1
|
Tarmati V, Sepe A, Accoto A, Conversi D, Laricchiuta D, Panuccio A, Canterini S, Fiorenza MT, Cabib S, Orsini C. Genotype-dependent functional role of the anterior and posterior paraventricular thalamus in pavlovian conditioned approach. Psychopharmacology (Berl) 2025; 242:1275-1289. [PMID: 39663249 DOI: 10.1007/s00213-024-06726-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
RATIONALE The specific location of deviations from normative models of brain function varies considerably across individuals with the same diagnoses. However, as pathological processes are distributed across interconnected systems, this heterogeneity of individual brain deviations may also reveal similarities and differences between disorders. The paraventricular nucleus of the thalamus (PVT) is a potential switcher to various behavioral responses where functionally distinct cell types exist across its antero-posterior axis. OBJECTIVES This study aimed to test the hypothesis that genotype-dependent differences in the anterior and posterior PVT subregions (aPVT and pPVT) are involved in the Sign-tracking (ST) behavior expressed by C57BL/6J (C57) and DBA/2J (DBA) inbred mice. METHODS Based on previous findings, male mice of the two strains were tested at ten weeks of age. The density of c-Fos immunoreactivity along the antero-posterior axis of PVT was assessed following the expression of ST behavior. Selective excitotoxic lesions of the aPVT or the pPVT by the NMDA infusion were performed prior to development of ST behavior. Finally, the distribution of neuronal populations expressing the Drd2 and Gal genes (D2R + and Gal +) was measured by in situ hybridization (ISH). RESULTS The involvement of PVT subregions in ST behavior is strain-specific, as aPVT is crucial for ST acquisition in DBA mice while pPVT is crucial for C57 mice. Despite similar antero-posterior distribution of D2R + and Gal + neurons, density of D2R + neurons differentiate aPVT in C57 and DBA mice. CONCLUSIONS These genotype-dependent results offer valuable insights into the nuanced organization of brain networks and individual variability in behavioral responses.
Collapse
Affiliation(s)
- Valeria Tarmati
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
| | - Andrea Sepe
- PhD Program in Behavioral Neuroscience, Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - David Conversi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Daniela Laricchiuta
- Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy
| | | | - Sonia Canterini
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | | | - Simona Cabib
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Fondazione Santa Lucia IRCCS, Rome, Rome, Italy
| | - Cristina Orsini
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Fondazione Santa Lucia IRCCS, Rome, Rome, Italy
| |
Collapse
|
2
|
Carli S, Schirripa A, Mirino P, Capirchio A, Caligiore D. The role of the prefrontal cortex in cocaine-induced noradrenaline release in the nucleus accumbens: a computational study. BIOLOGICAL CYBERNETICS 2025; 119:6. [PMID: 39920377 PMCID: PMC11805868 DOI: 10.1007/s00422-025-01005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 01/21/2025] [Indexed: 02/09/2025]
Abstract
Research has extensively explored the role of the dopaminergic system in the reward circuit, while the contribution of the noradrenergic system remains less understood. This study aims to fill this gap by employing computational modeling to examine how the medial prefrontal cortex (mPFC) influences cocaine-induced norepinephrine (NE) release in the nucleus accumbens shell (NAcc), with mediation by the nucleus of the tractus solitarius (NTS) and the locus coeruleus (LC). The model replicates previously reported data on NE release in the mPFC following cocaine administration. Additionally, it predicts that NE depletion in the mPFC affects NE release in the NAcc through interactions with the NTS and LC. This work proposes a system-level hypothesis, suggesting that the mPFC regulates NE release in the NAcc by modulating the LC and NTS. These findings enhance our understanding of the neurochemical response to cocaine and offer potential directions for future addiction treatments.
Collapse
Affiliation(s)
- Samuele Carli
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196, Rome, Italy
- Entersys s.r.l., Via San Pio X 44, 35027, Noventa Padovana, Padua, Italy
| | - Aurelia Schirripa
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196, Rome, Italy
| | - Pierandrea Mirino
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196, Rome, Italy
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199, Rome, Italy
| | - Adriano Capirchio
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199, Rome, Italy
| | - Daniele Caligiore
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, National Research Council (CTNLab-ISTC-CNR), Via Gian Domenico Romagnosi, 18A, 00196, Rome, Italy.
- AI2Life s.r.l., Innovative Start-Up, ISTC-CNR Spin-Off, Via Sebino 32, 00199, Rome, Italy.
| |
Collapse
|
3
|
Mancini C, Babicola L, Chila G, Di Segni M, Municchi D, D’Addario SL, Spoleti E, Passeri A, Cifani C, Andolina D, Cabib S, Ferlazzo F, Iosa M, Rossi R, Di Lorenzo G, Renzi M, Ventura R. Secure attachment to caregiver prevents adult depressive symptoms in a sex-dependent manner: A translational study. iScience 2024; 27:111328. [PMID: 39758994 PMCID: PMC11700650 DOI: 10.1016/j.isci.2024.111328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 11/04/2024] [Indexed: 01/07/2025] Open
Abstract
Although clinically relevant, evidence for a protective effect of early secure attachment against the development of depressive symptoms in adulthood is still inconsistent. This study used a translational approach to overcome this limitation. The analysis of a non-clinical adult population revealed a moderating effect of secure attachment on depressive symptoms in women only. Thus, we tested the causal link between early attachment with caregiver and adult depressive-like phenotypes in a mouse model of early adversities that is especially effective in females. Repeated cross fostering (RCF) in the first postnatal days prevented the development of pups' secure attachment with the caregiver as tested in a rodent version of the "strange situation"-the standard human test-induced depressive-like behaviors and altered activity of the ventral tegmental area dopamine neurons in adulthood. Finally, a stable alternative caregiver during the RCF experience prevented all these effects, modeling human "earned attachment."
