1
|
Vouillac-Mendoza C, Biendon N, Dovero S, Guillem K. Distinct neuronal processes in the ventromedial prefrontal cortex mediate changes in attention load and nicotine pro-cognitive effects in male rats. Front Neural Circuits 2025; 19:1540975. [PMID: 40124101 PMCID: PMC11925940 DOI: 10.3389/fncir.2025.1540975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/07/2025] [Indexed: 03/25/2025] Open
Abstract
The prefrontal cortex (PFC) plays a key role in attention. In particular, neuronal activity in the ventromedial PFC (vmPFC) has been implicated in the preparatory attentional period that immediately precedes cue presentation. However, whether vmPFC neuronal activity during this preparatory period is also sensitive to changes in task demand and to the pro-cognitive effects of nicotine remained to be investigated. Here, we used in vivo electrophysiology to record vmPFC neuronal activity in rats during two distinct manipulations: a task manipulation that increased task demand by reducing the cue stimulus duration (from 1 to 0.5 s), and a pharmacological manipulation by administrating an acute nicotine injection (10 μg/inj, i.v.) before the session. We found that increasing task demand decreased attentional performances and vmPFC precue neuronal activity, but had no effect on gamma oscillations. In contrast, nicotine injection increased attention and gamma oscillations, but almost abolished vmPFC phasic precue responses. Together, these findings indicate the existence of two distinct neuronal processes operating at different timescales and suggests that allocation of attention could be achieved through multiple neuronal mechanisms within the vmPFC.
Collapse
Affiliation(s)
| | - Nathalie Biendon
- Univ. Bordeaux, CNRS, HistoCARE Facility, IMN, UMR 5293, Bordeaux, France
| | - Sandra Dovero
- Univ. Bordeaux, CNRS, HistoCARE Facility, IMN, UMR 5293, Bordeaux, France
| | | |
Collapse
|
2
|
Lenoir M, Engeln M, Navailles S, Girardeau P, Ahmed SH. A large-scale c-Fos brain mapping study on extinction of cocaine-primed reinstatement. Neuropsychopharmacology 2024; 49:1459-1467. [PMID: 38664549 PMCID: PMC11251268 DOI: 10.1038/s41386-024-01867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/29/2024] [Accepted: 04/11/2024] [Indexed: 07/17/2024]
Abstract
Individuals with cocaine addiction can experience many craving episodes and subsequent relapses, which represents the main obstacle to recovery. Craving is often favored when abstinent individuals ingest a small dose of cocaine, encounter cues associated with drug use or are exposed to stressors. Using a cocaine-primed reinstatement model in rat, we recently showed that cocaine-conditioned interoceptive cues can be extinguished with repeated cocaine priming in the absence of drug reinforcement, a phenomenon we called extinction of cocaine priming. Here, we applied a large-scale c-Fos brain mapping approach following extinction of cocaine priming in male rats to identify brain regions implicated in processing the conditioned interoceptive stimuli of cocaine priming. We found that cocaine-primed reinstatement is associated with increased c-Fos expression in key brain regions (e.g., dorsal and ventral striatum, several prefrontal areas and insular cortex), while its extinction mostly disengages them. Moreover, while reinstatement behavior was correlated with insular and accumbal activation, extinction of cocaine priming implicated parts of the ventral pallidum, the mediodorsal thalamus and the median raphe. These brain patterns of activation and inhibition suggest that after repeated priming, interoceptive signals lose their conditioned discriminative properties and that action-outcome associations systems are mobilized in search for new contingencies, a brain state that may predispose to rapid relapse.
Collapse
Affiliation(s)
- Magalie Lenoir
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| | - Michel Engeln
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| | | | - Paul Girardeau
- Univ. Bordeaux, UFR des Sciences Odontologiques, Bordeaux, France
| | - Serge H Ahmed
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| |
Collapse
|
3
|
Elder TR, Turner JR. Nicotine use disorder and Neuregulin 3: Opportunities for precision medicine. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 99:387-404. [PMID: 38467488 DOI: 10.1016/bs.apha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nicotine use disorder remains a major public health emergency despite years of trumpeting the consequences of smoking. This is likely due to the complex interplay of genetics and nicotine exposure across the lifespan of these individuals. Genetics influence all aspects of life, including complex disorders such as nicotine use disorder. This review first highlights the critical neurocircuitry underlying nicotine dependence and withdrawal, and then describes the cellular signaling mechanisms involved. Finally, current genetic, genomic, and transcriptomic evidence for new drug development of smoking cessation aids is discussed, with a focus on the Neuregulin 3 Signaling Pathway.
