1
|
Liang H, Yuan P, Xu T, Jin C, Ji C. Psychological outcomes and health-related quality of life changes in Chinese patients with moyamoya disease after revascularization. Front Surg 2025; 12:1573992. [PMID: 40292412 PMCID: PMC12021807 DOI: 10.3389/fsurg.2025.1573992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Objectives This study aimed to evaluate the psychological outcomes and changes in health-related quality of life (HRQOL) in Chinese patients with Moyamoya disease (MMD) following revascularization procedures. Methods A total of 68 patients diagnosed with MMD and who underwent revascularization at Nanjing Drum Tower Hospital between January 2023 and January 2024 were retrospectively analyzed. Neuropsychological assessments, including the Trail Making Test, Chapuis Maze, Digit D2, Symptom Checklist-90 (SCL-90), Beck Depression Inventory-II (BDI-II), and the 36-item Short Form Health Survey (SF-36), were administered preoperatively and postoperatively at 3 months and 1 year. Statistical analysis was performed using SPSS version 29.0, with appropriate parametric or non-parametric tests applied based on data distribution. Results Baseline characteristics revealed no significant differences between the Unremarkable and Impaired groups, confirming comparability. Postoperative improvements were observed in HRQOL across multiple domains, particularly in patients with preoperative impairments. Significant improvements were seen in physical functioning, general health, physical pain, emotional role function, and vitality (P < 0.05). Psychological outcomes also showed significant improvements, with reductions in aggressiveness, anxiety, and somatization (P < 0.001). Depression scores significantly decreased in 29.4% of patients (P < 0.001), and executive function, as measured by TMTA, TMTB, and Digit D2, also showed significant improvements in the impaired group (P < 0.001). However, patients without preoperative impairments exhibited no significant changes in any of the assessed domains. Conclusion Revascularization significantly improves both psychological outcomes and HRQOL in Chinese patients with MMD, particularly in those with preoperative impairments. These findings highlight the importance of surgical intervention in enhancing both cognitive and psychological functioning in this patient population. Further prospective studies are warranted to confirm these results and explore long-term benefits.
Collapse
Affiliation(s)
| | | | | | | | - Cuiling Ji
- Neurosurgical Intensive Care Unit, Nanjing Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing City, Jiangsu, China
| |
Collapse
|
2
|
Rodrigues B, Leitão RA, Santos M, Trofimov A, Silva M, Inácio ÂS, Abreu M, Nobre RJ, Costa J, Cardoso AL, Milosevic I, Peça J, Oliveiros B, Pereira de Almeida L, Pinheiro PS, Carvalho AL. MiR-186-5p inhibition restores synaptic transmission and neuronal network activity in a model of chronic stress. Mol Psychiatry 2025; 30:1034-1046. [PMID: 39237722 PMCID: PMC11835755 DOI: 10.1038/s41380-024-02715-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024]
Abstract
Chronic stress exerts profound negative effects on cognitive and emotional behaviours and is a major risk factor for the development of neuropsychiatric disorders. However, the molecular links between chronic stress and its deleterious effects on neuronal and synaptic function remain elusive. Here, using a combination of in vitro and in vivo approaches, we demonstrate that the upregulation of miR-186-5p triggered by chronic stress may be a key mediator of such changes, leading to synaptic dysfunction. Our results show that the expression levels of miR-186-5p are increased both in the prefrontal cortex (PFC) of mice exposed to chronic stress and in cortical neurons chronically exposed to dexamethasone. Additionally, viral overexpression of miR-186-5p in the PFC of naïve mice induces anxiety- and depressive-like behaviours. The upregulation of miR-186-5p through prolonged glucocorticoid receptor activation in vitro, or in a mouse model of chronic stress, differentially affects glutamatergic and GABAergic synaptic transmission, causing an imbalance in excitation/inhibition that leads to altered neuronal network activity. At glutamatergic synapses, we observed both a reduction in synaptic AMPARs and synaptic transmission, whereas GABAergic synaptic transmission was strengthened. These changes could be rescued in vitro by a miR-186-5p inhibitor. Overall, our results establish a novel molecular link between chronic glucocorticoid receptor activation, the upregulation of miR-186-5p and the synaptic changes induced by chronic stress, that may be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Beatriz Rodrigues
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Experimental Biology and Biomedicine Doctoral Programme, Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ricardo A Leitão
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Mónica Santos
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Alexander Trofimov
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Integrative Brain Function Neurobiology Lab, I.P. Pavlov Department of Physiology, Institute of Experimental Medicine, 197022, St. Petersburg, Russia
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, 010000, Astana, Kazakhstan
| | - Mariline Silva
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Department of Applied Physics and Science for Life Laboratory (SciLifeLab), KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Ângela S Inácio
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Mónica Abreu
- Multidisciplinary Institute of Aging, MIA Portugal, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Rui J Nobre
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- ViraVector, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Jéssica Costa
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
- Experimental Biology and Biomedicine Doctoral Programme, Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ana Luísa Cardoso
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, 3030-789, Coimbra, Portugal
| | - Ira Milosevic
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Multidisciplinary Institute of Aging, MIA Portugal, University of Coimbra, 3004-504, Coimbra, Portugal
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - João Peça
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Bárbara Oliveiros
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- iCRB-Coimbra Institute for Clinical and Biomedical Research, University of Coimbra, 3000-548, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Luís Pereira de Almeida
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal
- ViraVector, University of Coimbra, 3004-504, Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548, Coimbra, Portugal
| | - Paulo S Pinheiro
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, 3004-504, Coimbra, Portugal.
- CiBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504, Coimbra, Portugal.
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal.
| |
Collapse
|
3
|
Yoshida M, Katada H, Isozumi Y, Suzuki C, Yoshimi A, Ozaki N, Noda Y. Involvement of N-methyl-D-aspartate receptor GluN2C/GluN2D subunits in social behavior impairments in mice exposed to social defeat stress as juveniles. J Pharmacol Sci 2025; 157:139-145. [PMID: 39929588 DOI: 10.1016/j.jphs.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 05/08/2025] Open
Abstract
Glutamatergic system dysfunction is associated with the pathophysiology of stress-related psychiatric disorders. However, the role of N-methyl-D-aspartate (NMDA) receptor GluN2C and GluN2D subunits in the pathophysiology of adverse juvenile experiences remain unclear. This study aimed to investigate the involvement of GluN2C and GluN2D subunits in social behavior impairments in mice exposed to social defeat stress as juveniles. Acute administration of PPDA, a GluN2C/GluN2D antagonist, and ketamine, a non-competitive NMDA receptor antagonist, attenuated social behavior impairments in stressed mice. This attenuating effect of ketamine was partially inhibited by the administration of CIQ, a GluN2C/GluN2D-containing NMDA potentiator. The prefrontal cortex of stressed mice exhibited significantly elevated levels of GluN2C and GluN2D proteins compared to control mice. These findings suggest that activation of GluN2C- and/or GluN2D-containing NMDA receptors contributes to the development of social behavioral impairments induced by juvenile social defeat stress. Moreover, these subunits may play a role in the therapeutic effects of ketamine. Targeting GluN2C/GluN2D subunits of NMDA receptors may be novel therapeutic strategies for stress-related psychiatric disorders in adolescents with adverse juvenile experiences.
Collapse
Affiliation(s)
- Mikio Yoshida
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Hikari Katada
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Yuya Isozumi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Chiharu Suzuki
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Norio Ozaki
- Department of Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan.