Collapse
Affiliation(s)
- Camilla Mancini
- University of Camerino, School of Pharmacy, Pharmacology Unit, Camerino, Italy
| | | | - Gilda Chila
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Matteo Di Segni
- Child Psychopathology Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Diana Municchi
- Department of Psychology, Sapienza University, Rome, Italy
| | | | - Elena Spoleti
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Alice Passeri
- Department of Psychology, Sapienza University, Rome, Italy
| | - Carlo Cifani
- University of Camerino, School of Pharmacy, Pharmacology Unit, Camerino, Italy
| | - Diego Andolina
- IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, Sapienza University, Rome, Italy
| | - Simona Cabib
- IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, Sapienza University, Rome, Italy
| | - Fabio Ferlazzo
- Department of Psychology, Sapienza University, Rome, Italy
| | - Marco Iosa
- IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychology, Sapienza University, Rome, Italy
| | - Rodolfo Rossi
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Giorgio Di Lorenzo
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Massimiliano Renzi
- Department of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Rossella Ventura
- Department of Psychology, Sapienza University, Rome, Italy
- IRCCS San Raffaele, Rome, Italy
| |
Collapse
|
4
|
Babicola L, Mancini C, Riccelli C, Di Segni M, Passeri A, Municchi D, D'Addario SL, Andolina D, Cifani C, Cabib S, Ventura R. A mouse model of the 3-hit effects of stress: Genotype controls the effects of life adversities in females. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110842. [PMID: 37611651 DOI: 10.1016/j.pnpbp.2023.110842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Helplessness is a dysfunctional coping response to stressors associated with different psychiatric conditions. The present study tested the hypothesis that early and adult adversities cumulate to produce helplessness depending on the genotype (3-hit hypothesis of psychopathology). To this aim, we evaluated whether Chronic Unpredictable Stress (CUS) differently affected coping and mesoaccumbens dopamine (DA) responses to stress challenge by adult mice of the C57BL/6J (B6) and DBA/2J (D2) inbred strains depending on early life experience (Repeated Cross Fostering, RCF). Three weeks of CUS increased the helplessness expressed in the Forced Swimming Test (FST) and the Tail Suspension Test by RCF-exposed female mice of the D2 strain. Moreover, female D2 mice with both RCF and CUS experiences showed inhibition of the stress-induced extracellular DA outflow in the Nucleus Accumbens, as measured by in vivo microdialysis, during and after FST. RCF-exposed B6 mice, instead, showed reduced helplessness and increased mesoaccumbens DA release. The present results support genotype-dependent additive effects of early experiences and adult adversities on behavioral and neural responses to stress by female mice. To our knowledge, this is the first report of a 3-hit effect in an animal model. Finally, the comparative analyses of behavioral and neural phenotypes expressed by B6 and D2 mice suggest some translationally relevant hypotheses of genetic risk factors for psychiatric disorders.
Collapse
Affiliation(s)
- Lucy Babicola
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Camilla Mancini
- University of Camerino, School of Pharmacy, Pharmacology Unit, Camerino, Italy
| | - Cristina Riccelli
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Alice Passeri
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Diana Municchi
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | | | - Diego Andolina
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy
| | - Carlo Cifani
- University of Camerino, School of Pharmacy, Pharmacology Unit, Camerino, Italy
| | - Simona Cabib
- IRCCS Fondazione Santa Lucia, Rome, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Rossella Ventura
- IRCCS Fondazione Santa Lucia, Rome, Italy; IRCCS San Raffaele, Rome, Italy.
| |
Collapse
|
5
|
Nakama N, Usui N, Doi M, Shimada S. Early life stress impairs brain and mental development during childhood increasing the risk of developing psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110783. [PMID: 37149280 DOI: 10.1016/j.pnpbp.2023.110783] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
In recent years, it has become known that stress in childhood, called early life stress (ELS), affects the mental health of children, adolescents, and adults. Child maltreatment (CM) is an inappropriate form of childcare that interferes with children's normal brain and mind development. Previous studies have reported that CM severely affects brain development and function. For example, ELS causes brain vulnerability and increases the risk of developing psychiatric disorders. In addition, it is known that the different types and timing of abuse have different effects on the brain. Epidemiological and clinical studies are being conducted to understand the mechanism underlying abuse on a child's mental health and appropriate brain development; however, they are not fully understood. Therefore, studies using animal models, as well as humans, have been conducted to better understand the effects of CM. In this review, we discuss the effects of comparing previous findings on different types of CM in human and animal models. However, it should be noted that there are differences between animal models and humans such as genetic polymorphism and susceptibility to stress. Our review provides the latest insights into the negative effects of CM on children's development and on psychiatric disorders in adulthood.
