Bouguiyoud
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Wen Bin Xie
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Gilles Bronchti
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Johannes Frasnelli
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| | - Syrina Al Aïn
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
- CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, Quebec, Canada
| |
Collapse
|
12
|
Wang S, Zhao Y, Li J. True grit and brain: Trait grit mediates the connection of DLPFC functional connectivity density to posttraumatic growth following COVID-19. J Affect Disord 2023; 325:313-320. [PMID: 36627056 PMCID: PMC9824952 DOI: 10.1016/j.jad.2023.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
BACKGROUND There is increasing interest in identifying factors to predict posttraumatic growth (PTG), a positive psychological response following traumatic events (e.g., the COVID-19 pandemic). Grit, a psychological trait of perseverance and passion to pursue long-term goals, has emerged as a promising predictor for PTG. This study aimed to examine the functional connectivity markers of grit and the potential brain-grit mechanism in predicting PTG. METHODS Baseline brain imaging scans and grit scale and other controlling measures were administered in 100 normal young adults before the COVID-19 pandemic, and follow-up PTG measurement was obtained during the period of community-level outbreak. Whole-brain correlation analysis and prediction analysis were used to identify the brain regions whose functional connectivity density (FCD) related to individuals' grit scores. Mediation analyses were performed to explore the mediation relation between FCD, grit and PTG. RESULTS Grit was positively related to FCD in the right dorsolateral prefrontal cortex (DLPFC), a core hub implicated in self-regulation and reward-motivation processes. Furthermore, grit mediated the effect of right DLPFC FCD on COVID-related PTG. These results survived controlling for self-control and family socioeconomic status. LIMITATIONS Our study is limited by only one-session neuroimaging data and self-reported behavioral measures in a sample of normal adults. CONCLUSIONS This study indicates grit and right DLPFC FCD as neuropsychological contributors for the development of PTG. It deepens our understanding of the neural bases of grit, and may have clinical potential to develop targeted brain interventions aimed at improving grit to raise PTG and mental health during the pandemic.
Collapse
Affiliation(s)
- Song Wang
- College of Teacher Education, Dali University, Dali, China; West China Hospital of Sichuan University, Chengdu, China.
| | - Yajun Zhao
- School of Education and Psychology, Southwest Minzu University, Chengdu, China
| | - Jingguang Li
- College of Teacher Education, Dali University, Dali, China.
| |
Collapse
|
13
|
Ji Y, Wang L, Ding H, Tian Q, Fan K, Shi D, Yu C, Qin W. Aberrant neurovascular coupling in Leber's hereditary optic neuropathy: Evidence from a multi-model MRI analysis. Front Neurosci 2023; 16:1050772. [PMID: 36703998 PMCID: PMC9871937 DOI: 10.3389/fnins.2022.1050772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/22/2022] [Indexed: 01/12/2023] Open
Abstract
The study aimed to investigate the neurovascular coupling abnormalities in Leber's hereditary optic neuropathy (LHON) and their associations with clinical manifestations. Twenty qualified acute Leber's hereditary optic neuropathy (A-LHON, disease duration ≤ 1 year), 29 chronic Leber's hereditary optic neuropathy (C-LHON, disease duration > 1 year), as well as 37 healthy controls (HCs) were recruited. The neurovascular coupling strength was quantified as the ratio between regional homogeneity (ReHo), which represents intrinsic neuronal activity and relative cerebral blood flow (CBF), representing microcirculatory blood supply. A one-way analysis of variance was used to compare intergroup differences in ReHo/CBF ratio with gender and age as co-variables. Pearson's Correlation was used to clarify the association between ReHo, CBF, and neurovascular coupling strength. Furthermore, we applied linear and exponential non-linear regression models to explore the associations among ReHo/CBF, disease duration, and neuro-ophthalmological metrics. Compared with HCs, A_LHON, and C_LHON patients demonstrated a higher ReHo/CBF ratio than the HCs in the bilateral primary visual cortex (B_CAL), which was accompanied by reduced CBF while preserved ReHo. Besides, only C_LHON had a higher ReHo/CBF ratio and reduced CBF in the left middle temporal gyrus (L_MTG) and left sensorimotor cortex (L_SMC) than the HCs, which was accompanied by increased ReHo in L_MTG (p < 1.85e-3, Bonferroni correction). A-LHON and C-LHON showed a negative Pearson correlation between ReHo/CBF ratio and CBF in B_CAL, L_SMC, and L_MTG. Only C_LHON showed a weak positive correlation between ReHo/CBF ratio and ReHo in L_SMC and L_MTG (p < 0.05, uncorrected). Finally, disease duration was positively correlated with ReHo/CBF ratio of L_SMC (Exponential: Radj2 = 0.23, p = 8.66e-4, Bonferroni correction). No statistical correlation was found between ReHo/CBF ratio and neuro-ophthalmological metrics (p > 0.05, Bonferroni correction). Brain neurovascular "dyscoupling" within and outside the visual system might be an important neurological mechanism of LHON.
Collapse
Affiliation(s)
- Yi Ji
- Tianjin Key Lab of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ling Wang
- Department of Medical Imaging, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Hao Ding
- Tianjin Key Lab of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China,School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Qin Tian
- Department of Medical Imaging, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Ke Fan
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou, China
| | - Dapeng Shi
- Department of Medical Imaging, Henan Provincial People’s Hospital, Zhengzhou, China,*Correspondence: Dapeng Shi,
| | - Chunshui Yu
- Tianjin Key Lab of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China,Chunshui Yu,
| | - Wen Qin
- Tianjin Key Lab of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China,Wen Qin,
| |
Collapse
|
14
|
Nadvar N, Stiles N, Choupan J, Patel V, Ameri H, Shi Y, Liu Z, Jonides J, Weiland J. Sight restoration reverses blindness-induced cross-modal functional connectivity changes between the visual and somatosensory cortex at rest. Front Neurosci 2022; 16:902866. [PMID: 36213743 PMCID: PMC9539921 DOI: 10.3389/fnins.2022.902866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
Resting-state functional connectivity (rsFC) has been used to assess the effect of vision loss on brain plasticity. With the emergence of vision restoration therapies, rsFC analysis provides a means to assess the functional changes following sight restoration. Our study demonstrates a partial reversal of blindness-induced rsFC changes in Argus II retinal prosthesis patients compared to those with severe retinitis pigmentosa (RP). For 10 healthy control (HC), 10 RP, and 7 Argus II subjects, four runs of resting-state functional magnetic resonance imaging (fMRI) per subject were included in our study. rsFC maps were created with the primary visual cortex (V1) as the seed. The rsFC group contrast maps for RP > HC, Argus II > RP, and Argus II > HC revealed regions in the post-central gyrus (PostCG) with significant reduction, significant enhancement, and no significant changes in rsFC to V1 for the three contrasts, respectively. These findings were also confirmed by the respective V1-PostCG ROI-ROI analyses between test groups. Finally, the extent of significant rsFC to V1 in the PostCG region was 5,961 in HC, 0 in RP, and 842 mm3 in Argus II groups. Our results showed a reduction of visual-somatosensory rsFC following blindness, consistent with previous findings. This connectivity was enhanced following sight recovery with Argus II, representing a reversal of changes in cross-modal functional plasticity as manifested during rest, despite the rudimentary vision obtained by Argus II patients. Future investigation with a larger number of test subjects into this rare condition can further unveil the profound ability of our brain to reorganize in response to vision restoration.
Collapse
Affiliation(s)
- Negin Nadvar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Noelle Stiles
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Vivek Patel
- Irvine School of Medicine, The University of California, Irvine, Irvine, CA, United States
| | - Hossein Ameri
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Yonggang Shi
- Laboratory of Neuro Imaging, USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States
| | - John Jonides
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| | - James Weiland
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
15
|
Jiang WH, Chen HH, Chen W, Wu Q, Chen L, Zhou J, Xu XQ, Hu H, Wu FY. Altered Long- and Short-Range Functional Connectivity Density in Patients With Thyroid-Associated Ophthalmopathy: A Resting-State fMRI Study. Front Neurol 2022; 13:902912. [PMID: 35812093 PMCID: PMC9259934 DOI: 10.3389/fneur.2022.902912] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022] Open
Abstract
Background and Purpose Although previous neuroimaging studies have demonstrated emotion- and psychology-associated brain abnormalities in patients with thyroid-associated ophthalmopathy (TAO), the changes of brain functional connectivity in TAO were seldom focused. We aimed to investigate interregional and intraregional functional interactions in patients with TAO by using resting-state functional MRI (rs-fMRI) with long- and short-range functional connectivity density (FCD) analysis. Methods Thirty patients with TAO and 30 well-matched healthy controls (HCs) were recruited in our study. Long- and short-range FCD values were calculated and compared between the two groups. Correlations between long- and short-range FCD values and clinical indicators were analyzed. Results Compared with HCs, patients with showed both increased long- and short-range FCDs in the left middle frontal gyrus (MFG), orbital part of superior frontal gyrus (ORBsup), and dorsolateral part of superior frontal gyrus (SFGdor); meanwhile, both decreased long- and short-range FCDs in bilateral postcentral gyrus (PoCG), left superior parietal gyrus (SPG), and inferior parietal (IPL). In addition, patients with TAO showed increased short-range FCD in the right SFGdor, bilateral medial part of superior frontal gyrus (SFGmed), left orbital part of middle frontal gyrus (ORBmid), and orbital part of inferior frontal gyrus (ORBinf), as well as decreased short-range FCD in the right supplementary motor area (SMA) and the left paracentral lobule (PCL) than HCs. Moreover, the short-range value in the left SFGdor showed a negative correlation with Montreal Cognitive Assessment (MoCA) score (r = −0.501, p = 0.005). Conclusion Our findings complemented the functional neural mechanism of TAO, and provided potential neuroimaging markers for assessing the psychiatric, visual, and emotional disturbances in patients with TAO.