| |
Collapse
|
4
|
Takahashi A. The role of social isolation stress in escalated aggression in rodent models. Neurosci Res 2025; 211:75-84. [PMID: 35917930 DOI: 10.1016/j.neures.2022.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/26/2022]
Abstract
Anti-social behavior and violence are major public health concerns. Globally, violence contributes to more than 1.6 million deaths each year. Previous studies have reported that social rejection or neglect exacerbates aggression. In rodent models, social isolation stress is used to demonstrate the adverse effects of social deprivation on physiological, endocrinological, immunological, and behavioral parameters, including aggressive behavior. This review summarizes recent rodent studies on the effect of social isolation stress during different developmental periods on aggressive behavior and the underlying neural mechanisms. Social isolation during adulthood affects the levels of neurosteroids and neuropeptides and increases aggressive behavior. These changes are ethologically relevant for the adaptation to changes in local environmental conditions in the natural habitats. Chronic deprivation of social interaction after weaning, especially during the juvenile to adolescent periods, leads to the disruption of the development of appropriate social behavior and the maladaptive escalation of aggressive behavior. The understanding of neurobiological mechanisms underlying social isolation-induced escalated aggression will aid in the development of therapeutic interventions for escalated aggression.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neurobiology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
5
|
Feng J, Wang X, Pan M, Li CX, Zhang Z, Sun M, Liao T, Wang Z, Luo J, Shi L, Chen YJ, Li HF, Xu J. The Medial Prefrontal Cortex-Basolateral Amygdala Circuit Mediates Anxiety in Shank3 InsG3680 Knock-in Mice. Neurosci Bull 2025; 41:77-92. [PMID: 39207622 PMCID: PMC11748662 DOI: 10.1007/s12264-024-01280-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/30/2024] [Indexed: 09/04/2024] Open
Abstract
Anxiety disorder is a major symptom of autism spectrum disorder (ASD) with a comorbidity rate of ~40%. However, the neural mechanisms of the emergence of anxiety in ASD remain unclear. In our study, we found that hyperactivity of basolateral amygdala (BLA) pyramidal neurons (PNs) in Shank3 InsG3680 knock-in (InsG3680+/+) mice is involved in the development of anxiety. Electrophysiological results also showed increased excitatory input and decreased inhibitory input in BLA PNs. Chemogenetic inhibition of the excitability of PNs in the BLA rescued the anxiety phenotype of InsG3680+/+ mice. Further study found that the diminished control of the BLA by medial prefrontal cortex (mPFC) and optogenetic activation of the mPFC-BLA pathway also had a rescue effect, which increased the feedforward inhibition of the BLA. Taken together, our results suggest that hyperactivity of the BLA and alteration of the mPFC-BLA circuitry are involved in anxiety in InsG3680+/+ mice.
Collapse
Affiliation(s)
- Jiabin Feng
- Department of Rehabilitation of Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Xiaojun Wang
- Department of Rehabilitation of Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Meidie Pan
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Chen-Xi Li
- Department of Rehabilitation of Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China
| | - Zhe Zhang
- Department of Rehabilitation of Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Meng Sun
- Department of Rehabilitation of Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Tailin Liao
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Ziyi Wang
- Innovative Institute of Basic Medical Sciences of Zhejiang University (Yuhang), Hangzhou, 310058, China
| | - Jianhong Luo
- Department of Rehabilitation of Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University, Hangzhou, 310058, China
| | - Lei Shi
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, Jinan University, Guangzhou, 510632, China
| | - Yu-Jing Chen
- Department of Traditional Chinese Medicine, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China.
| | - Hai-Feng Li
- Department of Rehabilitation of Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China.
| | - Junyu Xu
- Department of Rehabilitation of Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310003, China.
- Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, Hangzhou, 311121, China.
- Pillar of STEM Education, College of Education Sciences, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, 511453, China.
| |
Collapse
|
6
|
Scotton E, Ziani PR, Wilges RLB, da Rosa Correa PH, Giordano LA, Goularte JF, Schons T, Almeida FB, Stein DJ, de Castro JM, de Bastiani MA, de Oliveira Soares EG, Paixão DB, da Silva CDG, Schneider PH, Colombo R, Rosa AR. Molecular signature underlying (R)-ketamine rapid antidepressant response on anhedonic-like behavior induced by sustained exposure to stress. Pharmacol Biochem Behav 2024; 245:173882. [PMID: 39488299 DOI: 10.1016/j.pbb.2024.173882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 11/04/2024]
Abstract
Anhedonia induced by sustained stress exposure is a hallmark symptom of major depressive disorder (MDD) and in rodents, it can be accessed through the sucrose preference test (SPT). (R)-ketamine is a fast-acting antidepressant with less detrimental side effects and abuse liability compared to racemic ketamine. The present study combined high-throughput proteomics and network analysis to identify molecular mechanisms involved in chronic variable stress (CVS)-induced anhedonia and promising targets underlying (R)-ketamine rapid antidepressant response. Male Wistar rats were subjected to CVS for five weeks. Based on the SPT, animals were clustered into resilient or anhedonic-like (ANH) groups. ANH rats received a single dose of saline or (R)-ketamine (20 mg/kg, i.p.), which was proceeded by treatment response evaluation. After prefrontal cortex collection, proteomic analysis was performed to uncover the differentially expressed proteins (DEPs) related to both anhedonic-like behavior and pharmacological response. The behavioral assessment showed that the ANH animals had a significant decrease in SPT, and that (R)-ketamine responders showed a reversal of anhedonic-like behavior. On a molecular level, anhedonia-like behavior was associated with the downregulation of Neuronal Pentraxin Receptor (Nptxr) and Galectin-1 (Gal-1). These data reinforce a disruption in the inflammatory response, neurotransmitter receptor activity, and glutamatergic synapses in chronic stress-induced anhedonia. (R)-ketamine response-associated DEPs included novel potential targets involved in the modulation of oxidative stress, energetic metabolism, synaptogenesis, dendritic arborization, neuroinflammation, gene expression, and telomere length, converging to biological themes extensively documented in MDD physiopathology. Our data provide valuable insights into the molecular mechanisms underlying the response to (R)-ketamine and highlight these pathways as potential therapeutic targets for anhedonia. By addressing proteins involved in oxidative stress, energy metabolism, synaptogenesis, dendritic arborization, neuroinflammation, gene expression, and telomere length, we can target multiple key factors involved in the pathophysiology of MDD. Modulating these proteins could open avenues for novel therapeutic strategies and deepen our understanding of anhedonia, offering hope for improved outcomes in individuals facing this challenging condition. However, additional studies will be essential to validate these findings and further explore their therapeutic implications.
Collapse
Affiliation(s)
- Ellen Scotton
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Paola Rampelotto Ziani
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Renata Luiza Boff Wilges
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Pedro Henrique da Rosa Correa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Lucas Azambuja Giordano
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jéferson Ferraz Goularte
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Tainá Schons
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Felipe Borges Almeida
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Dirson João Stein
- Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Josimar Macedo de Castro
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; School of Medicine and Post-Graduate Program in Medical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Marco Antônio de Bastiani
- Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Douglas Bernardo Paixão
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Caren Daniele Galeano da Silva
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paulo Henrique Schneider
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafael Colombo
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil..
| | - Adriane R Rosa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
7
|
Ma LH, Li S, Jiao XH, Li ZY, Zhou Y, Zhou CR, Zhou CH, Zheng H, Wu YQ. BLA-involved circuits in neuropsychiatric disorders. Ageing Res Rev 2024; 99:102363. [PMID: 38838785 DOI: 10.1016/j.arr.2024.102363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 05/04/2024] [Accepted: 05/30/2024] [Indexed: 06/07/2024]
Abstract
The basolateral amygdala (BLA) is the subregion of the amygdala located in the medial of the temporal lobe, which is connected with a wide range of brain regions to achieve diverse functions. Recently, an increasing number of studies have focused on the participation of the BLA in many neuropsychiatric disorders from the neural circuit perspective, aided by the rapid development of viral tracing methods and increasingly specific neural modulation technologies. However, how to translate this circuit-level preclinical intervention into clinical treatment using noninvasive or minor invasive manipulations to benefit patients struggling with neuropsychiatric disorders is still an inevitable question to be considered. In this review, we summarized the role of BLA-involved circuits in neuropsychiatric disorders including Alzheimer's disease, perioperative neurocognitive disorders, schizophrenia, anxiety disorders, depressive disorders, posttraumatic stress disorders, autism spectrum disorders, and pain-associative affective states and cognitive dysfunctions. Additionally, we provide insights into future directions and challenges for clinical translation.
Collapse
Affiliation(s)
- Lin-Hui Ma
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xin-Hao Jiao
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zi-Yi Li
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Yue Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Chen-Rui Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China.
| |
Collapse
|
8
|
Carballo LH, Li P, Senek R, Yan Z. Systemic histone deacetylase inhibition ameliorates the aberrant responses to acute stress in socially isolated male mice. J Physiol 2024; 602:2047-2060. [PMID: 38500302 PMCID: PMC11068487 DOI: 10.1113/jp285875] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Adverse experiences in early life can induce maladaptive responses to acute stress in later life. Chronic social isolation during adolescence is an early life adversity that can precipitate stress-related psychiatric disorders. We found that male mice after 8 weeks of adolescent social isolation (SI) have markedly increased aggression after being exposed to 2 h of restraint stress (RS), which was accompanied by a significant increase of AMPA receptor- and NMDA receptor-mediated synaptic transmission in prefrontal cortex (PFC) pyramidal neurons of SIRS males. Compared to group-housed counterparts, SIRS males exhibited a significantly decreased level of histone H3 acetylation in PFC. Systemic administration of class I histone deacetylase inhibitors, romidepsin or MS-275, ameliorated the aggressive behaviour, as well as general social interaction deficits, of SIRS males. Electrophysiological recordings also found normalization of PFC glutamatergic currents by romidepsin treatment of SIRS male mice. These results revealed an epigenetic mechanism and intervention avenue for aggression induced by chronic social isolation. KEY POINTS: Adolescent chronic social isolation can precipitate stress-related psychiatric disorders. A significant increase of glutamatergic transmission is found in the prefrontal cortex (PFC) of socially isolated male mice exposed to an acute stress (SIRS). Treatment with class I histone deacetylase (HDAC) inhibitors ameliorates the aggressive behaviour and social interaction deficits of SIRS males, and normalizes glutamatergic currents in PFC neurons. It provides an epigenetic mechanism and intervention avenue for aberrant stress responses induced by chronic social isolation.