Collapse
Affiliation(s)
- Nanako Nakama
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Noriyoshi Usui
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; CoMIT Omics Center, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan; Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan.
| | - Miyuki Doi
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| | - Shoichi Shimada
- Department of Neuroscience and Cell Biology, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan; United Graduate School of Child Development, Osaka University, Suita 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, Suita, 565-0871, Japan; Addiction Research Unit, Osaka Psychiatric Research Center, Osaka Psychiatric Medical Center, Osaka 541-8567, Japan
| |
Collapse
|
6
|
Warhaftig G, Almeida D, Turecki G. Early life adversity across different cell- types in the brain. Neurosci Biobehav Rev 2023; 148:105113. [PMID: 36863603 DOI: 10.1016/j.neubiorev.2023.105113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Early life adversity (ELA)- which includes physical, psychological, emotional, and sexual abuse is one of the most common predictors to diverse psychopathologies later in adulthood. As ELA has a lasting impact on the brain at a developmental stage, recent findings from the field highlighted the specific contributions of different cell types to ELA and their association with long lasting consequences. In this review we will gather recent findings describing morphological, transcriptional and epigenetic alterations within neurons, glia and perineuronal nets and their associated cellular subpopulation. The findings reviewed and summarized here highlight important mechanisms underlying ELA and point to therapeutic approaches for ELA and related psychopathologies later in life.
Collapse
Affiliation(s)
- Gal Warhaftig
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal QC H3A 1A1, Canada.
| |
Collapse
|
7
|
D'Addario SL, Municchi D, Mancini C, Ielpo D, Babicola L, Di Segni M, Iacono LL, Ferlazzo F, Cifani C, Andolina D, Ventura R. The long-lasting effects of early life adversities are sex dependent: The signature of miR-34a. J Affect Disord 2023; 322:277-288. [PMID: 36414112 DOI: 10.1016/j.jad.2022.11.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/26/2022] [Accepted: 11/11/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Exposure to early life adversities (ELA) can influence a plethora of biological mechanisms leading to stress-related disorders later in life through epigenetic mechanisms, such as microRNAs (miRs). MiR-34 is a critical modulator of stress response and stress-induced pathologies and a link between ELA and miR-34a has been reported. METHODS Here using our well-established model of ELA (Repeated Cross Fostering) we investigate the behavioral long-term effects of ELA in male and female mice. We also assess basal and ELA-induced miR-34a expression in adult mice and investigate whether ELA affects the later miR-34a response to adult acute stress exposure across brain areas (medial preFrontal Cortex, Dorsal Raphe Nuclei) and peripheral organs (heart, plasma) in animals from both sexes. Finally, based on our previous data demonstrating the critical role of Dorsal Raphe Nuclei miR-34a expression in serotonin (5-HT) transmission, we also investigated prefrontal-accumbal 5-HT outflow induced by acute stress exposure in ELA and Control females by in vivo intracerebral microdialysis. RESULTS ELA not just induces a depressive-like state as well as enduring changes in miR-34a expression, but also alters miR-34a expression in response to adult acute stress exclusively in females. Finally, altered DRN miR-34a expression is associated with prefrontal-accumbal 5-HT release under acute stress exposure in females. LIMITATIONS Translational study on humans is necessary to verify the results obtained in our animal models of ELA-induced depression. CONCLUSIONS This is the first evidence showing long-lasting sex related effects of ELA on brain and peripheral miR-34a expression levels in an animal model of depression-like phenotype.
Collapse
Affiliation(s)
- Sebastian Luca D'Addario
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Diana Municchi
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Camilla Mancini
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| | - Donald Ielpo
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Lucy Babicola
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | | | - Luisa Lo Iacono
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Fabio Ferlazzo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy.
| | - Diego Andolina
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| | - Rossella Ventura
- IRCCS Fondazione Santa Lucia, Roma, Italy; Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome 00184, Italy.
| |
Collapse
|
8
|
Ventura R, Cabib S, Babicola L, Andolina D, Di Segni M, Orsini C. Interactions Between Experience, Genotype and Sex in the Development of Individual Coping Strategies. Front Behav Neurosci 2022; 15:785739. [PMID: 34987364 PMCID: PMC8721137 DOI: 10.3389/fnbeh.2021.785739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/29/2021] [Indexed: 02/01/2023] Open
Abstract
Coping strategies, the first line of defense against adversities, develop through experience. There is consistent evidence that both genotype and sex contribute to the development of dysfunctional coping, leading to maladaptive outcomes of adverse experiences or to adaptive coping that fosters rapid recovery even from severe stress. However, how these factors interact to influence the development of individual coping strategies is just starting to be investigated. In the following review, we will consider evidence that experience, sex, and genotype influence the brain circuits and neurobiological processes involved in coping with adversities and discuss recent results pointing to the specific effects of the interaction between early experiences, genotype, and stress in the development of functional and dysfunctional coping styles.