Collapse
Affiliation(s)
- Taylor R Elder
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, United States
| | - Jill R Turner
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY, United States.
| |
Collapse
|
4
|
Lenoir M, Navailles S, Vandaele Y, Vouillac-Mendoza C, Guillem K, Ahmed SH. Large-scale brain correlates of sweet versus cocaine reward in rats. Eur J Neurosci 2023; 57:423-439. [PMID: 36453530 DOI: 10.1111/ejn.15879] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022]
Abstract
Cocaine induces many supranormal changes in neuronal activity in the brain, notably in learning- and reward-related regions, in comparison with nondrug rewards-a difference that is thought to contribute to its relatively high addictive potential. However, when facing a choice between cocaine and a nondrug reward (e.g., water sweetened with saccharin), most rats do not choose cocaine, as one would expect from the extent and magnitude of its global activation of the brain, but instead choose the nondrug option. We recently showed that cocaine, though larger in magnitude, is also an inherently more delayed reward than sweet water, thereby explaining why it has less value during choice and why rats opt for the more immediate nondrug option. Here, we used a large-scale Fos brain mapping approach to measure brain responses to each option in saccharin-preferring rats, with the hope to identify brain regions whose activity may explain the preference for the nondrug option. In total, Fos expression was measured in 142 brain levels corresponding to 52 brain subregions and composing 5 brain macrosystems. Overall, our findings confirm in rats with a preference for saccharin that cocaine induces more global brain activation than the preferred nondrug option does. Only very few brain regions were uniquely activated by saccharin. They included regions involved in taste processing (i.e., anterior gustatory cortex) and also regions involved in processing reward delay and intertemporal choice (i.e., some components of the septohippocampal system and its connections with the lateral habenula).
Collapse
Affiliation(s)
- Magalie Lenoir
- Université de Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | | | - Youna Vandaele
- INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | | | - Karine Guillem
- Université de Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| | - Serge H Ahmed
- Université de Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
5
|
King SG, Gaudreault PO, Malaker P, Kim JW, Alia-Klein N, Xu J, Goldstein RZ. Prefrontal-habenular microstructural impairments in human cocaine and heroin addiction. Neuron 2022; 110:3820-3832.e4. [PMID: 36206758 PMCID: PMC9671835 DOI: 10.1016/j.neuron.2022.09.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/24/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022]
Abstract
The habenula (Hb) is central to adaptive reward- and aversion-driven behaviors, comprising a hub for higher-order processing networks involving the prefrontal cortex (PFC). Despite an established role in preclinical models of cocaine addiction, the translational significance of the Hb and its connectivity with the PFC in humans is unclear. Using diffusion tractography, we detailed PFC structural connectivity with the Hb and two control regions, quantifying tract-specific microstructural features in healthy and cocaine-addicted individuals. White matter was uniquely impaired in PFC-Hb projections in both short-term abstainers and current cocaine users. Abnormalities in this tract further generalized to an independent sample of heroin-addicted individuals and were associated, in an exploratory analysis, with earlier onset of drug use across the addiction subgroups, potentially serving as a predisposing marker amenable for early intervention. Importantly, these findings contextualize a plausible PFC-Hb circuit in the human brain, supporting preclinical evidence for its impairment in cocaine addiction.