Collapse
Affiliation(s)
- Wen-Hao Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huan-Huan Chen
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qian Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Chen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Hu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Hao Hu
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Fei-Yun Wu
| |
Collapse
|
16
|
Tian Q, Wang L, Zhang Y, Fan K, Liang M, Shi D, Qin W, Ding H. Brain Gray Matter Atrophy and Functional Connectivity Remodeling in Patients With Chronic LHON. Front Neurosci 2022; 16:885770. [PMID: 35645726 PMCID: PMC9135140 DOI: 10.3389/fnins.2022.885770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this study was to investigate the brain gray matter volume (GMV) and spontaneous functional connectivity (FC) changes in patients with chronic Leber's hereditary optic neuropathy (LHON), and their relations with clinical measures. Methods A total of 32 patients with chronic LHON and matched sighted healthy controls (HC) underwent neuro-ophthalmologic examinations and multimodel magnetic resonance imaging (MRI) scans. Voxel-based morphometry (VBM) was used to detect the GMV differences between the LHON and HC. Furthermore, resting-state FC analysis using the VBM-identified clusters as seeds was carried out to detect potential functional reorganization in the LHON. Finally, the associations between the neuroimaging and clinical measures were performed. Results The average peripapillary retinal nerve fiber layer (RNFL) thickness of the chronic LHON was significantly thinner (T = −16.421, p < 0.001), and the mean defect of the visual field was significantly higher (T = 11.28, p < 0.001) than the HC. VBM analysis demonstrated a significantly lower GMV of bilateral calcarine gyri (CGs) in the LHON than in the HC (p < 0.05). Moreover, in comparison with the HC, the LHON had significantly lower FC between the centroid of the identified left CG and ipsilateral superior occipital gyrus (SOG) and higher FC between this cluster and the ipsilateral posterior cingulate gyrus (p < 0.05, corrected). Finally, the GMV of the left CG was negatively correlated with the LHON duration (r = −0.535, p = 0.002), and the FC between the left CG and the ipsilateral posterior cingulate gyrus of the LHON was negatively correlated with the average peripapillary RNFL thickness (r = −0.522, p = 0.003). Conclusion The atrophied primary visual cortex of the chronic LHON may be caused by transneuronal degeneration following the retinal damage. Moreover, our findings suggest that the functional organization of the atrophied primary visual cortex has been reshaped in the chronic LHON.
Collapse
Affiliation(s)
- Qin Tian
- Department of Medical Imaging, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Ling Wang
- Department of Medical Imaging, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yu Zhang
- Department of Radiology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Ke Fan
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Meng Liang
- Department of Radiology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
| | - Dapeng Shi
- Department of Medical Imaging, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- *Correspondence: Dapeng Shi
| | - Wen Qin
- Department of Radiology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- Wen Qin
| | - Hao Ding
- Department of Radiology, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
- School of Medical Imaging, Tianjin Medical University, Tianjin, China
- Hao Ding
| |
Collapse
|
17
|
Xin H, Wen H, Feng M, Gao Y, Sui C, Zhang N, Liang C, Guo L. Disrupted topological organization of resting-state functional brain networks in cerebral small vessel disease. Hum Brain Mapp 2022; 43:2607-2620. [PMID: 35166416 PMCID: PMC9057099 DOI: 10.1002/hbm.25808] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/13/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022] Open
Abstract
We aimed to investigate alterations in functional brain networks and assess the relationship between functional impairment and topological network changes in cerebral small vessel disease (CSVD) patients with and without cerebral microbleeds (CMBs). We constructed individual whole‐brain, region of interest (ROI) level functional connectivity (FC) networks for 24 CSVD patients with CMBs (CSVD‐c), 42 CSVD patients without CMBs (CSVD‐n), and 36 healthy controls (HCs). Then, we used graph theory analysis to investigate the global and nodal topological disruptions between groups and relate network topological alterations to clinical parameters. We found that both the CSVD and control groups showed efficient small‐world organization in FC networks. However, compared to CSVD‐n patients and controls, CSVD‐c patients exhibited a significantly decreased clustering coefficient, global efficiency, and local efficiency and an increased shortest path length, indicating a disrupted balance between local specialization and global integration in FC networks. Although both the CSVD and control groups showed highly similar hub distributions, the CSVD‐c group exhibited significantly altered nodal betweenness centrality (BC), mainly distributed in the default mode network (DMN), attention, and visual functional areas. There were almost no global or regional alterations between CSVD‐n patients and controls. Furthermore, the altered nodal BC of the right anterior/posterior cingulate gyrus and left cuneus were significantly correlated with cognitive parameters in CSVD patients. These results suggest that CSVD patients with and without CMBs had segregated disruptions in the topological organization of the intrinsic functional brain network. This study advances our current understanding of the pathophysiological mechanisms underlying CSVD.
Collapse
Affiliation(s)
- Haotian Xin
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Chongqing, China.,School of Psychology, Southwest University, Chongqing, China
| | - Mengmeng Feng
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yian Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chaofan Sui
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Nan Zhang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Changhu Liang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lingfei Guo
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
18
|
Hu JJ, Jiang N, Chen J, Ying P, Kang M, Xu SH, Zou J, Wei H, Ling Q, Shao Y. Altered Regional Homogeneity in Patients With Congenital Blindness: A Resting-State Functional Magnetic Resonance Imaging Study. Front Psychiatry 2022; 13:925412. [PMID: 35815017 PMCID: PMC9256957 DOI: 10.3389/fpsyt.2022.925412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 01/14/2023] Open
Abstract
In patients with congenital blindness (CB), the lack of any visual experience may affect brain development resulting in functional, structural, or even psychological changes. Few studies to date have addressed or focused on the synchronicity of regional brain activity in patients with CB. Our study aimed to investigate regional brain activity in patients with CB in a resting state and try to explain the possible causes and effects of any anomalies. Twenty-three CB patients and 23 healthy control (HC) volunteers agreed to undergo resting state functional magnetic resonance imaging (fMRI) scans. After the fMRI data were preprocessed, regional homogeneity (ReHo) analysis was conducted to assess the differences in brain activity synchronicity between the two groups. Receiver operating characteristic (ROC) curve analysis was used to explore whether the brain areas with statistically significant ReHo differences have diagnostic and identification values for CB. All CB patients were also required to complete the Hospital Anxiety and Depression Scale (HADS) to evaluate their anxiety and depression levels. The results showed that in CB patients mean ReHo values were significantly lower than in HCs in the right orbital part of the middle frontal gyrus (MFGorb), bilateral middle occipital gyrus (MOG), and the right dorsolateral superior frontal gyrus (SFGdl), but significantly higher in the left paracentral lobule (PCL), right insula and bilateral thalamus. The ReHo value of MFGorb showed a negative linear correlation with both the anxiety score and the depression score of the HADS. ROC curve analysis revealed that the mean ReHo values which differed significantly between the groups have excellent diagnostic accuracy for CB (especially in the left PCL and right SFGdl regions). Patients with CB show abnormalities of ReHo values in several specific brain regions, suggesting potential regional structural changes, functional reorganization, or even psychological effects in these patients. FMRI ReHo analysis may find use as an objective method to confirm CB for medical or legal purposes.
Collapse
Affiliation(s)
- Jiong-Jiong Hu
- Department of Ophthalmology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Nan Jiang
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jun Chen
- Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ping Ying
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ming Kang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - San-Hua Xu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Zou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hong Wei
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian Ling
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Song K, Wang Y, Ren MX, Li J, Su T, Chen SY, Shao Y, Lv YL. Resting-State Functional Magnetic Resonance Imaging and Functional Connectivity Density Mapping in Patients With Optic Neuritis. Front Neurosci 2021; 15:718973. [PMID: 34720858 PMCID: PMC8551919 DOI: 10.3389/fnins.2021.718973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
Background: Using resting-state functional connectivity (rsFC), we investigated alternations in spontaneous brain activities reflected by functional connectivity density (FCD) in patients with optic neuritis (ON). Methods: We enrolled 28 patients with ON (18 males, 10 females) and 24 healthy controls (HCs; 16 males, 8 females). All subjects underwent functional magnetic resonance imaging (fMRI) in a quiet state to determine the values of rsFC, long-range FCD (longFCD), and short-range FCD (IFCD). Receiver operating characteristic (ROC) curves were generated to distinguish patients from HCs. Results: The ON group exhibited obviously lower longFCD values in the left inferior frontal gyrus triangle, the right precuneus and the right anterior cingulate, and paracingulate gyri/median cingulate and paracingulate gyri. The left median cingulate and paracingulate gyri and supplementary motor area (SMA) were also significantly lower. Obviously reduced IFCD values were observed in the left middle temporal gyrus/angular gyrus/SMA and right cuneus/SMA compared with HCs. Conclusion: Abnormal neural activities were found in specific brain regions in patients with ON. Specifically, they showed significant changes in rsFC, longFCD, and IFCD values. These may be useful to identify the specific mechanism of change in brain function in ON.
Collapse
Affiliation(s)
- Ke Song
- Department of Equipment, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, China
| | - Yong Wang
- Department of Ophthalmology, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, China
| | - Mei-Xia Ren
- Department of Ophthalmology, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, China
| | - Jiao Li
- Department of Ophthalmology, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, China
| | - Ting Su
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Eye Institute of Xiamen University, Medical College of Xiamen University, Xiamen, China.,Department of Ophthalmology, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA, United States
| | - Si-Yi Chen
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ya-Li Lv
- Department of Neurology, Xi'an People's Hospital, Xi'an Fourth Hospital, Xi'an, China
| |
Collapse
|
20
|
Sun M, Zhou H, Xu Q, Yang M, Xu X, Zhou M, Wei S. Differential patterns of interhemispheric functional connectivity between AQP4-optic neuritis and MOG-optic neuritis: a resting-state functional MRI study. Acta Radiol 2021; 62:776-783. [PMID: 32660318 DOI: 10.1177/0284185120940250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Several neuroimaging studies demonstrated that optic neuritis (ON) leads to functional and anatomical architecture changes in the brain. The alterations of interhemispheric functional connectivity (IFC) in patients with AQP4-ON and myelin oligodendrocyte glycoprotein (MOG)-ON are not well understood. PURPOSE To investigate the differential patterns of VMHC in patients with AQP4-ON and MOG-ON. MATERIAL AND METHODS Twenty-one patients with AQP4-ON, 11 patients with MOG-ON, and 34 healthy controls underwent resting-state MRI scans. One-way ANOVA was used to identify regions in which the zVMHC differed among the three groups. Post hoc two-sample t-tests were then conducted to compare zVMHC values between pairs of groups. Pearson correlation analysis was conducted to reveal relationships between mean zVMHC values and clinical variables in the AQP4-ON and MOG-ON groups. RESULTS The results revealed significant differences in zVMHC values in the PreCG among the three groups. Compared to the control group: the AQP4-ON group showed significantly lower VMHC values in the superior temporal gyrus, inferior frontal gyrus, and PreCG; and the MOG-ON group showed significantly higher zVMHC values in the PostCG. Compared to the AQP4-ON group, the MOG-ON group showed significantly lower zVMHC values in the PreCG/PostCG (voxel-level P<0.01, GRF correction, cluster-level P<0.05). CONCLUSION Patients with AQP4-ON and those with MOG-ON showed abnormal VMHC in the motor cortices, sensorimotor cortices, and frontal lobe, possibly indicating impaired sensorimotor function in patients with ON. Moreover, differential patterns of VMHC in patients with AQP4-ON, compared to patients with MOG-ON, might serve as a clinical indicator for classification of ON.