Collapse
Affiliation(s)
- Rossella Ventura
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Simona Cabib
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Lucy Babicola
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy.,Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Matteo Di Segni
- Department of Experimental Neurosciences, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Cristina Orsini
- Department of Psychology and Centre for Research in Neurobiology D. Bovet, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Lo Iacono L, Mancini C, Babicola L, Pietrosanto M, Di Segni M, D'Addario SL, Municchi D, Ielpo D, Pascucci T, Cabib S, Ferlazzo F, D'Amato FR, Andolina D, Helmer-Citterich M, Cifani C, Ventura R. Early life adversity affecting the attachment bond alters ventral tegmental area transcriptomic patterning and behavior almost exclusively in female mice. Neurobiol Stress 2021; 15:100406. [PMID: 34660854 PMCID: PMC8503667 DOI: 10.1016/j.ynstr.2021.100406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 02/07/2023] Open
Abstract
Early life experiences that affect the attachment bond formation can alter developmental trajectories and result in pathological outcomes in a sex-related manner. However, the molecular basis of sex differences is quite unknown. The dopaminergic system originating from the ventral tegmental area has been proposed to be a key mediator of this process. Here we exploited a murine model of early adversity (Repeated Cross Fostering, RCF) to test how interfering with the attachment bond formation affects the VTA-related functions in a sex-specific manner. Through a comprehensive behavioral screening, within the NiH RDoC framework, and by next-generation RNA-Seq experiments, we analyzed the long-lasting effect of RCF on behavioral and transcriptional profiles related to the VTA, across two different inbred strains of mouse in both sexes. We found that RCF impacted to an extremely greater extent VTA-related behaviors in females than in males and this result mirrored the transcriptional alterations in the VTA that were almost exclusively observed in females. The sexual dimorphism was conserved across two different inbred strains in spite of their divergent long lasting consequences of RCF exposure. Our data suggest that to be female primes a sub-set of genes to respond to early environmental perturbations. This is, to the best of our knowledge, the first evidence of an almost exclusive effect of early life experiences on females, thus mirroring the extremely stronger impact of precocious aversive events reported in clinical studies in women.
Collapse
Affiliation(s)
- Luisa Lo Iacono
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | | | - Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Marco Pietrosanto
- Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | | | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Rome, Italy
| | - Diana Municchi
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Rome, Italy
| | - Tiziana Pascucci
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy
| | - Simona Cabib
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Fabio Ferlazzo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy
| | - Francesca R D'Amato
- Biochemistry and Cell Biology Institute, National Research Council, Via E Ramarini 32, 00015, Monterotondo Scalo, Roma, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Manuela Helmer-Citterich
- Centre for Molecular Bioinformatics, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Cifani
- University of Camerino School of Pharmacy, Camerino, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| |
Collapse
|
10
|
Luchetti A, Di Segni M, Andolina D, Ventura R, Battaglia M, D'Amato FR. Mouse model of panic disorder: Vulnerability to early environmental instability is strain-dependent. Dev Psychobiol 2021; 63:e22135. [PMID: 34196403 DOI: 10.1002/dev.22135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 02/03/2023]
Abstract
Early life experiences and genetic background shape phenotypic variation. Several mouse models based on early treatments have evaluated short- and long-term phenotypic alterations and explored their molecular mechanisms. The instability of maternal cues was used to model human separation anxiety in outbred mice, one of the etiopathogenetic factors that predict panic disorder (PD). Application of the repeated cross-fostering (RCF) protocol to inbred strains (C57 and DBA) allowed us to measure differential responses to the same experimental manipulation. Ultrasounds emitted during isolation indicated that after RCF, pups from both strains lose their ability to be comforted by nest cues, but the frequency modulation of separation calls increased in RCF-C57 and decreased in RCF-DBA mice. No strain-specific difference in olfactory ability explained these responses in RCF-exposed mice. Rather, disruption of the infant-mother bond may differentially affect separation calls in the two strains. Moreover, the RCF-associated increased respiratory response to hypercapnia-an endophenotype of human PD documented among mice outbred strains-was replicated in the C57 strain only. We suggest that RCF-induced instability of the early environment affects emotionality and respiratory physiology differentially, depending on pups' genetic background. These strain-specific responses provide a lead to understand differential vulnerability to emotional disorders.
Collapse
Affiliation(s)
- Alessandra Luchetti
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, Rome, Italy
| | - Matteo Di Segni
- Department of Psychology and Center "Daniel Bovet,", Sapienza University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Diego Andolina
- Department of Psychology and Center "Daniel Bovet,", Sapienza University, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and Center "Daniel Bovet,", Sapienza University, Rome, Italy
| | - Marco Battaglia
- Department of Psychiatry, the University of Toronto, Toronto, Canada.,Child, Youth and Emerging Adults Programme, Centre for Addiction and Mental Health, Toronto, Canada
| | - Francesca Romana D'Amato
- Institute of Biochemistry and Cell Biology, National Research Council, Monterotondo, Rome, Italy
| |
Collapse
|
11
|
Kooiker CL, Birnie MT, Baram TZ. The Paraventricular Thalamus: A Potential Sensor and Integrator of Emotionally Salient Early-Life Experiences. Front Behav Neurosci 2021; 15:673162. [PMID: 34079442 PMCID: PMC8166219 DOI: 10.3389/fnbeh.2021.673162] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Early-life experiences influence a broad spectrum of behaviors throughout the lifespan that contribute to resilience or vulnerability to mental health disorders. Yet, how emotionally salient experiences early in life are encoded, stored, and processed and the mechanisms by which they influence future behaviors remain poorly understood. The paraventricular nucleus of the thalamus (PVT) is a key structure in modulating positive and negative experiences and behaviors in adults. However, little is known of the PVT's role in encoding and integrating emotionally salient experiences that occur during neonatal, infancy, and childhood periods. In this review, we (1) describe the functions and connections of the PVT and its regulation of behavior, (2) introduce novel technical approaches to elucidating the role of the PVT in mediating enduring changes in adult behaviors resulting from early-life experiences, and (3) conclude that PVT neurons of neonatal rodents are engaged by both positive and negative emotionally salient experiences, and their activation may enduringly govern future behavior-modulating PVT activity during emotionally salient contexts.