Collapse
Affiliation(s)
- Sarah G King
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pierre-Olivier Gaudreault
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pias Malaker
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joo-Won Kim
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nelly Alia-Klein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Junqian Xu
- Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX 77030, USA
| | - Rita Z Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
6
|
Jin M, Nguyen JD, Weber SJ, Mejias-Aponte CA, Madangopal R, Golden SA. SMART: An Open-Source Extension of WholeBrain for Intact Mouse Brain Registration and Segmentation. eNeuro 2022; 9:ENEURO.0482-21.2022. [PMID: 35396258 PMCID: PMC9070730 DOI: 10.1523/eneuro.0482-21.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 12/02/2022] Open
Abstract
Mapping immediate early gene (IEG) expression across intact mouse brains allows for unbiased identification of brain-wide activity patterns underlying complex behaviors. Accurate registration of sample brains to a common anatomic reference is critical for precise assignment of IEG-positive ("active") neurons to known brain regions of interest (ROIs). While existing automated voxel-based registration methods provide a high-throughput solution, they require substantial computing power, can be difficult to implement and fail when brains are damaged or only partially imaged. Additionally, it is challenging to cross-validate these approaches or compare them to any preexisting literature based on serial coronal sectioning. Here, we present the open-source R package SMART (Semi-Manual Alignment to Reference Templates) that extends the WholeBrain R package framework to automated segmentation and semi-automated registration of intact mouse brain light-sheet fluorescence microscopy (LSFM) datasets. The SMART package was created for novice programmers and introduces a streamlined pipeline for aligning, registering, and segmenting LSFM volumetric datasets across the anterior-posterior (AP) axis, using a simple "choice game" and interactive menus. SMART provides the flexibility to register whole brains, partial brains or discrete user-chosen images, and is fully compatible with traditional sectioned coronal slice-based analyses. We demonstrate SMART's core functions using example datasets and provide step-by-step video tutorials for installation and implementation of the package. We also present a modified iDISCO+ tissue clearing procedure for uniform immunohistochemical labeling of the activity marker Fos across intact mouse brains. The SMART pipeline, in conjunction with the modified iDISCO+ Fos procedure, is ideally suited for examination and orthogonal cross-validation of brain-wide neuronal activation datasets.
Collapse
Affiliation(s)
- Michelle Jin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Joseph D Nguyen
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Sophia J Weber
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Carlos A Mejias-Aponte
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Rajtarun Madangopal
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore 21224, MD
| | - Sam A Golden
- Department of Biological Structure, University of Washington, Seattle 98195, WA
| |
Collapse
|
7
|
Madangopal R, Ramsey LA, Weber SJ, Brenner MB, Lennon VA, Drake OR, Komer LE, Tunstall BJ, Bossert JM, Shaham Y, Hope BT. Inactivation of the infralimbic cortex decreases discriminative stimulus-controlled relapse to cocaine seeking in rats. Neuropsychopharmacology 2021; 46:1969-1980. [PMID: 34162997 PMCID: PMC8429767 DOI: 10.1038/s41386-021-01067-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 01/13/2023]
Abstract
Persistent susceptibility to cue-induced relapse is a cardinal feature of addiction. Discriminative stimuli (DSs) are one type of drug-associated cue that signal drug availability (DS+) or unavailability (DS-) and control drug seeking prior to relapse. We previously established a trial-based procedure in rats to isolate DSs from context, conditioned stimuli, and other drug-associated cues during cocaine self-administration and demonstrated DS-controlled cocaine seeking up to 300 abstinence days. The behavioral and neural mechanisms underlying trial-based DS-control of drug seeking have rarely been investigated. Here we show that following discrimination training in our trial-based procedure, the DS+ and DS- independently control the expression and suppression of cocaine seeking during abstinence. Using microinjections of GABAA + GABAB receptor agonists (muscimol + baclofen) in medial prefrontal cortex, we report that infralimbic, but not prelimbic, subregion of medial prefrontal cortex is critical to persistent DS-controlled relapse to cocaine seeking after prolonged abstinence, but not DS-guided discriminated cocaine seeking or DS-controlled cocaine self-admininstration. Finally, using ex vivo whole-cell recordings from pyramidal neurons in the medial prefrontal cortex, we demonstrate that the disruption of DS-controlled cocaine seeking following infralimbic cortex microinjections of muscimol+baclofen is likely a result of suppression of synaptic transmission in the region via a presynaptic mechanism of action.