Collapse
Affiliation(s)
- Mingming Sun
- Department of Ophthalmology, the First Medical Center of Chinese PLA General Hospital, Beijing, PR China
- Department of Ophthalmology, Affiliated Zhongshan hospital of Dalian University, Dalian, PR China
| | - Huanfen Zhou
- Department of Ophthalmology, the First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Quangang Xu
- Department of Ophthalmology, the First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Mo Yang
- Department of Ophthalmology, the First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Xintong Xu
- Department of Ophthalmology, the First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Ming Zhou
- Department of Ophthalmology, Affiliated Zhongshan hospital of Dalian University, Dalian, PR China
| | - Shihui Wei
- Department of Ophthalmology, the First Medical Center of Chinese PLA General Hospital, Beijing, PR China
| |
Collapse
|
21
|
He X, Li X, Fu J, Xu J, Liu H, Zhang P, Li W, Yu C, Ye Z, Qin W. The morphometry of left cuneus mediating the genetic regulation on working memory. Hum Brain Mapp 2021; 42:3470-3480. [PMID: 33939221 PMCID: PMC8249898 DOI: 10.1002/hbm.25446] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 02/06/2023] Open
Abstract
Working memory is a basic human cognitive function. However, the genetic signatures and their biological pathway remain poorly understood. In the present study, we tried to clarify this issue by exploring the potential associations and pathways among genetic variants, brain morphometry and working memory performance. We first carried out association analyses between 2‐back accuracy and 212 image‐derived phenotypes from 1141 Human Connectome Project (HCP) subjects using a linear mixed model (LMM). We found a significantly positive correlation between the left cuneus volume and 2‐back accuracy (T = 3.615, p = 3.150e−4, Cohen's d = 0.226, corrected using family‐wise error [FWE] method). Based on the LMM‐based genome‐wide association study (GWAS) on the HCP dataset and UK Biobank 33 k GWAS summary statistics, we identified eight independent single nucleotide polymorphisms (SNPs) that were reliably associated with left cuneus volume in both UKB and HCP dataset. Within the eight SNPs, we found a negative correlation between the rs76119478 polymorphism and 2‐back accuracy accuracy (T = −2.045, p = .041, Cohen's d = −0.129). Finally, an LMM‐based mediation analysis elucidated a significant effect of left cuneus volume in mediating rs76119478 polymorphism on the 2‐back accuracy (indirect effect = −0.007, 95% BCa CI = [−0.045, −0.003]). These results were also replicated in a subgroup of Caucasians in the HCP population. Further fine mapping demonstrated that rs76119478 maps on intergene CTD‐2315A10.2 adjacent to protein‐encoding gene DAAM1, and is significantly associated with L3HYPDH mRNA expression. Our study suggested this new variant rs76119478 may regulate the working memory through exerting influence on the left cuneus volume.
Collapse
Affiliation(s)
- Xiaoxi He
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Xi Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Huaigui Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.,CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Tianjin, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
22
|
Chen SY, Cai GQ, Liang RB, Yang QC, Min YL, Ge QM, Li B, Shi WQ, Li QY, Zeng XJ, Shao Y. Regional brain changes in patients with diabetic optic neuropathy: a resting-state functional magnetic resonance imaging study. Quant Imaging Med Surg 2021; 11:2125-2137. [PMID: 33936993 DOI: 10.21037/qims-20-453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background To evaluate functional connection density (FCD) in patients with diabetic optic neuropathy (DON) using the resting functional connectivity (FC) method, and to determine the abnormal areas of brain activity. Methods Patients with DON (n=22; 10 male, 12 female) and healthy controls (HCs; n=22; 10 male, 12 female) were included in the study. The basic characteristics of the groups were matched. Functional magnetic resonance imaging (fMRI) was conducted with participants at rest, and long- and short-range FCD (long FCD and IFCD, respectively) were measured. Receiver operating characteristic (ROC) curve analysis was also conducted to determine whether DON and HC participants could be distinguished using fMRI indicators. Results Compared with HCs, the long FCD values of the left lingual gyrus, right lingual gyrus, right fusiform gyrus, and medial and lateral cingulate gyri were decreased in patients with DON. Further, the IFCD values of the left superior temporal gyrus, left inferior temporal gyrus, right inferior temporal gyrus, left cerebellar area 8, and right cerebellar Crus2 area were higher in patients with DON than in the HCs. Conclusions DON is associated with abnormal spontaneous brain activity. Our findings contribute to elucidating the mechanisms underlying the neuropathology of DON, and provide direction for further clinical research.
Collapse
Affiliation(s)
- Si-Yi Chen
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guo-Qian Cai
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rong-Bin Liang
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi-Cheng Yang
- The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - You-Lan Min
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qian-Min Ge
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Biao Li
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wen-Qing Shi
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiu-Yu Li
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xian-Jun Zeng
- Department of Radiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
23
|
Amemiya K, Morita T, Hirose S, Ikegami T, Hirashima M, Naito E. Neurological and behavioral features of locomotor imagery in the blind. Brain Imaging Behav 2021; 15:656-676. [PMID: 32240463 PMCID: PMC8032591 DOI: 10.1007/s11682-020-00275-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In people with normal sight, mental simulation (motor imagery) of an experienced action involves a multisensory (especially kinesthetic and visual) emulation process associated with the action. Here, we examined how long-term blindness influences sensory experience during motor imagery and its neuronal correlates by comparing data obtained from blind and sighted people. We scanned brain activity with functional magnetic resonance imaging (fMRI) while 16 sighted and 14 blind male volunteers imagined either walking or jogging around a circle of 2 m radius. In the training before fMRI, they performed these actions with their eyes closed. During scanning, we explicitly instructed the blindfolded participants to generate kinesthetic motor imagery. After the experimental run, they rated the degree to which their motor imagery became kinesthetic or spatio-visual. The imagery of blind people was more kinesthetic as per instructions, while that of the sighted group became more spatio-visual. The imagery of both groups commonly activated bilateral frontoparietal cortices including supplementary motor areas (SMA). Despite the lack of group differences in degree of brain activation, we observed stronger functional connectivity between the SMA and cerebellum in the blind group compared to that in the sighted group. To conclude, long-term blindness likely changes sensory emulation during motor imagery to a more kinesthetic mode, which may be associated with stronger functional coupling in kinesthetic brain networks compared with that in sighted people. This study adds valuable knowledge on motor cognition and mental imagery processes in the blind.
Collapse
Affiliation(s)
- Kaoru Amemiya
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomoyo Morita
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 1-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Hirose
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsuyoshi Ikegami
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaya Hirashima
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eiichi Naito
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
24
|
Common and distinct global functional connectivity density alterations in patients with bipolar disorder with and without auditory verbal hallucination during major depressive episodes. Brain Imaging Behav 2021; 14:2724-2730. [PMID: 31900890 DOI: 10.1007/s11682-019-00222-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Although an increasing number of studies has explored the neural mechanisms of auditory verbal hallucination (AVH) using many modalities, including neuroimaging, neurotransmitters, and electroencephalography, the etiology of AVH remains unclear. In this study, we investigated the neuroimaging characteristics of AVH in patients with bipolar disorder (BD) experiencing depressive episodes with and without AVH. For this study, we recruited 80 patients with BD and depressive status (40 with and 40 without AVH), and 40 healthy individuals. Their global functional connectivity density (gFCD) was screened by functional magnetic resonance imaging. Differences in gFCD among the three groups were tested using voxel-wise one-way analysis of covariance. Patients in both BD groups demonstrated increased gFCD in the central parietal lobe, insular lobe, and middle cingulate cortex, and decreased gFCD in the posterior parietal cortex, lateral prefrontal cortex, and occipital lobe (all bilateral). We defined these alterations as the common aberrant gFCD pattern for BD with and without AVH. Compared with the other two groups, patients in the BD with AVH group demonstrated increased gFCD in the Broca and Wernicke regions, and decreased gFCD in the hippocampus (all bilateral). We defined these alterations as the distinct aberrant gFCD pattern for BD with AVH. To our knowledge, this report is the first to date to describe gFCD alterations in patients with BD with and without AVH. Our findings suggest that disturbances in brain activity and information communication capacity in patients with BD and AVH are located mainly in the left frontoparietal network, control network, and memory circuit. However, these observations were made only in patients with BD during depressive episodes, and without consideration of many factors, such as the treatment mode, symptom relapse, and BD subtype. Hence, the conclusions of this study merely provide clues for further study, and do not fully represent brain alterations in patients with BD and AVH. Further large-sample cohort studies are needed to clarify and expand on these findings.