Collapse
Affiliation(s)
- Cassandra L. Kooiker
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| | - Matthew T. Birnie
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| | - Tallie Z. Baram
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
- Department of Pediatrics, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
12
|
D'Addario SL, Di Segni M, Ledonne A, Piscitelli R, Babicola L, Martini A, Spoleti E, Mancini C, Ielpo D, D'Amato FR, Andolina D, Ragozzino D, Mercuri NB, Cifani C, Renzi M, Guatteo E, Ventura R. Resilience to anhedonia-passive coping induced by early life experience is linked to a long-lasting reduction of I h current in VTA dopaminergic neurons. Neurobiol Stress 2021; 14:100324. [PMID: 33937445 PMCID: PMC8079665 DOI: 10.1016/j.ynstr.2021.100324] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/24/2021] [Accepted: 03/27/2021] [Indexed: 02/04/2023] Open
Abstract
Exposure to aversive events during sensitive developmental periods can affect the preferential coping strategy adopted by individuals later in life, leading to either stress-related psychiatric disorders, including depression, or to well-adaptation to future adversity and sources of stress, a behavior phenotype termed “resilience”. We have previously shown that interfering with the development of mother-pups bond with the Repeated Cross Fostering (RCF) stress protocol can induce resilience to depression-like phenotype in adult C57BL/6J female mice. Here, we used patch-clamp recording in midbrain slice combined with both in vivo and ex vivo pharmacology to test our hypothesis of a link between electrophysiological modifications of dopaminergic neurons in the intermediate Ventral Tegmental Area (VTA) of RCF animals and behavioral resilience. We found reduced hyperpolarization-activated (Ih) cation current amplitude and evoked firing in VTA dopaminergic neurons from both young and adult RCF female mice. In vivo, VTA-specific pharmacological manipulation of the Ih current reverted the pro-resilient phenotype in adult early-stressed mice or mimicked behavioral resilience in adult control animals. This is the first evidence showing how pro-resilience behavior induced by early events is linked to a long-lasting reduction of Ih current and excitability in VTA dopaminergic neurons.
Collapse
Affiliation(s)
- Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro, 5 00184, Rome, Italy
| | | | | | - Rosamaria Piscitelli
- IRCCS Fondazione Santa Lucia, Roma, Italy.,Dept. of Motor Science and Wellness, 'Parthenope' University, Via Medina 40, 80133 Naples, Italy
| | - Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | | | - Elena Spoleti
- Department of Physiology and Pharmacology, Sapienza University, Rome, 00185, Italy
| | - Camilla Mancini
- University of Camerino School of Pharmaceutical Sciences and Health Products, Camerino, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy.,Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro, 5 00184, Rome, Italy
| | - Francesca R D'Amato
- Biochemistry and Cell Biology Institute, National Research Council, Via E Ramarini 32, 00015, Monterotondo Scalo, Roma, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| | - Davide Ragozzino
- IRCCS Fondazione Santa Lucia, Roma, Italy.,Department of Physiology and Pharmacology, Sapienza University, Rome, 00185, Italy
| | - Nicola B Mercuri
- IRCCS Fondazione Santa Lucia, Roma, Italy.,Dept. of Systems Medicine, Tor Vergata University, 00133, Rome, Italy
| | - Carlo Cifani
- University of Camerino School of Pharmaceutical Sciences and Health Products, Camerino, Italy
| | - Massimiliano Renzi
- Department of Physiology and Pharmacology, Sapienza University, Rome, 00185, Italy
| | - Ezia Guatteo
- IRCCS Fondazione Santa Lucia, Roma, Italy.,Dept. of Motor Science and Wellness, 'Parthenope' University, Via Medina 40, 80133 Naples, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, Rome, Italy.,IRCCS Fondazione Santa Lucia, Roma, Italy
| |
Collapse
|
13
|
Babicola L, Ventura R, D'Addario SL, Ielpo D, Andolina D, Di Segni M. Long term effects of early life stress on HPA circuit in rodent models. Mol Cell Endocrinol 2021; 521:111125. [PMID: 33333214 DOI: 10.1016/j.mce.2020.111125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/23/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023]
Abstract
Adaptation to environmental challenges represents a critical process for survival, requiring the complex integration of information derived from both external cues and internal signals regarding current conditions and previous experiences. The Hypothalamic-pituitary-adrenal axis plays a central role in this process inducing the activation of a neuroendocrine signaling cascade that affects the delicate balance of activity and cross-talk between areas that are involved in sensorial, emotional, and cognitive processing such as the hippocampus, amygdala, Prefrontal Cortex, Ventral Tegmental Area, and dorsal raphe. Early life stress, especially early critical experiences with caregivers, influences the functional and structural organization of these areas, affects these processes in a long-lasting manner and may result in long-term maladaptive and psychopathological outcomes, depending on the complex interaction between genetic and environmental factors. This review summarizes the results of studies that have modeled this early postnatal stress in rodents during the first 2 postnatal weeks, focusing on the long-term effects on molecular and structural alteration in brain areas involved in Hypothalamic-pituitary-adrenal axis function. Moreover, a brief investigation of epigenetic mechanisms and specific genetic targets mediating the long-term effects of these early environmental manipulations and at the basis of differential neurobiological and behavioral effects during adulthood is provided.