Collapse
Affiliation(s)
- Luis Hernandez Carballo
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Pei Li
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Rachel Senek
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
9
|
Wang HY, Zhang L, Guan BY, Wang SY, Zhang CH, Ni MF, Miao YW, Zhang BW. Resting-state cortico-limbic functional connectivity pattern in panic disorder: Relationships with emotion regulation strategy use and symptom severity. J Psychiatr Res 2024; 169:97-104. [PMID: 38007890 DOI: 10.1016/j.jpsychires.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023]
Abstract
Cognitive reappraisal is an effective emotion regulation strategy involving prefrontal cortex (PFC) control of the amygdala. Its aberrant functioning is closely associated with panic disorder (PD). However, the resting-state functional connectivity (rsFC) between the PFC, implicated in cognitive reappraisal, and the amygdala in PD has not been studied. Thus, this study aims to investigate the rsFC patterns and their association with cognitive reappraisal and PD. This study involved 51 participants, including 26 untreated patients with PD and 25 healthy controls (HC). We evaluated the habit of cognitive reappraisal assessment and the severity of PD using neuropsychological and clinical measures. Resting-state fMRI was utilized to evaluate the rsFC pattern between the PFC, engaged in cognitive reappraisal, and the amygdala. Mediation analysis was performed to explore the role of this rsFC in the relationship between cognitive reappraisal and PD severity. PD patients showed reduced rsFC between the PFC and the amygdala compared to HC. This weakened rsFC was associated with the severity of PD symptoms. Moreover, cognitive reappraisal was negatively correlated with PD severity, and mediation analysis indicated that the rsFC of the PFC-amygdala played a mediating role in this association. Abnormal PFC-amygdala rsFC may play a pivotal role in PD development and/or manifestation and mediate the association between cognitive reappraisal and PD severity, potentially serving as a clinical indicator for monitoring and intervention.
Collapse
Affiliation(s)
- Hai-Yang Wang
- Department of Neurology, Jining No. 1 People's Hospital, Shandong First Medical University, Jining, 272000, China
| | - Lin Zhang
- Medical Equipment Department, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Bei-Yan Guan
- Department of Neurology and Psychiatry, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Shi-Yao Wang
- Department of Neurology and Psychiatry, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Cui-Hong Zhang
- Department of Neurology, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, 516000, China
| | - Ming-Fei Ni
- Department of Radiology, First Affiliate Hospital of Dalian Medical University, Dalian, 116011, China
| | - Yan-Wei Miao
- Department of Radiology, First Affiliate Hospital of Dalian Medical University, Dalian, 116011, China
| | - Bing-Wei Zhang
- Department of Neurology and Psychiatry, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; Department of Psychology, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
10
|
Zhong P, Cao Q, Yan Z. Distinct and Convergent Alterations of Entorhinal Cortical Circuits in Two Mouse Models for Alzheimer's Disease and Related Disorders. J Alzheimers Dis 2024; 98:1121-1131. [PMID: 38489190 PMCID: PMC11432142 DOI: 10.3233/jad-231413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background The impairment of neural circuits controlling cognitive processes has been implicated in the pathophysiology of Alzheimer's disease and related disorders (ADRD). However, it is largely unclear what circuits are specifically changed in ADRD, particularly at the early stage. Objective Our goal of this study is to reveal the functional changes in the circuit of entorhinal cortex (EC), an interface between neocortex and hippocampus, in AD. Methods Electrophysiological, optogenetic and chemogenetic approaches were used to examine and manipulate entorhinal cortical circuits in amyloid-β familial AD model (5×FAD) and tauopathy model (P301S Tau). Results We found that, compared to wild-type mice, electrical stimulation of EC induced markedly smaller responses in subiculum (hippocampal output) of 5×FAD mice (6-month-old), suggesting that synaptic communication in the EC to subiculum circuit is specifically blocked in this AD model. In addition, optogenetic stimulation of glutamatergic terminals from prefrontal cortex (PFC) induced smaller responses in EC of 5×FAD and P301S Tau mice (6-month-old), suggesting that synaptic communication in the PFC to EC pathway is compromised in both ADRD models. Chemogenetic activation of PFC to EC pathway did not affect the bursting activity of EC neurons in 5×FAD mice, but partially restored the diminished EC neuronal activity in P301S Tau mice. Conclusions These data suggest that 5×FAD mice has a specific impairment of short-range hippocampal gateway (EC to subiculum), which may be caused by amyloid-β deposits; while two ADRD models have a common impairment of long-range cortical to hippocampal circuit (PFC to EC), which may be caused by microtubule/tau-based transport deficits. These circuit deficits provide a pathophysiological basis for unique and common impairments of various cognitive processes in ADRD conditions.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Qing Cao
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
11
|
Tran H, Feng Y, Chao D, Liu QS, Hogan QH, Pan B. Descending mechanism by which medial prefrontal cortex endocannabinoid signaling controls the development of neuropathic pain and neuronal activity of dorsal root ganglion. Pain 2024; 165:102-114. [PMID: 37463226 PMCID: PMC10787817 DOI: 10.1097/j.pain.0000000000002992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 06/05/2023] [Indexed: 07/20/2023]
Abstract
ABSTRACT Although regulation of nociceptive processes in the dorsal horn by deep brain structures has long been established, the role of cortical networks in pain regulation is minimally explored. The medial prefrontal cortex (mPFC) is a key brain area in pain processing that receives ascending nociceptive input and exerts top-down control of pain sensation. We have shown critical changes in mPFC synaptic function during neuropathic pain, controlled by endocannabinoid (eCB) signaling. This study tests whether mPFC eCB signaling modulates neuropathic pain through descending control. Intra-mPFC injection of cannabinoid receptor type 1 (CB1R) agonist WIN-55,212-2 (WIN) in the chronic phase transiently alleviates the pain-like behaviors in spared nerve injury (SNI) rats. By contrast, intra-mPFC injection of CB1R antagonist AM4113 in the early phase of neuropathic pain reduces the development of pain-like behaviors in the chronic phase. Spared nerve injury reduced the mechanical threshold to induce action potential firing of dorsal horn wide-dynamic-range neurons, but this was reversed in rats by WIN in the chronic phase of SNI and by mPFC injection of AM4113 in the early phase of SNI. Elevated dorsal root ganglion neuronal activity after injury was also diminished in rats by mPFC injection of AM4113, potentially by reducing antidromic activity and subsequent neuronal inflammation. These findings suggest that depending on the phase of the pain condition, both blocking and activating CB1 receptors in the mPFC can regulate descending control of pain and affect both dorsal horn neurons and peripheral sensory neurons, contributing to changes in pain sensitivity.
Collapse
Affiliation(s)
- Hai Tran
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Yin Feng
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Qing-song Liu
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Quinn H. Hogan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226
| |
Collapse
|
12
|
Bai F, Huang L, Deng J, Long Z, Hao X, Chen P, Wu G, Wen H, Deng Q, Bao X, Huang J, Yang M, Li D, Ren Y, Zhang M, Xiong Y, Li H. Prelimbic area to lateral hypothalamus circuit drives social aggression. iScience 2023; 26:107718. [PMID: 37810230 PMCID: PMC10551839 DOI: 10.1016/j.isci.2023.107718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/06/2023] [Accepted: 08/22/2023] [Indexed: 10/10/2023] Open
Abstract
Controlling aggression is a vital skill in social species such as rodents and humans and has been associated with the medial prefrontal cortex (mPFC). In this study, we showed that during aggressive behavior, the activity of GABAergic neurons in the prelimbic area (PL) of the mPFC was significantly suppressed. Specific activation of GABAergic PL neurons significantly curbed male-to-male aggression and inhibited conditioned place preference (CPP) for aggression-paired contexts, whereas specific inhibition of GABAergic PL neurons brought about the opposite effect. Moreover, GABAergic projections from PL neurons to the lateral hypothalamus (LH) orexinergic neurons mediated aggressive behavior. Finally, directly modulated LH-orexinergic neurons influence aggressive behavior. These results suggest that GABAergic PL-orexinergic LH projection is an important control circuit for intermale aggressive behavior, both of which could be targets for curbing aggression.