Collapse
|
25
|
Li X, Zhao P, Qiu X, Lv H, Ding H, Yang Z, Gong S, Wang Z. Altered cerebral blood flow in patients with unilateral venous pulsatile tinnitus: an arterial spin labeling study. Br J Radiol 2021; 94:20200990. [PMID: 33733819 PMCID: PMC8010559 DOI: 10.1259/bjr.20200990] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objectives: Abnormal neuronal activity and functional connectivity have been reported in patients with venous pulsatile tinnitus (PT). As neuronal activity is closely coupled to regional brain perfusion, the purpose of this study was to investigate the cerebral blood flow (CBF) alterations in patients with unilateral venous PT using arterial spin labeling (ASL). Methods: This study included patients with right-sided PT between January 2018 and July 2019. A healthy control (HC) group matched 1:1 for gender and age was also recruited. All subjects underwent ASL scanning using 3.0T MRI. The correlation between altered CBF and Tinnitus Handicap Inventory (THI) score as well as PT duration was analyzed. Results Twenty-one patients with right-sided PT and 21 HCs were included. The mean PT duration of the patients was 35.9 ± 32.2 months, and the mean THI score was 64.1 ± 20.3. Compared with the HCs, the PT patients exhibited increased CBF in the left inferior parietal gyrus and decreased CBF in the bilateral lingual gyrus (family-wise error corrected, p < 0.05). The increased CBF in the left inferior parietal gyrus showed a positive correlation with the THI score in PT patients (r = 0.501, p = 0.021). Conclusions PT patients exhibit regional CBF alterations. The increased CBF in the left inferior parietal gyrus may reflect the severity of PT. Advances in knowledge: This study not only presents evidence for the potential neuropathology of PT from the perspective of CBF alterations but also offers a new method for investigating the neuropathological mechanism of PT.
Collapse
Affiliation(s)
- Xiaoshuai Li
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Pengfei Zhao
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Qiu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Han Lv
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Heyu Ding
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Zhang J, Wang L, Ding H, Fan K, Tian Q, Liang M, Sun Z, Shi D, Qin W. Abnormal large-scale structural rich club organization in Leber's hereditary optic neuropathy. NEUROIMAGE-CLINICAL 2021; 30:102619. [PMID: 33752075 PMCID: PMC8010853 DOI: 10.1016/j.nicl.2021.102619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
LHON patients suffered large-scale structural network disruption. Non-rich club connections may be more vulnerable in the LHON. Both primary and secondary connectivity damage may coexist in the LHON.
Objective The purpose of this study was to investigate whether the large-scale structural rich club organization was abnormal in patients with Leber's hereditary optic neuropathy (LHON) using diffusion tensor imaging (DTI), and the associations among disrupted brain structural connectivity, disease duration, and neuro-ophthalmological impairment. Methods Nineteen acute, 34 chronic LHON patients, and 36 healthy controls (HC) underwent DTI and neuro-ophthalmological measurements. The brain structural network and rich club organization were constructed based on deterministic fiber tracking at the individual level. Then intergroup differences among the acute, chronic LHON patients and healthy controls (HC) in three types of structural connections, including rich club, feeder, and local ones, were compared. Network-based Statistics (NBS) was also used to test the intergroup connectivity differences for each fiber. Several linear and nonlinear curve fit models were applied to explore the associations among large-scale brain structural connectivity, disease duration, and neuro-ophthalmological metrics. Results Compared to the HC, both the acute and chronic LHON patients had consistently significantly lower fractional anisotropy (FA) and higher radial diffusion (RD) for feeder connections (p < 0.05, FDR correction). Acute LHON patients had significantly lower FA and higher RD for local connections (p < 0.05, FDR correction). There was no significant difference in large-scale brain structural connectivity between acute and chronic LHON (p > 0.05, FDR correction). NBS also identified reduced FA of three feeder connections and five local ones linking visual, auditory, and basal ganglia areas in LHON patients (p < 0.05, FDR correction). No structural connections showed linear or nonlinear association with either disease duration or neuro-ophthalmological indicators (p > 0.05, FDR correction). A significant negative correlation was shown between the retinal nerve fiber layer (RNFL) thickness and disease duration (p < 0.05, FDR correction). Conclusions Abnormal rich club organization of the structural network was identified in both the acute and chronic LHON. Furthermore, our findings suggest the coexistence of both primary and secondary connectivity damage in the LHON.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ling Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Hao Ding
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China; School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Ke Fan
- Henan Eye Institute, Henan Eye Hospital, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Qin Tian
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China
| | - Meng Liang
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China; School of Medical Imaging, Tianjin Medical University, Tianjin 300070, China
| | - Zhihua Sun
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Dapeng Shi
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou 450003, China.
| | - Wen Qin
- Department of Radiology & Tianjin Key Lab of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
27
|
Common and distinct brain functional alterations in pharmacotherapy treatment-naïve female borderline personality disorder patients with and without auditory verbal hallucinations: a pilot study. Eur Arch Psychiatry Clin Neurosci 2021; 271:1149-1157. [PMID: 32009225 PMCID: PMC8354887 DOI: 10.1007/s00406-020-01102-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Auditory verbal hallucinations (AVHs) are experienced by approximately 25% of patients with borderline personality disorder (BPD). Despite the high incidence, the pathological features of AVH in BPD remain unclear. This study aimed to investigate whole-brain functional connectivity (FC), as measured by functional connectivity density (FCD), and its relationship with AVH in BPD. 65 pharmacotherapy treatment-naïve female BPD patients (30 with AVH and 35 without AVH), and 35 female healthy controls were investigated. Functional magnetic resonance imaging (fMRI) data were collected to assess whole-brain FC and functional connectivity density mapping (FCDM) was applied to the fMRI data to compute FCD features. Compared to the healthy controls, both BPD groups (BPD-AVH and BPD without AVH) exhibited significantly higher gFCD values in the bilateral prefrontal lobe, bilateral orbital lobule, and bilateral insula, and significantly lower gFCD values in the SMA, right anterior temporal lobule, and the ACC. These altered regions were significantly associated with AVH in the BPD subjects. Moreover, higher gFCD values were observed in the left posterior temporal lobule and posterior frontal lobule. Aberrant alterations also emerged in the left posterior temporal lobule and posterior frontal lobule, mainly in Broca and Wernicke regions. Nevertheless, there was no significant correlation between gFCD values and the severity of AVH as measured by the AVH scores. In summary, we have identified aberrations in the FC and brain metabolism of the aforementioned neural circuits/networks, which may provide new insights into BPD-AVH and facilitate the development of therapeutic approaches for treating AVH in BPD patients.
Collapse
|
28
|
Alteration within the Hippocampal Volume in Patients with LHON Disease-7 Tesla MRI Study. J Clin Med 2020; 10:jcm10010014. [PMID: 33374677 PMCID: PMC7793538 DOI: 10.3390/jcm10010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 12/03/2022] Open
Abstract
Purpose: The aim of this study was to assess the volumetry of the hippocampus in the Leber’s hereditary optic neuropathy (LHON) of blind patients. Methods: A total of 25 patients with LHON were randomly included into the study from the national health database. A total of 15 patients were selected according to the inclusion criteria. The submillimeter segmentation of the hippocampus was based on three-dimensional spoiled gradient recalled acquisition in steady state (3D-SPGR) BRAVO 7T magnetic resonance imaging (MRI) protocol. Results: Statistical analysis revealed that compared to healthy controls (HC), LHON subjects had multiple significant differences only in the right hippocampus, including a significantly higher volume of hippocampal tail (p = 0.009), subiculum body (p = 0.018), CA1 body (p = 0.002), hippocampal fissure (p = 0.046), molecular layer hippocampus (HP) body (p = 0.014), CA3 body (p = 0.006), Granule Cell (GC) and Molecular Layer (ML) of the Dentate Gyrus (DG)–GC ML DG body (p = 0.003), CA4 body (p = 0.001), whole hippocampal body (p = 0.018), and the whole hippocampus volume (p = 0.023). Discussion: The ultra-high-field magnetic resonance imaging allowed hippocampus quality visualization and analysis, serving as a powerful in vivo diagnostic tool in the diagnostic process and LHON disease course assessment. The study confirmed previous reports regarding volumetry of hippocampus in blind individuals.
Collapse
|
29
|
Touj S, Gallino D, Chakravarty MM, Bronchti G, Piché M. Structural brain plasticity induced by early blindness. Eur J Neurosci 2020; 53:778-795. [PMID: 33113245 DOI: 10.1111/ejn.15028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/28/2020] [Accepted: 10/20/2020] [Indexed: 11/30/2022]
Abstract
It is well established that early blindness results in behavioural adaptations. While the functional effects of visual deprivation have been well researched, anatomical studies are scarce. The aim of this study was to investigate whole brain structural plasticity in a mouse model of congenital blindness. Volumetric analyses were conducted on high-resolution MRI images and histological sections from the same brains. These morphometric measurements were compared between anophthalmic and sighted ZRDBA mice obtained by breeding ZRDCT and DBA mice. Results from MRI analyses using the Multiple Automatically Generated Templates (MAGeT) method showed smaller volume for the primary visual cortex and superior colliculi in anophthalmic compared with sighted mice. Deformation-based morphometry revealed smaller volumes within the dorsal lateral geniculate nuclei and the lateral secondary visual cortex and larger volumes within olfactory areas, piriform cortex, orbital areas and the amygdala, in anophthalmic compared with sighted mice. Histological analyses revealed a larger volume for the amygdala and smaller volume for the superior colliculi, primary visual cortex and medial secondary visual cortex, in anophthalmic compared with sighted mice. The absence of superficial visual layers of the superior colliculus and the thinner cortical layer IV of the primary and secondary visual cortices may explain the smaller volume of these areas, although this was observed in a limited sample. The present study shows large-scale brain plasticity in a mouse model of congenital blindness. In addition, the congruence of MRI and histological findings support the use of MRI to investigate structural brain plasticity in the mouse.
Collapse
Affiliation(s)
- Sara Touj
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Daniel Gallino
- Computational Brain Anatomy Laboratory, Brain Imaging Center, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - Mallar M Chakravarty
- Computational Brain Anatomy Laboratory, Brain Imaging Center, Douglas Mental Health University Institute, Verdun, QC, Canada.,Department of Biological and Biomedical Engineering, McGill, Montréal, QC, Canada.,Department of Psychiatry, McGill, Montréal, QC, Canada
| | - Gilles Bronchti
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.,CogNAC Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
30
|
Li Y, Liang Y, Tan X, Chen Y, Yang J, Zeng H, Qin C, Feng Y, Ma X, Qiu S. Altered Functional Hubs and Connectivity in Type 2 Diabetes Mellitus Without Mild Cognitive Impairment. Front Neurol 2020; 11:1016. [PMID: 33071928 PMCID: PMC7533640 DOI: 10.3389/fneur.2020.01016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/03/2020] [Indexed: 01/06/2023] Open
Abstract
Background: Type 2 diabetes mellitus (T2DM)-related cognitive decline is associated with neuroimaging changes. However, only a few studies have focused on early functional alteration in T2DM prior to mild cognitive impairment (MCI). This study aimed to investigate the early changes of global connectivity patterns in T2DM by using a resting-state functional magnetic resonance imaging (rs-fMRI) technique. Methods: Thirty-four T2DM subjects and 38 age-, sex-, and education-matched healthy controls (HCs) underwent rs-fMRI in a 3T MRI scanner. Degree centrality (DC) was used to identify the functional hubs of the whole brain in T2DM without MCI. Then the functional connectivity (FC) between hubs and the rest of the brain was assessed by using the hub-based approach. Results: Compared with HCs, T2DM subjects showed increased DC in the right cerebellum lobules III-V. Hub-based FC analysis found that the right cerebellum lobules III-V of T2DM subjects had increased FC with the right cerebellum crus II and lobule VI, the right temporal inferior/middle gyrus, and the right hippocampus. Conclusions: Increased DC in the right cerebellum regions III-V, as well as increased FC within cerebellar regions and ipsilateral cerebrocerebellar regions, may indicate an important pathophysiological mechanism for compensation in T2DM without MCI.