Collapse
Affiliation(s)
- Rajtarun Madangopal
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Leslie A Ramsey
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Sophia J Weber
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Megan B Brenner
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Veronica A Lennon
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia R Drake
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Lauren E Komer
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Brendan J Tunstall
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jennifer M Bossert
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Yavin Shaham
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Bruce T Hope
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, USA.
| |
Collapse
|
8
|
Scuppa G, Tambalo S, Pfarr S, Sommer WH, Bifone A. Aberrant insular cortex connectivity in abstinent alcohol-dependent rats is reversed by dopamine D3 receptor blockade. Addict Biol 2020; 25:e12744. [PMID: 30907042 PMCID: PMC7187338 DOI: 10.1111/adb.12744] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/12/2019] [Accepted: 02/12/2019] [Indexed: 12/23/2022]
Abstract
A few studies have reported aberrant functional connectivity in alcoholic patients, but the specific neural circuits involved remain unknown. Moreover, it is unclear whether these alterations can be reversed upon treatment. Here, we used functional MRI to study resting state connectivity in rats following chronic intermittent exposure to ethanol. Further, we evaluated the effects of SB-277011-a, a selective dopamine D3 receptor antagonist, known to decrease ethanol consumption. Alcohol-dependent and control rats (N = 13/14 per group), 3 weeks into abstinence, were administered SB-277011-a or vehicle before fMRI sessions. Resting state connectivity networks were extracted by independent component analysis. A dual-regression analysis was performed using independent component maps as spatial regressors, and the effects of alcohol history and treatment on connectivity were assessed. A history of alcohol dependence caused widespread reduction of the internal coherence of components. Weaker correlation was also found between the insula cortex (IC) and cingulate cortices, key constituents of the salience network. Similarly, reduced connectivity was observed between a component comprising the anterior insular cortex, together with the caudate putamen (CPu-AntIns), and the posterior part of the IC. On the other hand, postdependent rats showed strengthened connectivity between salience and reward networks. In particular, higher connectivity was observed between insula and nucleus accumbens, between the ventral tegmental area and the cingulate cortex and between the VTA and CPu-AntIns. Interestingly, aberrant connectivity in postdependent rats was partially restored by acute administration of SB-277011-a, which, conversely, had no significant effects in naïve rats.
Collapse
Affiliation(s)
- Giulia Scuppa
- Center for Neuroscience and Cognitive SystemsIstituto Italiano di TecnologiaRoveretoItaly
| | - Stefano Tambalo
- Center for Neuroscience and Cognitive SystemsIstituto Italiano di TecnologiaRoveretoItaly
| | - Simone Pfarr
- Institute of Psychopharmacology, Central Institute of Mental HealthUniversity of HeidelbergMannheimGermany
| | - Wolfgang H. Sommer
- Institute of Psychopharmacology, Central Institute of Mental HealthUniversity of HeidelbergMannheimGermany
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental HealthUniversity of HeidelbergMannheimGermany
| | - Angelo Bifone
- Center for Neuroscience and Cognitive SystemsIstituto Italiano di TecnologiaRoveretoItaly
- Department of Molecular Biotechnology and Health SciencesUniversity of TorinoTorinoItaly
| |
Collapse
|
9
|
Laque A, L De Ness G, Wagner GE, Nedelescu H, Carroll A, Watry D, M Kerr T, Koya E, Hope BT, Weiss F, Elmer GI, Suto N. Anti-relapse neurons in the infralimbic cortex of rats drive relapse-suppression by drug omission cues. Nat Commun 2019; 10:3934. [PMID: 31477694 PMCID: PMC6718661 DOI: 10.1038/s41467-019-11799-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 07/29/2019] [Indexed: 12/12/2022] Open
Abstract
Drug addiction is a chronic relapsing disorder of compulsive drug use. Studies of the neurobehavioral factors that promote drug relapse have yet to produce an effective treatment. Here we take a different approach and examine the factors that suppress-rather than promote-relapse. Adapting Pavlovian procedures to suppress operant drug response, we determined the anti-relapse action of environmental cues that signal drug omission (unavailability) in rats. Under laboratory conditions linked to compulsive drug use and heightened relapse risk, drug omission cues suppressed three major modes of relapse-promotion (drug-predictive cues, stress, and drug exposure) for cocaine and alcohol. This relapse-suppression is, in part, driven by omission cue-reactive neurons, which constitute small subsets of glutamatergic and GABAergic cells, in the infralimbic cortex. Future studies of such neural activity-based cellular units (neuronal ensembles/memory engram cells) for relapse-suppression can be used to identify alternate targets for addiction medicine through functional characterization of anti-relapse mechanisms.