Collapse
Affiliation(s)
- Fuhai Bai
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lu Huang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jiao Deng
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Air Force Medical University, Xi’an, Shaanxi 710032, China
| | - Zonghong Long
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Xianglin Hao
- Department of Pathology, Xinqiao Hospital, Army Medical University, Chongqing 400037, P.R. China
| | - Penghui Chen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Guangyan Wu
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Huizhong Wen
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Qiangting Deng
- Editorial Office of Journal of Army Medical University, Chongqing 400038, China
| | - Xiaohang Bao
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jing Huang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ming Yang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Defeng Li
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yukun Ren
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Min Zhang
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Ying Xiong
- Department of Neurobiology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Hong Li
- Department of Anesthesiology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
13
|
Yao Z, Zhang BX, Chen H, Jiang XW, Qu WM, Huang ZL. Acute or Chronic Exposure to Corticosterone Promotes Wakefulness in Mice. Brain Sci 2023; 13:1472. [PMID: 37891839 PMCID: PMC10605150 DOI: 10.3390/brainsci13101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/05/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Elevated glucocorticoid levels triggered by stress potentially contribute to sleep disturbances in stress-induced depression. However, sleep changes in response to elevated corticosterone (CORT), the major glucocorticoid in rodents, remain unclear. Here, we investigated the effects of acute or chronic CORT administration on sleep using electroencephalogram (EEG) and electromyography (EMG) recordings in freely moving mice. Acute CORT exposure rapidly promoted wakefulness, marked by increased episodes and enhanced EEG delta power, while simultaneously suppressing rapid eye movement (REM) and non-rapid eye movement (NREM) sleep, with the latter marked by decreased mean duration and reduced delta power. Prolonged 28-day CORT exposure led to excessive wakefulness and REM sleep, characterized by higher episodes, and decreased NREM sleep, characterized by higher episodes and reduced mean duration. EEG theta activity during REM sleep and delta activity during NREM sleep were attenuated following 28-day CORT exposure. These effects persisted, except for REM sleep amounts, even 7 days after the drug withdrawal. Elevated plasma CORT levels and depressive phenotypes were identified and correlated with observed sleep changes during and after administration. Fos expression significantly increased in the lateral habenula, lateral hypothalamus, and ventral tegmental area following acute or chronic CORT treatment. Our findings demonstrate that CORT exposure enhanced wakefulness, suppressed and fragmented NREM sleep, and altered EEG activity across all stages. This study illuminates sleep alterations during short or extended periods of heightened CORT levels in mice, providing a neural link connecting insomnia and depression.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China; (Z.Y.); (B.-X.Z.); (H.C.); (X.-W.J.); (W.-M.Q.)
| |
Collapse
|
14
|
Favoretto CA, Pagliusi M, Morais-Silva G. Involvement of brain cell phenotypes in stress-vulnerability and resilience. Front Neurosci 2023; 17:1175514. [PMID: 37476833 PMCID: PMC10354562 DOI: 10.3389/fnins.2023.1175514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Stress-related disorders' prevalence is epidemically increasing in modern society, leading to a severe impact on individuals' well-being and a great economic burden on public resources. Based on this, it is critical to understand the mechanisms by which stress induces these disorders. The study of stress made great progress in the past decades, from deeper into the hypothalamic-pituitary-adrenal axis to the understanding of the involvement of a single cell subtype on stress outcomes. In fact, many studies have used state-of-the-art tools such as chemogenetic, optogenetic, genetic manipulation, electrophysiology, pharmacology, and immunohistochemistry to investigate the role of specific cell subtypes in the stress response. In this review, we aim to gather studies addressing the involvement of specific brain cell subtypes in stress-related responses, exploring possible mechanisms associated with stress vulnerability versus resilience in preclinical models. We particularly focus on the involvement of the astrocytes, microglia, medium spiny neurons, parvalbumin neurons, pyramidal neurons, serotonergic neurons, and interneurons of different brain areas in stress-induced outcomes, resilience, and vulnerability to stress. We believe that this review can shed light on how diverse molecular mechanisms, involving specific receptors, neurotrophic factors, epigenetic enzymes, and miRNAs, among others, within these brain cell subtypes, are associated with the expression of a stress-susceptible or resilient phenotype, advancing the understanding/knowledge on the specific machinery implicate in those events.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Marco Pagliusi
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil
| | - Gessynger Morais-Silva
- Laboratory of Pharmacology, Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| |
Collapse
|
15
|
Hu YY, Ding XS, Yang G, Liang XS, Feng L, Sun YY, Chen R, Ma QH. Analysis of the influences of social isolation on cognition and the therapeutic potential of deep brain stimulation in a mouse model. Front Psychiatry 2023; 14:1186073. [PMID: 37409161 PMCID: PMC10318365 DOI: 10.3389/fpsyt.2023.1186073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
Background Social interaction is a fundamental human need. Social isolation (SI) can have negative effects on both emotional and cognitive function. However, it is currently unclear how age and the duration of SI affect emotion and recognition function. In addition, there is no specific treatment for the effects of SI. Methods The adolescence or adult mice were individually housed in cages for 1, 6 or 12 months and for 2 months to estabolish SI mouse model. We investigated the effects of SI on behavior in mice at different ages and under distinct durations of SI, and we explored the possible underlying mechanisms. Then we performed deep brain stimulation (DBS) to evaluate its influences on SI induced behavioral abnormalities. Results We found that social recognition was affected in the short term, while social preference was damaged by extremely long periods of SI. In addition to affecting social memory, SI also affects emotion, short-term spatial ability and learning willingness in mice. Myelin was decreased significantly in the medial prefrontal cortex (mPFC) and dorsal hippocampus of socially isolated mice. Cellular activity in response to social stimulation in both areas was impaired by social isolation. By stimulating the mPFC using DBS, we found that DBS alleviated cellular activation disorders in the mPFC after long-term SI and improved social preference in mice. Conclusion Our results suggest that the therapeutic potential of stimulating the mPFC with DBS in individuals with social preference deficits caused by long-term social isolation, as well as the effects of DBS on the cellular activity and density of OPCs.
Collapse
Affiliation(s)
- Yun-Yun Hu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Respiratory Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Xuan-Si Ding
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou, China
| | - Xue-Song Liang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
- Second Clinical College, Dalian Medical University, Dalian, China
| | - Lei Feng
- Monash Suzhou Research Institute, Suzhou, China
| | - Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Rui Chen
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Respiratory Medicine, Sleep Center, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Jeon YJ, Park JC, Jang YS, Kim DH, Choi BR, Kim JM, Kim JJ, Han JS. Chemogenetic modulation of the medial prefrontal cortex regulates resistance to acute stress-induced cognitive impairments. Cereb Cortex 2023; 33:4806-4814. [PMID: 36156637 PMCID: PMC10110428 DOI: 10.1093/cercor/bhac381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/14/2022] Open
Abstract
The medial prefrontal cortex (mPFC) has been implicated in regulating resistance to the effects of acute uncontrollable stress. We previously showed that mPFC-lesioned animals exhibit impaired object recognition memory after acute exposure to a brief stress that had no effect in normal animals. Here, we used designer receptors exclusively activated by designer drugs to determine how modulating mPFC activity affects recognition-memory performance under stressful conditions. Specifically, animals with chemogenetic excitation or inhibition of the mPFC underwent either a brief ineffective stress (20-min restraint + 20 tail shocks) or a prolonged effective stress (60-min restraint + 60 tail shocks). Subsequent recognition memory tests showed that animals with chemogenetic mPFC inhibition exposed to brief stress showed impairment in an object recognition memory task, whereas those with chemogenetic mPFC excitation exposed to prolonged stress did not. Thus, the present findings the decreased mPFC activity exacerbates acute stress effects on memory function whereas increased mPFC activity counters these stress effects provide evidence that the mPFC bidirectionally modulates stress resistance.