Collapse
Affiliation(s)
- Yifan Li
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Liang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xin Tan
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuna Chen
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinquan Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hui Zeng
- Department of Radiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Chunhong Qin
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Feng
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaomeng Ma
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shijun Qiu
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Radiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
31
|
Altered Temporal Dynamic Intrinsic Brain Activity in Late Blindness. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1913805. [PMID: 32685447 PMCID: PMC7327610 DOI: 10.1155/2020/1913805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/02/2020] [Accepted: 04/25/2020] [Indexed: 11/17/2022]
Abstract
Previous neuroimaging studies demonstrated that visual deprivation triggers significant crossmodal plasticity in the functional and structural architecture of the brain. However, prior neuroimaging studies focused on the static brain activity in blindness. It remains unknown whether alterations of dynamic intrinsic brain activity occur in late blindness (LB). This study investigated dynamic intrinsic brain activity changes in individuals with late blindness by assessing the dynamic amplitude of low-frequency fluctuations (dALFFs) using sliding-window analyses. Forty-one cases of late blindness (LB) (29 males and 12 females, mean age: 39.70 ± 12.66 years) and 48 sighted controls (SCs) (17 males and 31 females, mean age: 43.23 ± 13.40 years) closely matched in age, sex, and education level were enrolled in this study. The dALFF with sliding-window analyses was used to compare the difference in dynamic intrinsic brain activity between the two groups. Compared with SCs, individuals with LB exhibited significantly lower dALFF values in the bilateral lingual gyrus (LING)/calcarine (CAL) and left thalamus (THA). LB cases also showed considerably decreased dFC values between the bilateral LING/CAL and the left middle frontal gyrus (MFG) and between the left THA and the right LING/cerebelum_6 (CER) (two-tailed, voxel-level P < 0.01, Gaussian random field (GRF) correction, cluster-level P < 0.05). Our study demonstrated that LB individuals showed lower-temporal variability of dALFF in the visual cortices and thalamus, suggesting lower flexibility of visual thalamocortical activity, which might reflect impaired visual processing in LB individuals. These findings indicate that abnormal dynamic intrinsic brain activity might be involved in the neurophysiological mechanisms of LB.
Collapse
|
32
|
Tomasi D, Volkow ND. Association Between Brain Activation and Functional Connectivity. Cereb Cortex 2020; 29:1984-1996. [PMID: 29668865 DOI: 10.1093/cercor/bhy077] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/04/2018] [Accepted: 03/13/2018] [Indexed: 11/12/2022] Open
Abstract
The origin of the "resting-state" brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.
Collapse
Affiliation(s)
- Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA.,National Institute on Drug Abuse, Bethesda, MD, USA
| |
Collapse
|
33
|
Kim BY, Park JY, Kim E. Differences in Mechanisms of Steroid Therapy and Olfactory Training for Olfactory Loss in Mice. Am J Rhinol Allergy 2020; 34:810-821. [DOI: 10.1177/1945892420930945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective Steroid therapy and olfactory training are common treatments for olfactory loss. Systemic steroid treatment is the most effective approach for treating sinonasal olfactory loss. Olfactory training is typically effective for treating sensorineural olfactory loss. However, the differences in mechanisms of steroid therapy and olfactory training for olfactory dysfunction are unclear. The aim of this study was thus to evaluate the differences in mechanisms of olfactory training and steroid therapy. Subjects and Methods Mice in each group were administered 3-methylindole at a dose of 300 mg/kg. Olfactory function was evaluated with a food-finding test once a week. The olfactory neuroepithelium was harvested for histologic examination and protein analysis. Subsequently, data analysis, gene ontology and pathway analysis, quantitative real-time polymerase chain reaction of mRNA, and western blot analysis were conducted. Results Mice were divided into four groups according to treatment. Control, anosmia, training, and steroid groups resumed food-finding. MMP27, CCL22 and IL18rap mRNA expression were significantly increased in the training group compared to that in the steroid group. IL1R2 mRNA expression was significantly higher in the olfactory neuroepithelium of steroid-treated mice than in that of the training group mice. Conclusions Steroid therapy improved olfactory function via anti-inflammatory effects, unlike olfactory training which involved cell regeneration and tissue remodeling. Protein and gene analyses revealed that steroid therapy and olfactory training are underpinned by distinct mechanisms. Selection of the most appropriate treatment will be dependent on the cause of olfactory loss.
Collapse
Affiliation(s)
- Boo-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Ewha Womans University Medical Center, Seoul, Korea
| | - Ju Yeon Park
- Department of Clinical Laboratory, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - EuiJin Kim
- Department of Clinical Laboratory, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| |
Collapse
|
34
|
Zhuo C, Ji F, Lin X, Tian H, Wang L, Xu Y, Wang W, Jiang D. Global functional connectivity density alterations in patients with bipolar disorder with auditory verbal hallucinations and modest short-term effects of transcranial direct current stimulation augmentation treatment-Baseline and follow-up study. Brain Behav 2020; 10:e01637. [PMID: 32304288 PMCID: PMC7303392 DOI: 10.1002/brb3.1637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 02/18/2020] [Accepted: 03/26/2020] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To investigate the neuroimaging characteristics of auditory verbal hallucinations (AVHs) in patients with bipolar disorder (BP) experiencing depressive episodes with and without AVHs, and alterations in those characteristics after transcranial direct current stimulation (tDCS). METHODS For a baseline pilot study, we recruited 80 patients with BP and depressive status (40 with and 40 without AVHs), and 40 healthy controls (HCs). Their global functional connectivity density (gFCD) was screened by functional magnetic resonance imaging (fMRI). Voxel-wise one-way analysis of covariance (ANCOVA) was conducted to detect intergroup differences in gFCD. In a follow-up study, the effects of 5 weeks of tDCS augmentation treatment on clinical symptoms and gFCD were assessed in the 40 BP patients with AVHs. RESULTS Compared to HCs, BP patients with and without AVHs exhibited increased gFCD in the central parietal lobe, insular lobe, and middle cingulate cortex, with decreased gFCD in the posterior parietal cortex, lateral prefrontal cortex, and occipital lobe (all bilateral). Only patients with AVHs showed increased gFCD in the Broca and Wernicke regions, and decreased gFCD in the hippocampus (all bilateral). After 5 weeks of tDCS, AVHs were slightly alleviated and gFCD abnormalities in the hippocampus were mildly attenuated. CONCLUSIONS Patients with BP and AVHs showed disturbances in the brain's communication capacity mainly in the left frontoparietal network, control network, and memory circuitry. Five weeks of tDCS alleviated AVHs slightly, without improving depressive symptoms, and attenuated hippocampal gFCD alterations in these patients.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- School of Mental Health, Jining Medical University, Jining, China.,Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, China.,Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China.,Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, China
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining, China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Hongjun Tian
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, China
| | - Lina Wang
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Wenqiang Wang
- Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, China
| | - Deguo Jiang
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, China
| |
Collapse
|
35
|
Abstract
Background Several neuroimaging studies demonstrated that visual deprivation led to significant cross-modal plasticity in the brain’s functional and anatomical architecture. Purpose To investigate the pattern of the interhemispheric functional connectivity in individuals with late blindness using the voxel-mirrored homotopic connectivity (VMHC) and seed-based functional connectivity (FC) methods. Material and Methods Forty-four individuals with late blindness (22 men, 22 women; mean age = 39.88 ± 12.84 years) and 55 sighted control individuals (35 men, 20 women; mean age = 43.13 ± 13.98 years)—closely matched for age, sex, and education—underwent resting-state magnetic resonance imaging scans. The VMHC and seed-based FC methods were applied to assess interhemispheric coordination in a voxel-wise manner. Results Compared with the sighted control groups, the late blindness groups showed decreased VMHC values in the bilateral cuneus/calcarine/lingual gyrus (CUN/CAL/LING) (BA 17/18/19) (voxel level: P < 0.001, Gaussian random field [GRF] correction, cluster level: P < 0.005). Meanwhile, for seed-based FC analysis, compared with the sighted control group, the late blindness group showed a decreased FC between the right lower VMHC regions and the bilateral CUN/LING/CAL/precuneus (PreCUN)/left middle occipital gyrus (MOG) (BA 18/19/30/31) and left precentral gyrus (PreCG) and postcentral gyrus (PostCG) (BA 2/3/4/6). The late blindness group showed a decreased FC between the left lower VMHC regions and the bilateral CUN/LING/CAL/PreCUN (BA 18/19/31) and left PreCG and PostCG (BA 2/3/4/6) relative to the sighted control group (voxel level: P < 0.001, GRF correction, cluster level: P < 0.005). Moreover, a negative correlation was observed between the duration of blindness and VMHC values in the bilateral CUN/CAL/LING (r = −0.393, P = 0.008) in individuals with late blindness. Conclusion Our results indicated that late blindness induced substantial impairment of interhemispheric coordination in the visual cortex. This might reflect impaired visual fusion, visual recognition function, and top-down modulations in individuals with late blindness.