Collapse
Affiliation(s)
- Amanda Laque
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Genna L De Ness
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Grant E Wagner
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Hermina Nedelescu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ayla Carroll
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Debbie Watry
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tony M Kerr
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Eisuke Koya
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
| | - Bruce T Hope
- Behavioral Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, NIH/DHHS, Baltimore, MD, USA
| | - Friedbert Weiss
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Greg I Elmer
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, 21228, USA.
| | - Nobuyoshi Suto
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
10
|
Relapse to cocaine use persists following extinction of drug-primed craving. Neuropharmacology 2019; 155:185-193. [DOI: 10.1016/j.neuropharm.2019.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/06/2019] [Accepted: 05/30/2019] [Indexed: 11/17/2022]
|
11
|
Zeng Y, Hu D, Yang W, Hayashinaka E, Wada Y, Watanabe Y, Zeng Q, Cui Y. A voxel-based analysis of neurobiological mechanisms in placebo analgesia in rats. Neuroimage 2018; 178:602-612. [DOI: 10.1016/j.neuroimage.2018.06.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/22/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
|
12
|
Wright AM, Zapata A, Baumann MH, Elmore JS, Hoffman AF, Lupica CR. Enduring Loss of Serotonergic Control of Orbitofrontal Cortex Function Following Contingent and Noncontingent Cocaine Exposure. Cereb Cortex 2018; 27:5463-5476. [PMID: 27733540 DOI: 10.1093/cercor/bhw312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Clinical descriptions of cocaine addiction include compulsive drug seeking and maladaptive decision-making despite substantial aversive consequences. Research suggests that this may result from altered orbitofrontal cortex (OFC) function and its participation in outcome-based behavior. Clinical and animal studies also implicate serotonin in the regulation of OFC function in addiction and other neuropsychiatric disorders. Here we test the hypothesis that exposure to cocaine, through self-administration (CSA) or yoked-administration (CYA), alters the regulation of OFC function by 5-HT. Using whole-cell electrophysiology in brain slices from naïve rats we find that 5-HT1A receptors generate hyperpolarizing outward currents in layer-V OFC pyramidal neurons, and that 5-HT2A receptors increase glutamate release onto these cells. Following extended withdrawal from CSA or CYA, this 5-HT regulation of OFC activity is largely lost. In-situ hybridization of 5-HT receptor transcripts reveals that 5-HT1A receptor mRNA is unaffected and 5-HT2A receptor mRNA is significantly elevated after CSA or CYA. These results demonstrate that 5-HT control of OFC neurons is disrupted for extended periods following cocaine exposure. We hypothesize that this dysregulation of 5-HT signaling leads to enduring disruptions of OFC network activity that this is involved in impaired decision-making associated with cocaine addiction.
Collapse
Affiliation(s)
- Andrew M Wright
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Agustin Zapata
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael H Baumann
- Designer Drug Research Unit, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Joshua S Elmore
- Designer Drug Research Unit, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alexander F Hoffman
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| | - Carl R Lupica
- Electrophysiology Research Section, Cellular Neurobiology Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
13
|
Elston TW, Bilkey DK. Anterior Cingulate Cortex Modulation of the Ventral Tegmental Area in an Effort Task. Cell Rep 2018; 19:2220-2230. [PMID: 28614710 DOI: 10.1016/j.celrep.2017.05.062] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/27/2017] [Accepted: 05/18/2017] [Indexed: 12/20/2022] Open
Abstract
Information gained during goal pursuit motivates adaptive behavior. The anterior cingulate cortex (ACC) supports adaptive behavior, but how ACC signals are translated into motivational signals remains unclear. Rats with implants in the ACC and ventral tegmental area (VTA), a dopaminergic brain area implicated in motivation, were trained to run laps around a rectangular track for a fixed reward, where each lap varied in physical effort (a 30-cm climbable barrier). Partial directed coherence analysis of local field potentials revealed that ACC theta (4-12 Hz) activity increased as rats entered the barrier-containing region of the maze in trials when the barrier was absent and predicted similar changes in VTA theta activity. This did not occur in effortful, barrier-present trials. These data suggest that the ACC provides a top-down modulating signal to the VTA that can influence the motivation with which to pursue a reward.