Collapse
Affiliation(s)
- Yong-Jae Jeon
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jung-Cheol Park
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Yoon-Sun Jang
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Hee Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Bo-Ryoung Choi
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61669, Republic of Korea
| | - Jeansok J Kim
- Department of Psychology, Program in Neuroscience, University of Washington, Seattle, WA 98195-1525, United States
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
17
|
Zhu X, Grace AA. Sex- and exposure age-dependent effects of adolescent stress on ventral tegmental area dopamine system and its afferent regulators. Mol Psychiatry 2023; 28:611-624. [PMID: 36224257 PMCID: PMC9918682 DOI: 10.1038/s41380-022-01820-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Adolescent stress is a risk factor for schizophrenia. Emerging evidence suggests that age-dependent sensitive windows for childhood trauma are associated more strongly with adult psychosis, but the neurobiological basis and potential sex differences are unknown.Using in vivo electrophysiology and immunohistology in rats, we systematically compared the effects of two age-defined adolescent stress paradigms, prepubertal (postnatal day [PD] 21-30; PreP-S) and postpubertal (PD41-50; PostP-S) foot-shock and restraint combined stress, on ventral tegmental area (VTA) dopaminergic activity, pyramidal neuron activity in the ventral hippocampus (vHipp) and the basolateral amygdala (BLA), corticoamygdalar functional inhibitory control, and vHipp and BLA parvalbumin interneuron (PVI) impairments. These endpoints were selected based on their well-documented roles in the pathophysiology of psychosis.Overall, we found distinct sex- and exposure age-dependent stress vulnerability. Specifically, while males were selectively vulnerable to PreP-S-induced adult VTA dopamine neuron and vHipp hyperactivities, females were selectively vulnerable to PostP-S. These male selective PreP-S effects were correlated with stress-induced aberrant persistent BLA hyperactivity, dysfunctional prefrontal inhibitory control of BLA neurons, and vHipp/BLA PVI impairments. In contrast, female PostP-S only produced vHipp PVI impairments in adults, with the BLA structure and functions largely unaffected.Our results indicated distinct adolescent-sensitive periods during which stress can sex-dependently confer maximal risks to corticolimbic systems to drive dopamine hyperactivity, which provide critical insights into the neurobiological basis for sex-biased stress-related psychopathologies emphasizing but not limited to schizophrenia. Furthermore, our work also provides a framework for future translational research on age-sensitive targeted interventions.
Collapse
Affiliation(s)
- Xiyu Zhu
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Anthony A Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
18
|
Rapanelli M, Wang W, Hurley E, Feltri ML, Pittenger C, Frick LR, Yan Z. Cholinergic neurons in the basal forebrain are involved in behavioral abnormalities associated with Cul3 deficiency: Role of prefrontal cortex projections in cognitive deficits. Transl Psychiatry 2023; 13:22. [PMID: 36693858 PMCID: PMC9873627 DOI: 10.1038/s41398-023-02306-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
Loss-of-function mutations of the gene Cul3 have been identified as a risk factor for autism-spectrum disorder (ASD), but the pathogenic mechanisms are not well understood. Conditional Cul3 ablation in cholinergic neurons of mice (ChatCRECul3F/+) recapitulated ASD-like social and sensory gating phenotypes and caused significant cognitive impairments, with diminished activity of cholinergic neurons in the basal forebrain (BF). Chemogenetic inhibition of BF cholinergic neurons in healthy mice induced similar social and cognitive deficits. Conversely, chemogenetic stimulation of BF cholinergic neurons in ChatCRECul3F/+ mice reversed abnormalities in sensory gating and cognition. Cortical hypofunction was also found after ChAT-specific Cul3 ablation and stimulation of cholinergic projections from the BF to the prefrontal cortex (PFC) mitigated cognitive deficits. Overall, we demonstrate that cholinergic dysfunction due to Cul3 deficiency is involved in ASD-like behavioral abnormalities, and that BF cholinergic neurons are particularly critical for cognitive component through their projections to the PFC.
Collapse
Affiliation(s)
- Maximiliano Rapanelli
- Department of Physiology and Biophysics, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA
| | - Wei Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA
| | - Edward Hurley
- Department of Neurology, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA
- Institute for Myelin and Glia Exploration, University at Buffalo, The State University of New York, Buffalo, USA
| | - Maria Laura Feltri
- Department of Neurology, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA
- Institute for Myelin and Glia Exploration, University at Buffalo, The State University of New York, Buffalo, USA
- Department of Biochemistry, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA
- Neuroscience Graduate Program. Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA
| | - Christopher Pittenger
- Departments of Psychiatry and Psychology, Yale Child Study Center, and Interdepartmental Neuroscience Program, Yale University School of Medicine, Buffalo, USA
| | - Luciana Romina Frick
- Department of Neurology, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA.
- Neuroscience Graduate Program. Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA.
- Department of Medicine, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA.
- Clinical and Translational Research Center, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA.
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA.
- Neuroscience Graduate Program. Jacobs School of Medicine, University at Buffalo, The State University of New York, Buffalo, USA.
| |
Collapse
|
19
|
Li X, Sun H, Zhu Y, Wang F, Wang X, Han L, Cui D, Luo D, Zhai Y, Zhuo L, Xu X, Yang J, Li Y. Dysregulation of prefrontal parvalbumin interneurons leads to adult aggression induced by social isolation stress during adolescence. Front Mol Neurosci 2022; 15:1010152. [PMID: 36267698 PMCID: PMC9577330 DOI: 10.3389/fnmol.2022.1010152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Social isolation during the juvenile stage results in structural and functional impairment of the brain and deviant adult aggression. However, the specific subregions and cell types that underpin this deviant behavior are still largely unknown. Here, we found that adolescent social isolation led to a shortened latency to attack onset and extended the average attack time, accompanied by anxiety-like behavior and deficits in social preference in adult mice. However, when exposed to social isolation during adulthood, the mice did not show these phenotypes. We also found that the structural plasticity of prefrontal pyramidal neurons, including the dendritic complexity and spine ratio, was impaired in mice exposed to adolescent social isolation. The parvalbumin (PV) interneurons in the prefrontal infralimbic cortex (IL) are highly vulnerable to juvenile social isolation and exhibit decreased cell numbers and reduced activation in adulthood. Moreover, chemogenetic inactivation of IL-PV interneurons can mimic juvenile social isolation-induced deviant aggression and social preference. Conversely, artificial activation of IL-PV interneurons significantly attenuated deviant aggression and rescued social preference during adulthood in mice exposed to adolescent social isolation. These findings implicate juvenile social isolation-induced damage to IL-PV interneurons in long-term aggressive behavior in adulthood.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Huan Sun
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuanyuan Zhu
- Department of Neurobiology, Institute of Neurosciences, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Feidi Wang
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiaodan Wang
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lin Han
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education of China, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Dongqi Cui
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Danlei Luo
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yifang Zhai
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Lixia Zhuo
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xiangzhao Xu
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jian Yang
- Department of Diagnostic Radiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Jian Yang,
| | - Yan Li
- Department of Anesthesiology and Perioperative Medicine & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Yan Li,
| |
Collapse
|
20
|
Wang ZJ, Shwani T, Liu J, Zhong P, Yang F, Schatz K, Zhang F, Pralle A, Yan Z. Molecular and cellular mechanisms for differential effects of chronic social isolation stress in males and females. Mol Psychiatry 2022; 27:3056-3068. [PMID: 35449296 PMCID: PMC9615910 DOI: 10.1038/s41380-022-01574-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 12/21/2022]
Abstract
Chronic social isolation stress during adolescence induces susceptibility for neuropsychiatric disorders. Here we show that 5-week post-weaning isolation stress induces sex-specific behavioral abnormalities and neuronal activity changes in the prefrontal cortex (PFC), basal lateral amygdala (BLA), and ventral tegmental area (VTA). Chemogenetic manipulation, optogenetic recording, and in vivo calcium imaging identify that the PFC to BLA pathway is causally linked to heightened aggression in stressed males, and the PFC to VTA pathway is causally linked to social withdrawal in stressed females. Isolation stress induces genome-wide transcriptional alterations in a region-specific manner. Particularly, the upregulated genes in BLA of stressed males are under the control of activated transcription factor CREB, and CREB inhibition in BLA normalizes gene expression and reverses aggressive behaviors. On the other hand, neuropeptide Hcrt (Hypocretin/Orexin) is among the top-ranking downregulated genes in VTA of stressed females, and Orexin-A treatment rescues social withdrawal. These results have revealed molecular mechanisms and potential therapeutic targets for stress-related mental illness.