Collapse
Affiliation(s)
- Xin Huang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Fu-Qing Zhou
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Medical Imaging Research Institute, Nanchang, PR China
| | - Han-Dong Dan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, PR China
| | - Yin Shen
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, PR China
| |
Collapse
|
36
|
Differences in functional connectivity density among subtypes of schizophrenic auditory hallucination. Brain Imaging Behav 2020; 14:2587-2593. [PMID: 31938985 DOI: 10.1007/s11682-019-00210-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This study aimed to investigate alterations in brain function among different subtypes of auditory hallucinations (AH) in drug-naïve first episode schizophrenia patients. We recruited 20 patients with drug-naïve first episode schizophrenia who had constant commanding and commenting auditory verbal hallucinations (CCCAVH), 15 drug-naïve first episode schizophrenia patients who had nonverbal auditory hallucinations (NVAH), and 20 healthy controls to participate in this study. We used global functional connectivity density (gFCD) and one-way analysis of covariance to characterize differences in brain function between the two patient groups. Statistical significance was set at P < 0.05. As compared to controls, schizophrenia patients with CCCAVH demonstrated increased gFCD in the right Broca's area, bilateral superior temporal gyri, hippocampus, bilateral insula, and anterior cingulate gyri, and decreased gFCD in the left temporoparietal junction (family-wise error [FEW] correct, P < 0.05). Schizophrenia patients with NVAH demonstrated increased gFCD in the bilateral superior temporal gyri and most of the components of the default mode network (DMN), and decreased gFCD in components of the executive control network (FWE correct, P < 0.05). We found that schizophrenia patients with CCCAVH and NVAH have distinct functional brain patterns. The features observed in patients with CCCAVH are consistent with the "inner speech" hypothesis of AH. Features of patients with NVAH suggest hyperactivity of the superior temporal gyrus and DMN, and hypoactivity of the prefrontal lobe.
Collapse
|
37
|
Lin X, Zhuo C, Li G, Li J, Gao X, Chen C, Jiang D. Functional brain alterations in auditory hallucination subtypes in individuals with auditory hallucinations without the diagnosis of specific neurological diseases and mental disorders at the current stage. Brain Behav 2020; 10:e01487. [PMID: 31782626 PMCID: PMC6955821 DOI: 10.1002/brb3.1487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/20/2019] [Accepted: 11/10/2019] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND We explored common and distinct pathological features of different subtypes of auditory hallucinations (AHs) to elucidate the underlying pathological mechanisms. METHODS We recruited 39 individuals with constant commanding and commenting auditory verbal hallucinations (CCCAVHs), 49 with own thought auditory verbal hallucinations (OTAVHs), 46 with nonverbal AHs (NVAHs), 32 with replay AVHs (RAVHs), and 50 healthy controls. Functional connectivity density mapping was used to investigate global functional connectivity density (gFCD) alterations in these AH groups relative to the control group. RESULTS We observed common brain functional alterations among four subtypes of AHs, such as increased gFCD in the bilateral superior temporal gyrus and mesial frontal lobe, and decreased gFCD in the bilateral medial prefrontal cortex. Increased gFCD was detected in the bilateral insula in CCCAVH individuals, bilateral thalamus in OTAVH individuals, bilateral precuneus in NVAH individuals, and bilateral hippocampus in RAVH individuals. The common and distinct gFCD alterations among four AH subtypes were located in main components of the frontoparietal, default mode, salience, central executive, and memory networks. Different AH subtypes exhibited specific aberrant patterns. CONCLUSIONS Our findings suggest that aberrant functional activity and metabolism in the abovementioned networks play key roles in the occurrence of AHs. Our findings provide evidence for distinct gFCD alterations in specific AH subtypes.
Collapse
Affiliation(s)
- Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Chuanjun Zhuo
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China.,Department of Psychiatry-Brian Micro and Macro Imaging Centre, Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, China.,Psychiatric-Neuroimging-Genetics and Comorbidity Laboratory (PNGC-Lab), Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin, China
| | - Gongying Li
- Department of Psychiatry-Brian Micro and Macro Imaging Centre, Department of Psychiatry, School of Mental Health, Jining Medical University, Jining, China
| | - Jie Li
- Psychiatric-Neuroimging-Genetics and Comorbidity Laboratory (PNGC-Lab), Tianjin Mental Health Center, Tianjin Anding Hospital, Tianjin, China
| | - Xiangyang Gao
- Center for Health Statistics, Big Data Center of Chronic Disease, Health Management Institute, 301 Hospital of Chinese People's Liberation Army, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| |
Collapse
|
38
|
Tregillus KEM, Likova LT. Differences in the major fiber-tracts of people with congenital and acquired blindness. ACTA ACUST UNITED AC 2020; 2020:3661-3667. [PMID: 34541437 DOI: 10.2352/issn.2470-1173.2020.11.hvei-366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In order to better understand how our visual system processes information, we must understand the underlying brain connectivity architecture, and how it can get reorganized under visual deprivation. The full extent to which visual development and visual loss affect connectivity is not well known. To investigate the effect of the onset of blindness on structural connectivity both at the whole-brain voxel-wise level and at the level of all major white-matter tracts, we applied two complementary Diffusion-Tension Imaging (DTI) methods, TBSS and AFQ. Diffusion-weighted brain images were collected from three groups of participants: congenitally blind (CB), acquired blind (AB), and fully sighted controls. The differences between these groups were evaluated on a voxel-wise scale with Tract-Based Spatial Statistics (TBSS) method, and on larger-scale with Automated Fiber Quantification (AFQ), a method that allows for between-group comparisons at the level of the major fiber tracts. TBSS revealed that both blind groups tended to have higher FA than sighted controls in the central structures of the brain. AFQ revealed that, where the three groups differed, congenitally blind participants tended to be more similar to sighted controls than to those participants who had acquired blindness later in life. These differences were specifically manifested in the left uncinated fasciculus, the right corticospinal fasciculus, and the left superior longitudinal fasciculus, areas broadly associated with a range of higher-level cognitive systems.
Collapse
Affiliation(s)
| | - Lora T Likova
- The Smith-Kettlewell Eye Research Institute, San Francisco, CA
| |
Collapse
|
39
|
Cavaliere C, Aiello M, Soddu A, Laureys S, Reislev NL, Ptito M, Kupers R. Organization of the commissural fiber system in congenital and late-onset blindness. NEUROIMAGE-CLINICAL 2019; 25:102133. [PMID: 31945651 PMCID: PMC6965724 DOI: 10.1016/j.nicl.2019.102133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 11/13/2022]
Abstract
Larger anterior commissure (AC) in congenitally (CB) and late blind (LB) subjects. Decreased fractional anisotropy (FA) of the posterior part of AC (pAC) in CB and LB. Decreased FA in pAC is paralleled by increased number of pAC streamlines in CB only. Selective reduction of the splenium of the corpus callosum (CC) in CB and LB. Reduction of splenium correlated with decrease in streamlines and tract volume.
We investigated the effects of blindness on the structural and functional integrity of the corpus callosum and the anterior commissure (AC), which together form the two major components of the commissural pathways. Twelve congenitally blind (CB), 15 late blind (LB; mean onset of blindness of 16.6 ± 8.9 years), and 15 matched normally sighted controls (SC) participated in a multimodal brain imaging study. Magnetic resonance imaging(MRI) data were acquired using a 3T scanner, and included a structural brain scan, resting state functional MRI, and diffusion-weighted imaging. We used tractography to divide the AC into its anterior (aAC) and posterior (pAC) branch. Virtual tract dissection was performed using a deterministic spherical deconvolution tractography algorithm. The corpus callosum was subdivided into five subregions based on the criteria described by Witelson and modified by Bermudez and Zatorre. Our data revealed decreased fractional anisotropy of the pAC in CB and LB compared to SC, together with an increase in the number of streamlines in CB only. In addition, the AC surface area was significantly larger in CB compared to SC and LB, and correlated with the number of streamlines in pAC (rho = 0.55) and tract volume (rho = 0.46). As for the corpus callosum, the splenial part was significantly smaller in CB and LB, and fewer streamlines passed through it. We did not find group differences in functional connectivity of cortical areas connected by fibers crossing any of the five callosal subregions. The present data suggest that the two main components of the commissural system undergo neuroplastic changes, irrespective of the age of onset of blindness, although the alterations observed in the AC are more important in congenital than late-onset blindness.
Collapse
Affiliation(s)
- Carlo Cavaliere
- IRCCS SDN, Via E. Gianturco 113, 80143 Naples, Italy; GIGA-Consciousness - Coma Science Group, GIGA-Research and Neurology Department, University and University Hospital of Liège, Liège, Belgium.
| | - Marco Aiello
- IRCCS SDN, Via E. Gianturco 113, 80143 Naples, Italy
| | - Andrea Soddu
- Brain and Mind Institute, The Department of Physics and Astronomy, University of Western Ontario London, ON, Canada
| | - Steven Laureys
- GIGA-Consciousness - Coma Science Group, GIGA-Research and Neurology Department, University and University Hospital of Liège, Liège, Belgium
| | - Nina L Reislev
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, 2650 Hvidovre, Denmark
| | - Maurice Ptito
- Ecole d'Optométrie, Université de Montréal, Montréal, Québec, Canada; Department of nuclear Medicine, University of Southern Denmark, Odense, Denmark; BRAINlab, Institute of Neuroscience, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 10, 2200 Copenhagen,Denmark
| | - Ron Kupers
- Ecole d'Optométrie, Université de Montréal, Montréal, Québec, Canada; BRAINlab, Institute of Neuroscience, Panum Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Nørre Allé 10, 2200 Copenhagen,Denmark; Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium.
| |
Collapse
|
40
|
Zhuo C, Ji F, Lin X, Tian H, Wang L, Liu S, Sang H, Wang W, Chen C. Without insight accompanied with deteriorated brain functional alterations in healthy individuals with auditory verbal hallucinations: a pilot study. Brain Imaging Behav 2019; 14:2553-2558. [PMID: 31834596 PMCID: PMC7647977 DOI: 10.1007/s11682-019-00207-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Few studies have reported on brain functional differences between healthy individuals with auditory verbal hallucinations (Hi-AVH) with and without insight, so we designed a study to address this knowledge gap. We enrolled 12 Hi-AVH with insight, 15 Hi-AVH without insight, and 15 AVH-free controls (Healthy controls). Global functional connectivity density (gFCD) mapping was used to estimate brain networks. We found that the most common alterations in both Hi-AVH groups were increased gFCD in superior parietal lobule and superior temporal gyrus. We also found that distinct brain functional patterns of Hi-AVH without insight comprised lower gFCD in the frontal lobe oculomotor area, dorsolateral prefrontal cortex, supramarginal gyrus, primary auditory cortex, sensorimotor cortex, ventral anterior, and posterior cingulate Our pilot findings support the hypothesis that abnormal reciprocal action in the circuits for processing perception, memory, language, and attentional control may be pathological features of auditory verbal hallucinations.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- School of Mental Health, Jining Medical University, Jining, 272119, Shandong Province, China. .,Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, 325000, Zhejiang Province, China. .,Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, 300222, China. .,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China. .,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, China. .,Department of Psychiatry, Changchun Sixth Hospital, Changchun, 130052, Jilin Province, China.