Collapse
Affiliation(s)
- Lucy Babicola
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, Piazzale Aldo Moro 5, 00184, Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184, Rome, Italy; IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy
| | - Matteo Di Segni
- IRCCS Fondazione Santa Lucia, Via Del Fosso di Fiorano, 64, 00143, Rome, Italy.
| |
Collapse
|
14
|
Plasticity of the Reward Circuitry After Early-Life Adversity: Mechanisms and Significance. Biol Psychiatry 2020; 87:875-884. [PMID: 32081365 PMCID: PMC7211119 DOI: 10.1016/j.biopsych.2019.12.018] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 12/24/2022]
Abstract
Disrupted operation of the reward circuitry underlies many aspects of affective disorders. Such disruption may manifest as aberrant behavior including risk taking, depression, anhedonia, and addiction. Early-life adversity is a common antecedent of adolescent and adult affective disorders involving the reward circuitry. However, whether early-life adversity influences the maturation and operations of the reward circuitry, and the potential underlying mechanisms, remain unclear. Here, we present novel information using cutting-edge technologies in animal models to dissect out the mechanisms by which early-life adversity provokes dysregulation of the complex interactions of stress and reward circuitries. We propose that certain molecularly defined pathways within the reward circuitry are particularly susceptible to early-life adversity. We examine regions and pathways expressing the stress-sensitive peptide corticotropin-releasing factor (CRF), which has been identified in critical components of the reward circuitry and interacting stress circuits. Notably, CRF is strongly modulated by early-life adversity in several of these brain regions. Focusing on amygdala nuclei and their projections, we provide evidence suggesting that aberrant CRF expression and function may underlie augmented connectivity of the nucleus accumbens with fear/anxiety regions, disrupting the function of this critical locus of pleasure and reward.
Collapse
|
15
|
Dulor Finkler A, Espinoza Pardo GV, Bolten Lucion A. Repeated cross‐fostering affects maternal behavior and olfactory preferences in rat pups. Dev Psychobiol 2020; 62:283-296. [DOI: 10.1002/dev.21907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/14/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Andrea Dulor Finkler
- Graduate Program in Neuroscience Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
- Department of Physiology Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
- Universidade Luterana do Brasil Canoas Brazil
| | - Grace Violeta Espinoza Pardo
- Department of Physiology Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
- Centre for Interdisciplinary Science and Society Studies Universidad de Ciencias y Humanidades Lima Peru
| | - Aldo Bolten Lucion
- Graduate Program in Neuroscience Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
- Department of Physiology Institute of Health Sciences, Universidade Federal do Rio Grande do Sul (UFRGS) Porto Alegre Brazil
| |
Collapse
|
16
|
Xlr4 as a new candidate gene underlying vulnerability to cocaine effects. Neuropharmacology 2020; 168:108019. [PMID: 32113966 DOI: 10.1016/j.neuropharm.2020.108019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Although several studies have been performed in rodents, non-human primates and humans, the biological basis of vulnerability to develop cocaine addiction remains largely unknown. Exposure to critical early events (as Repeated Cross Fostering (RCF)) has been reported to increase sensitivity to cocaine effects in adult C57BL/6J female mice. Using a microarray approach, here we report data showing a strong engagement of X-linked lymphocyte-regulated 4a and 4b (Xlr4) genes in cocaine effects. The expression of Xlr4, a gene involved in chromatin remodeling and dendritic spine morphology, was reduced into the Nucleus Accumbens (NAc) of adult RCF C57BL/6J female. We used virally mediated accumbal Xlr4 down-modulation (AAVXlr4-KD) to investigate the role of this gene in vulnerability to cocaine effects. AAVXlr4-KD animals show a potentiated behavioral and neurochemical response to cocaine, reinstatement following cocaine withdrawal and cocaine-induced spine density alterations in the Medium-Sized Spiny Neurons of NAc. We propose Xlr4 as a new candidate gene mediating the cocaine effects.
Collapse
|
17
|
Lo Iacono L, Ielpo D, Accoto A, Di Segni M, Babicola L, D’Addario SL, Ferlazzo F, Pascucci T, Ventura R, Andolina D. MicroRNA-34a Regulates the Depression-like Behavior in Mice by Modulating the Expression of Target Genes in the Dorsal Raphè. Mol Neurobiol 2019; 57:823-836. [DOI: 10.1007/s12035-019-01750-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/26/2019] [Indexed: 01/06/2023]
|
18
|
Di Segni M, Andolina D, D'Addario SL, Babicola L, Ielpo D, Luchetti A, Pascucci T, Lo Iacono L, D'Amato FR, Ventura R. Sex-dependent effects of early unstable post-natal environment on response to positive and negative stimuli in adult mice. Neuroscience 2019; 413:1-10. [PMID: 31228589 DOI: 10.1016/j.neuroscience.2019.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 01/08/2023]
Abstract
Alterations in early environmental conditions that interfere with the creation of a stable mother-pup bond have been suggested to be a risk factor for the development of stress-related psychopathologies later in life. The long-lasting effects of early experiences are mediated by changes in various cerebral circuits, such as the corticolimbic system, which processes aversive and rewarding stimuli. However, it is evident that the early environment is not sufficient per se to induce psychiatric disorders; interindividual (eg, sex-based) differences in the response to environmental challenges exist. To examine the sex-related effects that are induced by an early experience on later events in adulthood, we determine the enduring effects of repeated cross-fostering (RCF) in female and male C57BL/6J mice. To this end, we assessed the behavioral phenotype of RCF and control (male and female) mice in the saccharine preference test and cocaine-induced conditioned place preference to evaluate the response to natural and pharmacological stimuli and in the elevated plus maze test and forced swimming test to measure their anxiety- and depression-like behavior. We also evaluated FST-induced c-Fos immunoreactivity in various brain regions that are engaged in the response to acute stress exposure (FST). Notably, RCF has opposing effects on the adult response to these tests between sexes, directing male mice toward an "anhedonia-like" phenotype and increasing the sensitivity for rewarding stimuli in female mice.