Collapse
Affiliation(s)
- Zi-Jun Wang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Treefa Shwani
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Junting Liu
- Department of Physics, College of Arts and Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Ping Zhong
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Fengwei Yang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Kelcie Schatz
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Freddy Zhang
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Arnd Pralle
- Department of Physics, College of Arts and Sciences, State University of New York at Buffalo, Buffalo, NY, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
21
|
Zhong H, Rong J, Yang Y, Liang M, Li Y, Zhou R. Neonatal inflammation via persistent TGF-β1 downregulation decreases GABA AR expression in basolateral amygdala leading to the imbalance of the local excitation-inhibition circuits and anxiety-like phenotype in adult mice. Neurobiol Dis 2022; 169:105745. [PMID: 35513229 DOI: 10.1016/j.nbd.2022.105745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022] Open
Abstract
Neonatal inflammation can increase the risk of anxiety disorder in adulthood. The balance between glutamatergic excitatory and GABAergic inhibitory transmissions in the basolateral amygdala (BLA) plays a vital role in controlling anxiety state. Based on the reports that early-life inflammation had adverse effects on GABAergic system, the aim of this study was to investigate whether and how neonatal inflammation affects excitatory-inhibitory circuits in the BLA resulting in anxiety disorder. Neonatal mice received a daily subcutaneous injection of lipopolysaccharide (LPS, 50 μg/kg) or saline on postnatal days 3-5. LPS-treated mice developed anxiety behaviors accompanied by the hyperactivity of adrenal axis in adulthood. Electrophysiological study revealed the increase of postsynaptic neuronal excitability in the cortical-BLA excitatory synapses of LPS mice which could be recovered by bath-application of GABAAR agonist suggesting the impairment of GABAergic system in LPS mice. Compared with controls, GABAARα2 subunit expression and density of GABA-evoked current in BLA principal neurons were reduced in LPS mice. Additionally, neonatal LPS treatment resulted in the down-regulation of transforming growth factor-beta 1 (TGF-β1) expression and PKC signaling pathway in the adult BLA. The local TGF-β1 overexpression in the BLA improved GABAARα2 expression via up-regulating the activity of PKC signaling, which corrected GABAAR-mediated inhibition leading to the abolishment of anxiety-like change in adrenal axis regulation and behaviors in LPS mice. These data suggest the persistent TGF-β1deficit induces the down-regulation of GABAARα2 expression and subsequent disruption of the excitation-inhibition balance in the BLA circuits, which is the important mechanisms of neonatal inflammation-induced anxiety disorder.
Collapse
Affiliation(s)
- Haiquan Zhong
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Jing Rong
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yang Yang
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Min Liang
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Yingchun Li
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China
| | - Rong Zhou
- Department of Physiology, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
22
|
Lee MT, Peng WH, Kan HW, Wu CC, Wang DW, Ho YC. Neurobiology of Depression: Chronic Stress Alters the Glutamatergic System in the Brain-Focusing on AMPA Receptor. Biomedicines 2022; 10:biomedicines10051005. [PMID: 35625742 PMCID: PMC9138646 DOI: 10.3390/biomedicines10051005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric disorder affecting the mood and mental well-being. Its pathophysiology remains elusive due to the complexity and heterogeneity of this disorder that affects millions of individuals worldwide. Chronic stress is frequently cited as the one of the risk factors for MDD. To date, the conventional monoaminergic theory (serotonin, norepinephrine, and/or dopamine dysregulation) has received the most attention in the treatment of MDD, and all available classes of antidepressants target these monoaminergic systems. However, the contributions of other neurotransmitter systems in MDD have been widely reported. Emerging preclinical and clinical findings reveal that maladaptive glutamatergic neurotransmission might underlie the pathophysiology of MDD, thus revealing its critical role in the neurobiology of MDD and as the therapeutic target. Aiming beyond the monoaminergic hypothesis, studies of the neurobiological mechanisms underlying the stress-induced impairment of AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-glutamatergic neurotransmission in the brain could provide novel insights for the development of a new generation of antidepressants without the detrimental side effects. Here, the authors reviewed the recent literature focusing on the role of AMPA-glutamatergic neurotransmission in stress-induced maladaptive responses in emotional and mood-associated brain regions, including the hippocampus, amygdala, prefrontal cortex, nucleus accumbens and periaqueductal gray.
Collapse
Affiliation(s)
- Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Wei-Hao Peng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (W.-H.P.); (H.-W.K.)
| | - Hung-Wei Kan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (W.-H.P.); (H.-W.K.)
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-C.W.); (D.-W.W.)
| | - Deng-Wu Wang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-C.W.); (D.-W.W.)
- Department of Psychiatry, E-Da Hospital, Kaohsiung City 82445, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-C.W.); (D.-W.W.)
- Correspondence:
| |
Collapse
|
23
|
He JG, Zhou HY, Wang F, Chen JG. Dysfunction of Glutamatergic Synaptic Transmission in Depression: Focus on AMPA Receptor Trafficking. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 3:187-196. [PMID: 37124348 PMCID: PMC10140449 DOI: 10.1016/j.bpsgos.2022.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Pharmacological and anatomical evidence suggests that abnormal glutamatergic neurotransmission may be associated with the pathophysiology of depression. Compounds that act as NMDA receptor antagonists may be a potential treatment for depression, notably the rapid-acting agent ketamine. The rapid-acting and sustained antidepressant effects of ketamine rely on the activation of AMPA receptors (AMPARs). As the key elements of fast excitatory neurotransmission in the brain, AMPARs are crucially involved in synaptic plasticity and memory. Recent efforts have been directed toward investigating the bidirectional dysregulation of AMPAR-mediated synaptic transmission in depression. Here, we summarize the published evidence relevant to the dysfunction of AMPAR in stress conditions and review the recent progress toward the understanding of the involvement of AMPAR trafficking in the pathophysiology of depression, focusing on the roles of AMPAR auxiliary subunits, key AMPAR-interacting proteins, and posttranslational regulation of AMPARs. We also discuss new prospects for the development of improved therapeutics for depression.
Collapse
|
24
|
Sanacora G, Yan Z, Popoli M. The stressed synapse 2.0: pathophysiological mechanisms in stress-related neuropsychiatric disorders. Nat Rev Neurosci 2022; 23:86-103. [PMID: 34893785 DOI: 10.1038/s41583-021-00540-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/25/2022]
Abstract
Stress is a primary risk factor for several neuropsychiatric disorders. Evidence from preclinical models and clinical studies of depression have revealed an array of structural and functional maladaptive changes, whereby adverse environmental factors shape the brain. These changes, observed from the molecular and transcriptional levels through to large-scale brain networks, to the behaviours reveal a complex matrix of interrelated pathophysiological processes that differ between sexes, providing insight into the potential underpinnings of the sex bias of neuropsychiatric disorders. Although many preclinical studies use chronic stress protocols, long-term changes are also induced by acute exposure to traumatic stress, opening a path to identify determinants of resilient versus susceptible responses to both acute and chronic stress. Epigenetic regulation of gene expression has emerged as a key player underlying the persistent impact of stress on the brain. Indeed, histone modification, DNA methylation and microRNAs are closely involved in many aspects of the stress response and reveal the glutamate system as a key player. The success of ketamine has stimulated a whole line of research and development on drugs directly or indirectly targeting glutamate function. However, the challenge of translating the emerging understanding of stress pathophysiology into effective clinical treatments remains a major challenge.
Collapse
Affiliation(s)
- Gerard Sanacora
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Department of Pharmaceutical Sciences, University of Milano, Milan, Italy.
| |
Collapse
|
25
|
Wang Z, Cao Q, Bai W, Zheng X, Liu T. Decreased Phase-Amplitude Coupling Between the mPFC and BLA During Exploratory Behaviour in Chronic Unpredictable Mild Stress-Induced Depression Model of Rats. Front Behav Neurosci 2022; 15:799556. [PMID: 34975430 PMCID: PMC8716490 DOI: 10.3389/fnbeh.2021.799556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/16/2021] [Indexed: 11/13/2022] Open
Abstract
Depression is a common neuropsychiatric illness observed worldwide, and reduced interest in exploration is one of its symptoms. The control of dysregulated medial prefrontal cortex (mPFC) over the basolateral amygdala (BLA) is related to depression. However, the oscillation interaction in the mPFC-BLA circuit has remained elusive. Therefore, this study used phase-amplitude coupling (PAC), which provides complicated forms of information transmission by the phase of low-frequency rhythm, modulating the amplitude of high-frequency rhythm, and has a potential application for the treatment of neurological disease. The chronic unpredictable mild stress (CUMS) was used to prepare the rat models of depression. Moreover, multichannel in vivo recording was applied to obtain the local field potentials (LFPs) of the mPFC, the BLA in rats in control, and CUMS groups, while they explored the open field. The results showed prominent coupling between the phase of theta oscillation (4-12 Hz) in the mPFC and the amplitude of high-gamma oscillation (70-120 Hz) in the BLA. Compared to the control group, this theta-gamma PAC was significantly decreased in the CUMS group, which was accompanied by the diminished exploratory behaviour. The results indicate that the coupling between the phase of theta in the mPFC and the amplitude of gamma in the BLA is involved in exploratory behaviour, and this decreased coupling may inhibit exploratory behaviour of rats exposed to CUMS.