Collapse
Affiliation(s)
- Thomas W Elston
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand; Department of Psychology, University of Otago, Dunedin 9016, New Zealand.
| | - David K Bilkey
- Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand; Department of Psychology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
14
|
Antinori S, Fattore L, Saba P, Fratta W, Gessa GL, Devoto P. Levodopa prevents the reinstatement of cocaine self-administration in rats via potentiation of dopamine release in the medial prefrontal cortex. Addict Biol 2018; 23:556-568. [PMID: 28429835 DOI: 10.1111/adb.12509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 01/04/2023]
Abstract
Dopamine agonists have been proposed as therapeutic tools for cocaine addiction. We have recently demonstrated that indirect dopamine agonists, including levodopa (L-DOPA), markedly increase cocaine-induced dopamine release in the medial prefrontal cortex (mPFC) of rats leading to the suppression of cocaine-seeking behavior. This study was aimed to understand the behavioral and neurochemical effects of L-DOPA on cocaine-taking and cocaine-seeking in rats. After reaching a stable pattern of intravenous cocaine self-administration under a continuous fixed ratio (FR-1) schedule of reinforcement, male rats were treated with L-DOPA at different steps of the self-administration protocol. We found that L-DOPA reduced cocaine self-administration under FR-1 schedule of reinforcement and decreased the breaking points and the amount of cocaine self-administered under the progressive ratio schedule of reinforcement. Levodopa also decreased cocaine-seeking behavior both in a saline substitution test and in the cue priming-induced reinstatement test, without affecting general motor activity. Importantly, L-DOPA greatly potentiated cocaine-induced dopamine release in the mPFC of self-administering rats while reducing their cocaine intake. In the same brain area, L-DOPA also increased dopamine levels during cue priming-induced reinstatement of cocaine-seeking behavior. The potentiating effect was also evident in the mPFC but not nucleus accumbens core of drug-naïve rats passively administered with cocaine. Altogether, these findings demonstrate that L-DOPA efficaciously reduces the reinforcing and motivational effects of cocaine likely potentiating dopamine transmission in the mPFC. Its ability to prevent cue priming-induced reinstatement of cocaine-seeking suggests that it might be effective in reducing the risk to relapse to cocaine in abstinent patients.
Collapse
Affiliation(s)
- Silvia Antinori
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari; National Research Council (CNR); Italy
- Center of Excellence ‘Neurobiology of Addiction’; University of Cagliari; Italy
| | - Pierluigi Saba
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
| | - Walter Fratta
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
- Center of Excellence ‘Neurobiology of Addiction’; University of Cagliari; Italy
| | - Gian Luigi Gessa
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
- Institute of Neuroscience-Cagliari; National Research Council (CNR); Italy
- ‘Guy Everett Laboratory’; University of Cagliari; Italy
| | - Paola Devoto
- Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences; University of Cagliari; Italy
- Center of Excellence ‘Neurobiology of Addiction’; University of Cagliari; Italy
- ‘Guy Everett Laboratory’; University of Cagliari; Italy
| |
Collapse
|
15
|
Gutman AL, Ewald VA, Cosme CV, Worth WR, LaLumiere RT. The infralimbic and prelimbic cortices contribute to the inhibitory control of cocaine-seeking behavior during a discriminative stimulus task in rats. Addict Biol 2017; 22:1719-1730. [PMID: 27549035 DOI: 10.1111/adb.12434] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/13/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022]
Abstract
The infralimbic and prelimbic (IL and PL, respectively) regions of the medial prefrontal cortex regulate the control of drug-seeking behavior. However, their roles in cocaine seeking in a discriminative stimulus (DS)-based self-administration task are unclear. To address this issue, male Sprague Dawley rats were trained on a DS task in which, on a trial-by-trial basis, a DS+ indicated that a lever press would produce a cocaine infusion, whereas a distinct DS- indicated that a lever press would produce nothing. IL and PL inactivation via GABA receptor activation decreased performance accuracy and disinhibited behavioral responding on DS- trials, resulting in greater lever pressing during the DS- presentation. This was accompanied by a decrease in cocaine infusions obtained, a finding confirmed in a subsequent experiment using a standard FR1 cocaine self-administration paradigm. We repeated the DS study using a food reward and found that inactivation of each region decreased performance accuracy but had no effect on the total number of food pellets earned. Additional experiments with the cocaine DS task found that dopamine receptor blockade in the IL, but not PL, reduced performance accuracy and disinhibited behavioral responding on DS- trials, whereas AMPA receptor blockade in the IL and PL had no effect on performance accuracy. These findings strongly suggest that, in a DS-based self-administration task in which rats must actively decide whether to engage in lever pressing (DS+) or withhold lever pressing (DS-) on a trial-by-trial basis, both the IL and PL contribute to the inhibitory control of drug-seeking behavior.