Collapse
Affiliation(s)
- Matteo Di Segni
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy
| | - Diego Andolina
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy
| | - Sebastian Luca D'Addario
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, 00184, Rome, Italy
| | - Lucy Babicola
- Dept. of Applied and Biotechnological Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Donald Ielpo
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; Behavioral Neuroscience PhD Programme, Sapienza University, 00184, Rome, Italy
| | - Alessandra Luchetti
- Cell Biology and Neurobiology Institute, National Research Council, 00143 Rome, Italy
| | - Tiziana Pascucci
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy
| | - Luisa Lo Iacono
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy
| | - Francesca R D'Amato
- Cell Biology and Neurobiology Institute, National Research Council, 00143 Rome, Italy; Institut Universitaire en Santé Mentale de Québec, Laval University, Quebec, Canada
| | - Rossella Ventura
- Dept. of Psychology and Center "Daniel Bovet", Sapienza University, 00184 Rome, Italy; IRCSS Fondazione Santa Lucia, 00142 Rome, Italy.
| |
Collapse
|
19
|
Cutuli D, Berretta E, Laricchiuta D, Caporali P, Gelfo F, Petrosini L. Pre-reproductive Parental Enriching Experiences Influence Progeny's Developmental Trajectories. Front Behav Neurosci 2018; 12:254. [PMID: 30483072 PMCID: PMC6240645 DOI: 10.3389/fnbeh.2018.00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/10/2018] [Indexed: 01/09/2023] Open
Abstract
While the positive effects of environmental enrichment (EE) applied after weaning, in adulthood, during aging, or even in the presence of brain damage have been widely described, the transgenerational effects of pre-reproductive EE have been less examined. And yet, this issue is remarkable given that parental environmental experience may imprint offspring’s phenotype over generations through many epigenetic processes. Interactions between individual and environment take place lifelong even before conception. In fact, the environment pre-reproductively experienced by the mother and/or the father exerts a substantial impact on neural development and motor and cognitive performances of the offspring, even if not directly exposed to social, cognitive, physical and/or motor enrichment. Furthermore, pre-reproductive parental enrichment exerts a transgenerational impact on coping response to stress as well as on the social behavior of the offspring. Among the effects of pre-reproductive parental EE, a potentiation of the maternal care and a decrease in global methylation levels in the frontal cortex and hippocampus of the progeny have been described. Finally, pre-reproductive EE modifies different pathways of neuromodulation in the brain of the offspring (involving brain-derived neurotrophic factor, oxytocin and glucocorticoid receptors). The present review highlights the importance of pre-reproductive parental enrichment in altering the performances not only of animals directly experiencing it, but also of their progeny, thus opening the way to new hypotheses on the inheritance mechanisms of behavioral traits.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Erica Berretta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Daniela Laricchiuta
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Paola Caporali
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| | - Francesca Gelfo
- Fondazione Santa Lucia, Rome, Italy.,Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | - Laura Petrosini
- Department of Psychology, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
20
|
Lacal I, Ventura R. Epigenetic Inheritance: Concepts, Mechanisms and Perspectives. Front Mol Neurosci 2018; 11:292. [PMID: 30323739 PMCID: PMC6172332 DOI: 10.3389/fnmol.2018.00292] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/02/2018] [Indexed: 01/07/2023] Open
Abstract
Parents’ stressful experiences can influence an offspring’s vulnerability to many pathological conditions, including psychopathologies, and their effects may even endure for several generations. Nevertheless, the cause of this phenomenon has not been determined, and only recently have scientists turned to epigenetics to answer this question. There is extensive literature on epigenetics, but no consensus exists with regard to how and what can (and must) be considered to study and define epigenetics processes and their inheritance. In this work, we aimed to clarify and systematize these concepts. To this end, we analyzed the dynamics of epigenetic changes over time in detail and defined three types of epigenetics: a direct form of epigenetics (DE) and two indirect epigenetic processes—within (WIE) and across (AIE). DE refers to changes that occur in the lifespan of an individual, due to direct experiences with his environment. WIE concerns changes that occur inside of the womb, due to events during gestation. Finally, AIE defines changes that affect the individual’s predecessors (parents, grandparents, etc.), due to events that occur even long before conception and that are somehow (e.g., through gametes, the intrauterine environment setting) transmitted across generations. This distinction allows us to organize the main body of epigenetic evidence according to these categories and then focus on the latter (AIE), referring to it as a faster route of informational transmission across generations—compared with genetic inheritance—that guides human evolution in a Lamarckian (i.e., experience-dependent) manner. Of the molecular processes that are implicated in this phenomenon, well-known (methylation) and novel (non-coding RNA, ncRNA) regulatory mechanisms are converging. Our discussion of the chief methods that are used to study epigenetic inheritance highlights the most compelling technical and theoretical problems of this discipline. Experimental suggestions to expand this field are provided, and their practical and ethical implications are discussed extensively.