Collapse
Affiliation(s)
- Zihe Wang
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Qingying Cao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Wenwen Bai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, China
| |
Collapse
|
26
|
Lee EH, Park JY, Kwon HJ, Han PL. Repeated exposure with short-term behavioral stress resolves pre-existing stress-induced depressive-like behavior in mice. Nat Commun 2021; 12:6682. [PMID: 34795225 PMCID: PMC8602389 DOI: 10.1038/s41467-021-26968-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic stress induces adaptive changes in the brain via the cumulative action of glucocorticoids, which is associated with mood disorders. Here we show that repeated daily five-minute restraint resolves pre-existing stress-induced depressive-like behavior in mice. Repeated injection of glucocorticoids in low doses mimics the anti-depressive effects of short-term stress. Repeated exposure to short-term stress and injection of glucocorticoids activate neurons in largely overlapping regions of the brain, as shown by c-Fos staining, and reverse distinct stress-induced gene expression profiles. Chemogenetic inhibition of neurons in the prelimbic cortex projecting to the nucleus accumbens, basolateral amygdala, or bed nucleus of the stria terminalis results in anti-depressive effects similarly to short-term stress exposure, while only inhibition of neurons in the prelimbic cortex projecting to the bed nucleus of the stria terminalis rescues defective glucocorticoid release. In summary, we show that short-term stress can reverse adaptively altered stress gains and resolve stress-induced depressive-like behavior.
Collapse
Affiliation(s)
- Eun-Hwa Lee
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jin-Young Park
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Hye-Jin Kwon
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Pyung-Lim Han
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea.
- Department of Chemistry and Nano Science, College of Natural Science, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
27
|
Palamarchuk IS, Vaillancourt T. Mental Resilience and Coping With Stress: A Comprehensive, Multi-level Model of Cognitive Processing, Decision Making, and Behavior. Front Behav Neurosci 2021; 15:719674. [PMID: 34421556 PMCID: PMC8377204 DOI: 10.3389/fnbeh.2021.719674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Aversive events can evoke strong emotions that trigger cerebral neuroactivity to facilitate behavioral and cognitive shifts to secure physiological stability. However, upon intense and/or chronic exposure to such events, the neural coping processes can be maladaptive and disrupt mental well-being. This maladaptation denotes a pivotal point when psychological stress occurs, which can trigger subconscious, "automatic" neuroreactivity as a defence mechanism to protect the individual from potential danger including overwhelming unpleasant feelings and disturbing or threatening thoughts.The outcomes of maladaptive neural activity are cognitive dysfunctions such as altered memory, decision making, and behavior that impose a risk for mental disorders. Although the neurocognitive phenomena associated with psychological stress are well documented, the complex neural activity and pathways related to stressor detection and stress coping have not been outlined in detail. Accordingly, we define acute and chronic stress-induced pathways, phases, and stages in relation to novel/unpredicted, uncontrollable, and ambiguous stressors. We offer a comprehensive model of the stress-induced alterations associated with multifaceted pathophysiology related to cognitive appraisal and executive functioning in stress.
Collapse
Affiliation(s)
- Iryna S Palamarchuk
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada
| | - Tracy Vaillancourt
- Counselling Psychology, Faculty of Education, University of Ottawa, Ottawa, ON, Canada.,School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
28
|
Xie X, Wang S, Li M, Diao L, Pan X, Chen J, Zou W, Zhang X, Feng W, Bao L. α-TubK40me3 is required for neuronal polarization and migration by promoting microtubule formation. Nat Commun 2021; 12:4113. [PMID: 34226540 PMCID: PMC8257576 DOI: 10.1038/s41467-021-24376-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 06/11/2021] [Indexed: 11/13/2022] Open
Abstract
Tri-methylation on lysine 40 of α-tubulin (α-TubK40me3) is a recently identified post-translational modification involved in mitosis and cytokinesis. However, knowledge about α-TubK40me3 in microtubule function and post-mitotic cells remains largely incomplete. Here, we report that α-TubK40me3 is required for neuronal polarization and migration by promoting microtubule formation. α-TubK40me3 is enriched in mouse cerebral cortex during embryonic day (E)14 to E16. Knockdown of α-tubulin methyltransferase SETD2 at E14 leads to the defects in neuronal migration, which could be restored by overexpressing either a cytoplasm-localized SETD2 truncation or α-TubK40me3-mimicking mutant. Furthermore, α-TubK40me3 is preferably distributed on polymerized microtubules and potently promotes tubulin nucleation. Downregulation of α-TubK40me3 results in reduced microtubule abundance in neurites and disrupts neuronal polarization, which could be rescued by Taxol. Additionally, α-TubK40me3 is increased after losing α-tubulin K40 acetylation (α-TubK40ac) and largely rescues α-TubK40ac function. This study reveals a critical role of α-TubK40me3 in microtubule formation and neuronal development. Post-translational modifications of tubulins regulate microtubule properties and neural development. Here, the authors report that one such post-translational modification, α-TubK40me3, is required for neuronal polarization and migration by promoting microtubule formation.
Collapse
Affiliation(s)
- Xuan Xie
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shaogang Wang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mingyi Li
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei Diao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xingyu Pan
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Jijun Chen
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu Zhang
- University of Chinese Academy of Sciences, Beijing, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.,Laboratory of Perceptive Network, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Wenfeng Feng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China. .,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China.
| | - Lan Bao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China. .,University of Chinese Academy of Sciences, Beijing, China. .,School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
29
|
Pickering CA, Mazarakis ND. Viral Vector Delivery of DREADDs for CNS Therapy. Curr Gene Ther 2021; 21:191-206. [PMID: 33573551 DOI: 10.2174/1566523221666210211102435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 11/22/2022]
Abstract
Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) are genetically modified G-protein-coupled receptors (GPCRs), that can be activated by a synthetic ligand which is otherwise inert at endogenous receptors. DREADDs can be expressed in cells in the central nervous system (CNS) and subsequently offer the opportunity for remote and reversible silencing or activation of the target cells when the synthetic ligand is systemically administered. In neuroscience, DREADDs have thus far shown to be useful tools for several areas of research and offer considerable potential for the development of gene therapy strategies for neurological disorders. However, in order to design a DREADD-based gene therapy, it is necessary to first evaluate the viral vector delivery methods utilised in the literature to deliver these chemogenetic tools. This review evaluates each of the prominent strategies currently utilised for DREADD delivery, discussing their respective advantages and limitations. We focus on adeno-associated virus (AAV)-based and lentivirus-based systems, and the manipulation of these through cell-type specific promoters and pseudotyping. Furthermore, we address how virally mediated DREADD delivery could be improved in order to make it a viable gene therapy strategy and thus expand its translational potential.