Collapse
Affiliation(s)
- Andrea L. Gutman
- Department of Psychological and Brain Sciences; University of Iowa; Iowa City IA USA
| | - Victoria A. Ewald
- Interdisciplinary Graduate Program in Neuroscience; University of Iowa; Iowa City IA USA
| | - Caitlin V. Cosme
- Department of Psychological and Brain Sciences; University of Iowa; Iowa City IA USA
| | - Wensday R. Worth
- Department of Psychological and Brain Sciences; University of Iowa; Iowa City IA USA
| | - Ryan T. LaLumiere
- Department of Psychological and Brain Sciences; University of Iowa; Iowa City IA USA
- Interdisciplinary Graduate Program in Neuroscience; University of Iowa; Iowa City IA USA
| |
Collapse
|
16
|
Andino-Pavlovsky V, Souza AC, Scheffer-Teixeira R, Tort ABL, Etchenique R, Ribeiro S. Dopamine Modulates Delta-Gamma Phase-Amplitude Coupling in the Prefrontal Cortex of Behaving Rats. Front Neural Circuits 2017; 11:29. [PMID: 28536507 PMCID: PMC5422429 DOI: 10.3389/fncir.2017.00029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/10/2017] [Indexed: 11/13/2022] Open
Abstract
Dopamine release and phase-amplitude cross-frequency coupling (CFC) have independently been implicated in prefrontal cortex (PFC) functioning. To causally investigate whether dopamine release affects phase-amplitude comodulation between different frequencies in local field potentials (LFP) recorded from the medial PFC (mPFC) of behaving rats, we used RuBiDopa, a light-sensitive caged compound that releases the neurotransmitter dopamine when irradiated with visible light. LFP power did not change in any frequency band after the application of light-uncaged dopamine, but significantly strengthened phase-amplitude comodulation between delta and gamma oscillations. Saline did not exert significant changes, while injections of dopamine and RuBiDopa produced a slow increase in comodulation for several minutes after the injection. The results show that dopamine release in the medial PFC shifts phase-amplitude comodulation from theta-gamma to delta-gamma. Although being preliminary results due to the limitation of the low number of animals present in this study, our findings suggest that dopamine-mediated modification of the frequencies involved in comodulation could be a mechanism by which this neurotransmitter regulates functioning in mPFC.
Collapse
Affiliation(s)
- Victoria Andino-Pavlovsky
- Departamento de Química Inorganica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Annie C Souza
- Instituto do Cérebro, Federal University of Rio Grande do NorteNatal, Brazil
| | | | - Adriano B L Tort
- Instituto do Cérebro, Federal University of Rio Grande do NorteNatal, Brazil
| | - Roberto Etchenique
- Departamento de Química Inorganica, Analítica y Química Física, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos AiresBuenos Aires, Argentina
| | - Sidarta Ribeiro
- Instituto do Cérebro, Federal University of Rio Grande do NorteNatal, Brazil
| |
Collapse
|
17
|
Yamamuro K, Kimoto S, Iida J, Kishimoto N, Nakanishi Y, Tanaka S, Ota T, Makinodan M, Kishimoto T. Reduced Prefrontal Cortex Hemodynamic Response in Adults with Methamphetamine Induced Psychosis: Relevance for Impulsivity. PLoS One 2016; 11:e0152373. [PMID: 27050450 PMCID: PMC4822936 DOI: 10.1371/journal.pone.0152373] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 03/14/2016] [Indexed: 12/19/2022] Open
Abstract
Patients with methamphetamine abuse/dependence often exhibit high levels of impulsivity, which may be associated with the structural abnormalities and functional hypoactivities observed in the frontal cortex of these subjects. Although near-infrared spectroscopy (NIRS) is a simple and non-invasive method for characterizing the clinical features of various psychiatric illnesses, few studies have used NIRS to directly investigate the association between prefrontal cortical activity and inhibitory control in patients with methamphetamine-induced psychosis (MAP). Using a 24-channel NIRS system, we compared hemodynamic responses during the Stroop color-word task in 14 patients with MAP and 21 healthy controls matched for age, sex and premorbid IQ. In addition, we used the Barrett Impulsivity Scale-11 (BIS-11) to assess impulsivity between subject groups. The MAP group exhibited significantly less activation in the anterior and frontopolar prefrontal cortex accompanied by lower Stroop color-word task performance, compared with controls. Moreover, BIS-11 scores were significantly higher in the MAP group, and were negatively correlated with the hemodynamic responses in prefrontal cortex. Our data suggest that reduced hemodynamic responses in the prefrontal cortex might reflect higher levels of impulsivity in patients with MAP, providing new insights into disrupted inhibitory control observed in MAP.