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining, 272119, Shandong Province, China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, 325000, Zhejiang Province, China
| | - Hongjun Tian
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, 300222, China
| | - Lina Wang
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Tianjin Anding Hospital, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin, 300222, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Sang
- Department of Psychiatry, Changchun Sixth Hospital, Changchun, 130052, Jilin Province, China
| | - Wenqiang Wang
- Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, 361000, China
| | - Chunmian Chen
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, 325000, Zhejiang Province, China
| |
Collapse
|
41
|
Shim HJ, Go G, Lee H, Choi SW, Won JH. Influence of Visual Deprivation on Auditory Spectral Resolution, Temporal Resolution, and Speech Perception. Front Neurosci 2019; 13:1200. [PMID: 31780886 PMCID: PMC6851016 DOI: 10.3389/fnins.2019.01200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/23/2019] [Indexed: 11/23/2022] Open
Abstract
We evaluated whether blind subjects have advantages in auditory spectral resolution, temporal resolution, and speech perception in noise compared with sighted subjects. We also compared psychoacoustic performance between early blind (EB) subjects and late blind (LB) subjects. Nineteen EB subjects, 16 LB subjects, and 20 sighted individuals were enrolled. All subjects were right-handed with normal and symmetric hearing thresholds and without cognitive impairments. Three psychoacoustic measurements of the subjects’ right ears were performed via an inserted earphone to determine spectral-ripple discrimination (SRD), temporal modulation detection (TMD), and speech recognition threshold (SRT) in noisy conditions. Acoustic change complex (ACC) responses were recorded during passive listening to standard ripple-inverted ripple stimuli. EB subjects exhibited better SRD than did LB (p = 0.020) and sighted (p = 0.003) subjects. TMD was better in EB (p < 0.001) and LB (p = 0.007) subjects compared with sighted subjects. SRD was positively correlated with the duration of blindness (r = 0.386, p = 0.024). Acoustic change complex data for ripple noise change at the Cz and Fz electrodes showed trends toward significant correlations with the behavioral results. In conclusion, compared with sighted subjects, EB subjects showed advantages in terms of auditory spectral and temporal resolution, while LB subjects showed an advantage in temporal resolution exclusively. These findings suggest that it might take longer for auditory spectral resolution to functionally enhance following visual deprivation compared to temporal resolution. Alternatively, a critical period of very young age may be required for auditory spectral resolution to improve following visual deprivation.
Collapse
Affiliation(s)
- Hyun Joon Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, Eulji Medical Center, Eulji University School of Medicine, Seoul, South Korea
| | - Geurim Go
- Department of Psychology, Duksung Women's University, Seoul, South Korea
| | - Heirim Lee
- Department of Psychology, Duksung Women's University, Seoul, South Korea
| | - Sung Won Choi
- Department of Psychology, Duksung Women's University, Seoul, South Korea
| | - Jong Ho Won
- Division of ENT, Sleep Disordered Breathing, Respiratory, and Anesthesia, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
42
|
Kim BY, Park J, Kim E, Kim B. Olfactory Ensheathing Cells Mediate Neuroplastic Mechanisms After Olfactory Training in Mouse Model. Am J Rhinol Allergy 2019; 34:217-229. [PMID: 31680531 DOI: 10.1177/1945892419885036] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background Several studies have reported beneficial effects of olfactory training (OT) on the olfactory nervous system. However, the mechanisms underlying the regeneration of the olfactory system induced by OT are still under investigation. Objectives To determine the key mechanisms involved in the olfactory system recovery and to assess the neuroplastic effects of OT. Methods Thirty healthy female C57BL/6 mice were randomly allocated to 4 groups: control, n = 6; anosmia (no treatment), n = 8; OT, n = 8; and steroid treatment; n = 8. Except for the control group, mice were administered 3-methylindole. Anosmia was assessed using a food-finding test (FFT). The olfactory neuroepithelium was for histological examinations, gene ontology with pathway analyses, RNA, and protein studies. Results FFT was significantly reduced at 3 weeks in the OT mice versus steroids (78.27 s vs 156.83 s, P < .008) and controls (78.27 s vs 13.14 s, P < .003), although final outcome in the FFT was similar in these groups. Expression of olfactory and neurogenesis marker was higher in the olfactory neuroepithelium of the OT group than in the anosmia group without treatment. The mechanisms underlying olfactory regeneration might be related to early olfactory receptor stimulation, followed by neurotrophic factor stimulation of neuronal plasticity. Conclusion OT can improve olfactory function and accelerate olfactory recovery. The mechanisms underlying olfactory regeneration might be related to an initial stimulation of olfactory receptors followed by neurogenesis. Olfactory ensheathing cells might play an important role in olfactory regeneration following OT, based on the observed changes in messenger ribonucleic acid (mRNA) and protein expression, as well as the findings of the gene analysis.
Collapse
Affiliation(s)
- Boo-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - JuYeon Park
- Department of Clinical Laboratory, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - EuiJin Kim
- Department of Clinical Laboratory, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu, Korea
| | - ByungGuk Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, St. Paul Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
43
|
Wang Y, Qin Y, Li H, Yao D, Sun B, Li Z, Li X, Dai Y, Wen C, Zhang L, Zhang C, Zhu T, Luo C. Abnormal Functional Connectivity in Cognitive Control Network, Default Mode Network, and Visual Attention Network in Internet Addiction: A Resting-State fMRI Study. Front Neurol 2019; 10:1006. [PMID: 31620077 PMCID: PMC6759465 DOI: 10.3389/fneur.2019.01006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/03/2019] [Indexed: 01/01/2023] Open
Abstract
Internet addiction (IA) has become a global mental and social problem, which may lead to a series of psychiatric symptoms including uncontrolled use of internet, and lack of concentration. However, the exact pathophysiology of IA remains unclear. Most of functional connectivity studies were based on pre-selected regions of interest (ROI), which could not provide a comprehensive picture of the communication abnormalities in IA, and might lead to limited or bias observations. Using local functional connectivity density (lFCD), this study aimed to explore the whole-brain abnormalities of functional connectivity in IA. We evaluated the whole-brain lFCD resulting from resting-state fMRI data in 28 IA individuals and 30 demographically matched healthy control subjects (HCs). The correlations between clinical characteristics and aberrant lFCD were also assessed. Compared with HCs, subjects with IA exhibited heightened lFCD values in the right dorsolateral prefrontal cortex (DLPFC), left parahippocampal gyrus (PHG), and cerebellum, and the bilateral middle cingulate cortex (MCC) and superior temporal pole (STP), as well as decreased lFCD values in the right inferior parietal lobe (IPL), and bilateral calcarine and lingual gyrus. Voxel-based correlation analysis revealed the significant correlations between the Young's Internet Addiction Test (IAT) score and altered lFCD values in the left PHG and bilateral STP. These findings revealed the hyper-connectivity in cognitive control network and default mode network as well as the hypo-connectivity in visual attention network, verifying the common mechanism in IA and substance addiction, and the underlying association between IA, and attention deficit/hyperactivity disorder in terms of neurobiology.
Collapse
Affiliation(s)
- Yang Wang
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Rehabilitation, Shuangliu Maternal and Child Health Care Hospital, Chengdu, China
| | - Yun Qin
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Li
- School of Medicine, Chengdu University, Chengdu, China
| | - Dezhong Yao
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Sun
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiliang Li
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xin Li
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Dai
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Wen
- Department of Rehabilitation, Zigong Fifth People's Hospital, Zigong, China
| | - Lingrui Zhang
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chenchen Zhang
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tianmin Zhu
- School of Rehabilitation and Health Preservation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Luo
- Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
44
|
Huang X, Li HJ, Peng DC, Ye L, Yang QC, Zhong YL, Zhou FQ, Shao Y. Altered brain network centrality in patients with late monocular blindness: a resting-state fMRI study. Arch Med Sci 2019; 15:1301-1307. [PMID: 31572477 PMCID: PMC6764322 DOI: 10.5114/aoms.2019.87133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION The aim of the study was to investigate the underlying functional network brain activity changes in patients with late monocular blindness (MB) and the relationship with their clinical features using the voxel-wise degree centrality (DC) method. MATERIAL AND METHODS A total of 32 patients with MB (25 males and 7 females), and 32 healthy controls (HCs) (25 males and 7 females) closely matched in age, sex, and education, underwent resting-state functional magnetic resonance imaging scans. The DC method was used to assess local features of spontaneous brain activity. Correlation analysis was performed to explore the relationships between the observed mean DC signal values of the different areas and clinical features in these patients. RESULTS Compared with HCs, MB patients had significantly lower DC values in the bilateral cuneus/V1/V2, and significantly higher DC values in the left inferior temporal gyrus and bilateral medial frontal gyrus. However, there was no relationship between the observed mean DC values of the different brain areas and the behavioral performance. CONCLUSIONS Late monocular blindness involves brain function network dysfunction in many regions, which might indicate impairment of the visual cortex and other vision-related brain regions in the MBs.