Collapse
Affiliation(s)
- Irene Lacal
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Rossella Ventura
- Department of Psychology and "Daniel Bovet" Center, Sapienza University of Rome, Rome, Italy.,Fondazione Santa Lucia, IRCCS, Rome, Italy
| |
Collapse
|
21
|
Di Segni M, Andolina D, Ventura R. Long-term effects of early environment on the brain: Lesson from rodent models. Semin Cell Dev Biol 2018; 77:81-92. [DOI: 10.1016/j.semcdb.2017.09.039] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/20/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
|
22
|
Sarkisova KY, Gabova AV. Maternal care exerts disease-modifying effects on genetic absence epilepsy and comorbid depression. GENES BRAIN AND BEHAVIOR 2018; 17:e12477. [DOI: 10.1111/gbb.12477] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 12/31/2022]
Affiliation(s)
- K. Y. Sarkisova
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences; Moscow Russia
| | - A. V. Gabova
- Institute of Higher Nervous Activity and Neurophysiology Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
23
|
Yang Y, Cheng Z, Tang H, Jiao H, Sun X, Cui Q, Luo F, Pan H, Ma C, Li B. Neonatal Maternal Separation Impairs Prefrontal Cortical Myelination and Cognitive Functions in Rats Through Activation of Wnt Signaling. Cereb Cortex 2018; 27:2871-2884. [PMID: 27178192 DOI: 10.1093/cercor/bhw121] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adverse early-life experience such as depriving the relationship between parents and children induces permanent phenotypic changes, and impairs the cognitive functions associated with the prefrontal cortex (PFC). However, the underlying mechanism remains unclear. In this work, we used rat neonatal maternal separation (NMS) model to illuminate whether and how NMS in early life affects cognitive functions, and what the underlying cellular and molecular mechanism is. We showed that rat pups separated from their dam 3 h daily during the first 3 postnatal weeks alters medial prefrontal cortex (mPFC) myelination and impairs mPFC-dependent behaviors. Myelination appears necessary for mPFC-dependent behaviors, as blockade of oligodendrocytes (OLs) differentiation or lysolecithin-induced demyelination, impairs mPFC functions. We further demonstrate that histone deacetylases 1/2 (HDAC1/2) are drastically reduced in NMS rats. Inhibition of HDAC1/2 promotes Wnt activation, which negatively regulates OLs development. Conversely, selective inhibition of Wnt signaling by XAV939 partly rescue myelination arrestment and behavior deficiency caused by NMS. These findings indicate that NMS impairs mPFC cognitive functions, at least in part, through modulation of oligodendrogenesis and myelination. Understanding the mechanism of NMS on mPFC-dependent behaviors is critical for developing pharmacological and psychological interventions for child neglect and abuse.
Collapse
Affiliation(s)
- Youjun Yang
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Zongyue Cheng
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Hua Tang
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Huifeng Jiao
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Xuan Sun
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Qiuzhu Cui
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Fei Luo
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Haili Pan
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Chaolin Ma
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| | - Baoming Li
- Center for Neuropsychiatric Disorders, Institute of Life Science, Nanchang University, Nanchang 330031, P.R. China
| |
Collapse
|
24
|
Sensitivity to cocaine in adult mice is due to interplay between genetic makeup, early environment and later experience. Neuropharmacology 2017; 125:87-98. [DOI: 10.1016/j.neuropharm.2017.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/04/2017] [Accepted: 07/14/2017] [Indexed: 12/31/2022]
|
25
|
Effects of lack of microRNA-34 on the neural circuitry underlying the stress response and anxiety. Neuropharmacology 2016; 107:305-316. [PMID: 27026110 PMCID: PMC5573597 DOI: 10.1016/j.neuropharm.2016.03.044] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 03/11/2016] [Accepted: 03/25/2016] [Indexed: 01/03/2023]
Abstract
Stress-related psychiatric disorders, including anxiety, are complex diseases that have genetic, and environmental causes. Stressful experiences increase the release of prefrontal amygdala neurotransmitters, a response that is relevant to cognitive, emotional, and behavioral coping. Moreover, exposure to stress elicits anxiety-like behavior and dendritic remodeling in the amygdala. Members of the miR-34 family have been suggested to regulate synaptic plasticity and neurotransmission processes, which mediate stress-related disorders. Using mice that harbored targeted deletions of all 3 members of the miR-34-family (miR-34-TKO), we evaluated acute stress-induced basolateral amygdala (BLA)-GABAergic and medial prefrontal cortex (mpFC) aminergic outflow by intracerebral in vivo microdialysis. Moreover, we also examined fear conditioning/extinction, stress-induced anxiety, and dendritic remodeling in the BLA of stress-exposed TKO mice. We found that TKO mice showed resilience to stress-induced anxiety and facilitation in fear extinction. Accordingly, no significant increase was evident in aminergic prefrontal or amygdala GABA release, and no significant acute stress-induced amygdalar dendritic remodeling was observed in TKO mice. Differential GRM7, 5-HT2C, and CRFR1 mRNA expression was noted in the mpFC and BLA between TKO and WT mice. Our data demonstrate that the miR-34 has a critical function in regulating the behavioral and neurochemical response to acute stress and in inducing stress-related amygdala neuroplasticity.
Collapse
|