Collapse
Affiliation(s)
- Kazuhiko Yamamuro
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Sohei Kimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
- * E-mail:
| | - Junzo Iida
- Faculty of Nursing, Nara Medical University School of Medicine, Kashihara, Japan
| | - Naoko Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Yoko Nakanishi
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Shohei Tanaka
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Toyosaku Ota
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| | - Toshifumi Kishimoto
- Department of Psychiatry, Nara Medical University School of Medicine, Kashihara, Japan
| |
Collapse
|
18
|
Caught in the Net: Perineuronal Nets and Addiction. Neural Plast 2016; 2016:7538208. [PMID: 26904301 PMCID: PMC4745418 DOI: 10.1155/2016/7538208] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022] Open
Abstract
Exposure to drugs of abuse induces plasticity in the brain and creates persistent drug-related memories. These changes in plasticity and persistent drug memories are believed to produce aberrant motivation and reinforcement contributing to addiction. Most studies have explored the effect drugs of abuse have on pre- and postsynaptic cells and astrocytes; however, more recently, attention has shifted to explore the effect these drugs have on the extracellular matrix (ECM). Within the ECM are unique structures arranged in a net-like manner, surrounding a subset of neurons called perineuronal nets (PNNs). This review focuses on drug-induced changes in PNNs, the molecules that regulate PNNs, and the expression of PNNs within brain circuitry mediating motivation, reward, and reinforcement as it pertains to addiction.
Collapse
|
19
|
Moorman DE, James MH, McGlinchey EM, Aston-Jones G. Differential roles of medial prefrontal subregions in the regulation of drug seeking. Brain Res 2015; 1628:130-46. [PMID: 25529632 PMCID: PMC4472631 DOI: 10.1016/j.brainres.2014.12.024] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/09/2014] [Indexed: 01/08/2023]
Abstract
The prefrontal cortex plays an important role in shaping cognition and behavior. Many studies have shown that medial prefrontal cortex (mPFC) plays a key role in seeking, extinction, and reinstatement of cocaine seeking in rodent models of relapse. Subregions of mPFC appear to play distinct roles in these behaviors, such that the prelimbic cortex (PL) is proposed to drive cocaine seeking and the infralimbic cortex (IL) is proposed to suppress cocaine seeking after extinction. This dichotomy of mPFC function may be a general attribute, as similar dorsal-ventral distinctions exist for expression vs. extinction of fear conditioning. However, other results indicate that the role of mPFC neurons in reward processing is more complex than a simple PL-seek vs. IL-extinguish dichotomy. Both PL and IL have been shown to drive and inhibit drug seeking (and other types of behaviors) depending on a range of factors including the behavioral context, the drug-history of the animal, and the type of drug investigated. This heterogeneity of findings may reflect multiple subcircuits within each of these PFC areas supporting unique functions. It may also reflect the fact that the mPFC plays a multifaceted role in shaping cognition and behavior, including those overlapping with cocaine seeking and extinction. Here we discuss research leading to the hypothesis that dorsal and ventral mPFC differentially control drug seeking and extinction. We also present recent results calling the absolute nature of a PL vs. IL dichotomy into question. Finally, we consider alternate functions for mPFC that correspond less to response execution and inhibition and instead incorporate the complex cognitive behavior for which the mPFC is broadly appreciated.
Collapse
Affiliation(s)
- David E Moorman
- Department of Psychological and Brain Sciences & Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - Morgan H James
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States
| | - Ellen M McGlinchey
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States; Program in Neurosciences, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Gary Aston-Jones
- Brain Health Institute, Rutgers University, Piscataway, NJ 08854, United States
| |
Collapse
|