Collapse
Affiliation(s)
- Xin Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hai-Jun Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - De-Chang Peng
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lei Ye
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qi-Chen Yang
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Lin Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Fu-Qing Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
45
|
Shan PW, Liu W, Liu C, Han Y, Wang L, Chen Q, Tian H, Sun X, Luan S, Lin X, Jiang D, Zhuo C. Aberrant functional connectivity density in patients with treatment-refractory obsessive-compulsive disorder: a pilot study. J Int Med Res 2019; 47:2434-2445. [PMID: 31006380 PMCID: PMC6567710 DOI: 10.1177/0300060518807058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective Functional connectivity (FC) is altered in patients with obsessive-compulsive disorder (OCD). Most previous studies have focused on the strength of FC in patients with OCD; few have examined the number of functional connections in these patients. The number of functional connections is an important index for assessing aberrant FC. In the present study, we used FC density (FCD) mapping to explore alterations in the number of functional connections in patients with treatment-refractory OCD (TROCD) using the FCD index. Methods Twenty patients with TROCD and 20 patients with OCD in clinical remission were enrolled in the study. Global FCD (gFCD) was adopted to compare the differences between the two groups of patients. Results The gFCD in the left middle temporal gyrus was lower in the patients with TROCD than in those with remitted OCD, suggesting that decreased information processing ability may play a significant role in TROCD. Conclusion The left middle temporal gyrus is a key component of the emotional processing circuit and attentional processing circuit. Decreased information processing ability in this brain region may play a significant role in TROCD; however, further well-designed follow-up studies are needed to support this hypothesis.
Collapse
Affiliation(s)
- Pei Wei Shan
- 1 Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China
| | - Wei Liu
- 2 Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, China
| | - Caixing Liu
- 3 Department of Psychiatry, Qingdao Mental Health Center, Shandong Province, China
| | - Yunyi Han
- 1 Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China
| | - Lina Wang
- 4 Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin City 300300, China
| | - Qinggang Chen
- 4 Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin City 300300, China
| | - Hongjun Tian
- 4 Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin City 300300, China
| | - Xiuhai Sun
- 5 Department of Neurology, Zoucheng People's Hospital, Jining Medical University Affiliated to Zoucheng Hospital, Shandong Province, China
| | - Shuxin Luan
- 6 Department of Psychiatry, Jilin University, Jinlin Province, China
| | - Xiaodong Lin
- 1 Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China
| | - Deguo Jiang
- 1 Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China
| | - Chuanjun Zhuo
- 1 Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province, China.,4 Department of Psychiatry, Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin City 300300, China
| |
Collapse
|
46
|
Alterations of the Brain Microstructure and Corresponding Functional Connectivity in Early-Blind Adolescents. Neural Plast 2019; 2019:2747460. [PMID: 30996726 PMCID: PMC6408999 DOI: 10.1155/2019/2747460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 10/17/2018] [Accepted: 12/27/2018] [Indexed: 11/17/2022] Open
Abstract
Although evidence from studies on blind adults indicates that visual deprivation early in life leads to structural and functional disruption and reorganization of the brain, whether young blind people show similar patterns remains unknown. Therefore, this study is aimed at exploring the structural and functional alterations of the brain of early-blind adolescents (EBAs) compared to normal-sighted controls (NSCs) and investigating the effects of residual light perception on brain microstructure and function in EBAs. We obtained magnetic resonance imaging (MRI) data from 23 EBAs (8 with residual light perception (LPs), 15 without light perception (NLPs)) and 21 NSCs (age range 11-19 years old). Whole-brain voxel-based analyses of diffusion tensor imaging metrics and region-of-interest analyses of resting-state functional connectivity (RSFC) were performed to compare patterns of brain microstructure and the corresponding RSFC between the groups. The results showed that structural disruptions of LPs and NLPs were mainly located in the occipital visual pathway. Compared with NLPs, LPs showed increased fractional anisotropy (FA) in the superior frontal gyrus and reduced diffusivity in the caudate nucleus. Moreover, the correlations between FA of the occipital cortices or mean diffusivity of the lingual gyrus and age were consistent with the development trajectory of the brain in NSCs, but inconsistent or even opposite in EBAs. Additionally, we found functional, but not structural, reorganization in NLPs compared with NSCs, suggesting that functional neuroplasticity occurs earlier than structural neuroplasticity in EBAs. Altogether, these findings provided new insights into the mechanisms underlying the neural reorganization of the brain in adolescents with early visual deprivation.
Collapse
|
47
|
Yang L, Lei Y, Wang L, Chen P, Cheng S, Chen S, Sun J, Li Y, Wang Y, Hu W, Yang Z. Abnormal functional connectivity density in sleep-deprived subjects. Brain Imaging Behav 2019; 12:1650-1657. [PMID: 29488149 DOI: 10.1007/s11682-018-9829-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sleep deprivation (SD) can alter the intrinsic brain functional organization. However, its effects on intrinsic low-frequency connectivity in the whole brain have not been well characterized. In this study, we used voxel-based functional connectivity density (FCD) analysis to investigate the effects of SD on the spontaneous functional organization of the brain. Thirty-seven healthy participants underwent this within-subject crossover functional magnetic resonance imaging (fMRI) study during rested wakefulness (RW) and after 36 h of total sleep deprivation (TSD). Decreased long-/short-range FCDs were observed in the posterior cingulate cortex, precuneus, inferior parietal lobule, dorsolateral prefrontal cortex, dorsomedial prefrontal cortex, and ventromedial prefrontal cortex. Increased long-/short-range FCDs were found in the sensory integration and arousal regulating areas, including the postcentral gyrus, thalamus, superior temporal gyrus, and occipital-temporal cortex. Moreover, a significant negative correlation was found between the short-range FCD of the PCC and the reaction time of Psychomotor Vigilance Task. In the present study, spontaneous functional organization with significant group-wise differences between RW and TSD sessions was identified. Our findings extend our understanding of the neural mechanism of how brain activity is altered in sleep-deprived individuals.
Collapse
Affiliation(s)
- Liu Yang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Cognitive and Mental Health Research Center, Beijing, People's Republic of China
| | - Yu Lei
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Cognitive and Mental Health Research Center, Beijing, People's Republic of China.,Brain Science Center, Institute of Basic Medical Sciences, Beijing, People's Republic of China
| | - Lubin Wang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Cognitive and Mental Health Research Center, Beijing, People's Republic of China
| | - Pinhong Chen
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Cognitive and Mental Health Research Center, Beijing, People's Republic of China
| | - Shan Cheng
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Shanshan Chen
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Cognitive and Mental Health Research Center, Beijing, People's Republic of China
| | - Jicheng Sun
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Yanyan Li
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China.,Cognitive and Mental Health Research Center, Beijing, People's Republic of China
| | - Yihan Wang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, People's Republic of China
| | - Wendong Hu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, People's Republic of China.
| | - Zheng Yang
- Beijing Institute of Basic Medical Sciences, Beijing, People's Republic of China. .,Cognitive and Mental Health Research Center, Beijing, People's Republic of China.
| |
Collapse
|
48
|
Abnormal intrinsic functional network hubs and connectivity following peripheral visual loss because of inherited retinal degeneration. Neuroreport 2019; 30:295-304. [DOI: 10.1097/wnr.0000000000001200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
49
|
Kim BY, Park JY, Kim EJ, Kim BG, Kim SW, Kim SW. The neuroplastic effect of olfactory training to the recovery of olfactory system in mouse model. Int Forum Allergy Rhinol 2019; 9:715-723. [PMID: 30793525 PMCID: PMC6767412 DOI: 10.1002/alr.22320] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/08/2019] [Accepted: 01/28/2019] [Indexed: 11/21/2022]
Abstract
Background Several studies have reported the benefits of olfactory training (OT) in the olfactory nervous system of mouse models. Therefore, in this study we performed next‐generation sequencing to evaluate the effects of OT on mRNA sequencing in the olfactory area. Methods Mice in each group were administered 300 mg of 3‐methylindole per kilogram of mouse weight. The olfactory function was evaluated by a food‐finding test once a week. The olfactory neuroepithelium was harvested for histologic examination and protein analysis. Subsequently, data analysis, gene ontology and pathway analysis, quantitative real‐time polymerase chain reaction of mRNA, and Western blot analysis were conducted. Results Mice were divided into 4 groups according to treatment. Control, anosmia, training, and steroid group mice resumed food finding. Olfactory Maker Protein, olfr1507, ADCY3, and GNAL mRNA expression was higher in the olfactory neuroepithelium of OT than anosmia group mice. In total, 26,364 mRNAs were analyzed. Comparison of the results of OT vs anosmia revealed that ADCY8,10, GFAP, NGF, NGFR, GFAP, and BDNF mRNAs were upregulated in the gene ontology. Conclusion OT improved olfactory function, as indicated by the food‐finding test. OT improved the olfactory recovery time to stimulate olfactory nerve regeneration. OT may initially stimulate the olfactory receptor, followed by neurogenesis. Steroid therapy and OT operated under completely different mechanisms in the upregulated gene study. These results indicate that OT may be one of the future modalities for treating olfactory impairment.
Collapse
Affiliation(s)
- Boo-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ju Yeon Park
- Department of Clinical Laboratory, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eui Jin Kim
- Department of Clinical Laboratory, Uijeongbu St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byung Guk Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, St. Paul Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Soo Whan Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
50
|
Amadeo MB, Campus C, Gori M. Impact of years of blindness on neural circuits underlying auditory spatial representation. Neuroimage 2019; 191:140-149. [PMID: 30710679 DOI: 10.1016/j.neuroimage.2019.01.073] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 01/10/2019] [Accepted: 01/29/2019] [Indexed: 11/30/2022] Open
Abstract
Early visual deprivation impacts negatively on spatial bisection abilities. Recently, an early (50-90 ms) ERP response, selective for sound position in space, has been observed in the visual cortex of sighted individuals during the spatial but not the temporal bisection task. Here, we clarify the role of vision on spatial bisection abilities and neural correlates by studying late blind individuals. Results highlight that a shorter period of blindness is linked to a stronger contralateral activation in the visual cortex and a better performance during the spatial bisection task. Contrarily, not lateralized visual activation and lower performance are observed in individuals with a longer period of blindness. To conclude, the amount of time spent without vision may gradually impact on neural circuits underlying the construction of spatial representations in late blind participants. These findings suggest a key relationship between visual deprivation and auditory spatial abilities in humans.
Collapse
Affiliation(s)
- Maria Bianca Amadeo
- Unit for Visually Impaired People (U-VIP), Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83 - 16152, Genova, Italy; Università degli studi di Genova, Department of Informatics, Bioengineering, Robotics and Systems Engineering, Via all'Opera Pia, 13 - 16145, Genova, Italy
| | - Claudio Campus
- Unit for Visually Impaired People (U-VIP), Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83 - 16152, Genova, Italy
| | - Monica Gori
- Unit for Visually Impaired People (U-VIP), Fondazione Istituto Italiano di Tecnologia, Via E. Melen, 83 - 16152, Genova, Italy.
| |
Collapse
|