Collapse
Affiliation(s)
- Ceri A Pickering
- Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicholas D Mazarakis
- Division of Neuroscience, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Zhang WH, Zhang JY, Holmes A, Pan BX. Amygdala Circuit Substrates for Stress Adaptation and Adversity. Biol Psychiatry 2021; 89:847-856. [PMID: 33691931 DOI: 10.1016/j.biopsych.2020.12.026] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Brain systems that promote maintenance of homeostasis in the face of stress have significant adaptive value. A growing body of work across species demonstrates a critical role for the amygdala in promoting homeostasis by regulating physiological and behavioral responses to stress. This review focuses on an emerging body of evidence that has begun to delineate the contribution of specific long-range amygdala circuits in mediating the effects of stress. After summarizing the major anatomical features of the amygdala and its connectivity to other limbic structures, we discuss recent findings from rodents showing how stress causes structural and functional remodeling of amygdala neuronal outputs to defined cortical and subcortical target regions. We also consider some of the environmental and genetic factors that have been found to moderate how the amygdala responds to stress and relate the emerging preclinical literature to the current understanding of the pathophysiology and treatment of stress-related neuropsychiatric disorders. Future effort to translate these findings to clinics may help to develop valuable tools for prevention, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Jun-Yu Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institues of Health, Bethesda, Maryland
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|
31
|
Tan T, Wang W, Liu T, Zhong P, Conrow-Graham M, Tian X, Yan Z. Neural circuits and activity dynamics underlying sex-specific effects of chronic social isolation stress. Cell Rep 2021; 34:108874. [PMID: 33761364 DOI: 10.1016/j.celrep.2021.108874] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/09/2020] [Accepted: 02/25/2021] [Indexed: 01/03/2023] Open
Abstract
Exposure to prolonged stress in critical developmental periods induces heightened vulnerability to psychiatric disorders, which may have sex-specific consequences. Here we investigate the neuronal circuits mediating behavioral changes in mice after chronic adolescent social isolation stress. Escalated aggression is exhibited in stressed males, while social withdrawal is shown in stressed females. In vivo multichannel recordings of free-moving animals indicate that pyramidal neurons in prefrontal cortex (PFC) from stressed males exhibit the significantly decreased spike activity during aggressive attacks, while PFC pyramidal neurons from stressed females show a blunted increase of discharge rates during sociability tests. Chemogenetic and electrophysiological evidence shows that PFC hypofunctioning and BLA principal neuron hyperactivity contribute to the elevated aggression in stressed males, while PFC hypofunctioning and VTA dopamine neuron hypoactivity contribute to the diminished sociability in stressed females. These results establish a framework for understanding the circuit and physiological mechanisms underlying sex-specific divergent effects of stress.
Collapse
Affiliation(s)
- Tao Tan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Wei Wang
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Tiaotiao Liu
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA; School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Megan Conrow-Graham
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Xin Tian
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Zhen Yan
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
32
|
Synergistic inhibition of histone modifiers produces therapeutic effects in adult Shank3-deficient mice. Transl Psychiatry 2021; 11:99. [PMID: 33542189 PMCID: PMC7862604 DOI: 10.1038/s41398-021-01233-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/16/2020] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is a lifelong developmental disorder characterized by social deficits and other behavioral abnormalities. Dysregulation of epigenetic processes, such as histone modifications and chromatin remodeling, have been implicated in ASD pathology, and provides a promising therapeutic target for ASD. Haploinsufficiency of the SHANK3 gene is causally linked to ASD, so adult (3-5 months old) Shank3-deficient male mice were used in this drug discovery study. We found that combined administration of the class I histone deacetylase inhibitor Romidepsin and the histone demethylase LSD1 inhibitor GSK-LSD1 persistently ameliorated the autism-like social preference deficits, while each individual drug alone was largely ineffective. Another behavioral abnormality in adult Shank3-deficient male mice, heightened aggression, was also alleviated by administration of the dual drugs. Furthermore, Romidepsin/GSK-LSD1 treatment significantly increased transcriptional levels of NMDA receptor subunits in prefrontal cortex (PFC) of adult Shank3-deficient mice, resulting in elevated synaptic expression of NMDA receptors and the restoration of NMDAR synaptic function in PFC pyramidal neurons. These results have offered a novel pharmacological intervention strategy for ASD beyond early developmental periods.
Collapse
|
33
|
Chakraborty S, Tripathi SJ, Raju TR, Shankaranarayana Rao BS. Mechanisms underlying remediation of depression-associated anxiety by chronic N-acetyl cysteine treatment. Psychopharmacology (Berl) 2020; 237:2967-2981. [PMID: 32572589 DOI: 10.1007/s00213-020-05585-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
RATIONALE Anxiety is one of the most comorbid conditions with major depressive disorder (MDD). Depression-associated anxiety often stems from the dysfunctional hypothalamic-pituitary-adrenal (HPA) axis and its altered regulation by the amygdala. Furthermore, MDD is associated with altered glutamatergic processing leading to anxiety and impaired regulation of the HPA axis. Recent studies have demonstrated that N-acetyl cysteine (NAC), a pleiotropic drug, exerts antidepressant-like effect by modulation of hippocampal functions, periterminal release of glutamate, and/or redox systems. However, the effects of NAC on depression-associated anxiety, HPA axis hyperactivity, and amygdalar dysfunctions are relatively unknown. OBJECTIVES Accordingly, we evaluated the effect of NAC on neonatal clomipramine (CLI)-induced adulthood anxiety and accompanying changes in plasma corticosterone levels, amygdalar volumes, neuronal/glial densities, levels of monoamines, and their metabolites in the amygdalar complex. RESULTS We found that chronic treatment with NAC reverses CLI-induced anhedonia and enhanced anxiety. Interestingly, attenuation of CLI-associated anxiety in NAC-treated rats were accompanied by a reversal of adrenal and spleen hypertrophy, and normalization of enhanced plasma corticosterone levels, indicating improved HPA axis functioning. Furthermore, NAC treatment was sufficient to reverse volumetric hypertrophy of basolateral amygdala (BLA), and altered noradrenaline (NA) metabolism in the amygdalar complex. The effects of NAC in the reversal of CLI-induced impairments were similar to that of fluoxetine (FLX). CONCLUSIONS We suggest that beneficial effects of NAC on antidepressive- and antianxiety-like behaviors are at least in part mediated via restoration of amygdalar and HPA axis functioning. Our results support the hypothesis that NAC might be evolved as a therapeutic strategy for reversal of amygdalar dysfunction in depression.
Collapse
Affiliation(s)
- Suwarna Chakraborty
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - Sunil Jamuna Tripathi
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - T R Raju
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India
| | - B S Shankaranarayana Rao
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), Hosur Road, Bengaluru, 560 029, India.
| |
Collapse
|
34
|
Park JC, Jeon YJ, Kim JJ, Cho J, Choi DH, Han JS. Brief stress impairs recognition memory through amygdalar activation in animals with medial prefrontal cortex lesions. Neurosci Lett 2020; 735:135245. [PMID: 32652210 DOI: 10.1016/j.neulet.2020.135245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/21/2020] [Accepted: 07/07/2020] [Indexed: 10/23/2022]
Abstract
The medial prefrontal cortex (mPFC) is thought to exert inhibitory control over stress-induced activation of the amygdala and neurocognitive effects. As evidence to support this, we examined how exposure to either a brief or prolonged stress affected on amygdalar c-Fos levels and recognition memory of animals with mPFC chemical lesions. mPFC-lesioned and sham-operated animals were subjected to either a brief 20-min restraint+20 tailshocks or a prolonged 60-min restraint+60 tailshocks. Post-stress performances in the object recognition memory and c-Fos immunoreactivity in the amygdala were then assessed. In sham-operated animals, the object recognition memory was reliably impaired following the prolonged, but not following the brief stress exposure. On the other hand, in mPFC-lesioned animals, the brief stress significantly impaired recognition memory and enhanced c-Fos expression in the amygdala. Present findings of loss of mPFC activity exacerbating stress effects provide causal evidence that the mPFC exerts inhibitory control on stress.
Collapse
Affiliation(s)
- Jung-Cheol Park
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Yong-Jae Jeon
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea
| | - Jeansok J Kim
- Department of Psychology, Program in Neuroscience, University of Washington, Seattle, Washington, 98195-1525, USA
| | - Jeiwon Cho
- Department of Brain and Cognitive Sciences, Scranton College, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dong-Hee Choi
- Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University, Seoul, 05029, Republic of Korea; Department of Medical Science, Konkuk University School of Medicine, Konkuk University, Seoul, 05029, Republic of Korea.
| | - Jung-Soo Han
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
35
|
Liu WZ, Zhang WH, Zheng ZH, Zou JX, Liu XX, Huang SH, You WJ, He Y, Zhang JY, Wang XD, Pan BX. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun 2020; 11:2221. [PMID: 32376858 PMCID: PMC7203160 DOI: 10.1038/s41467-020-15920-7] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
Dysregulated prefrontal control over amygdala is engaged in the pathogenesis of psychiatric diseases including depression and anxiety disorders. Here we show that, in a rodent anxiety model induced by chronic restraint stress (CRS), the dysregulation occurs in basolateral amygdala projection neurons receiving mono-directional inputs from dorsomedial prefrontal cortex (dmPFC→BLA PNs) rather than those reciprocally connected with dmPFC (dmPFC↔BLA PNs). Specifically, CRS shifts the dmPFC-driven excitatory-inhibitory balance towards excitation in the former, but not latter population. Such specificity is preferential to connections made by dmPFC, caused by enhanced presynaptic glutamate release, and highly correlated with the increased anxiety-like behavior in stressed mice. Importantly, low-frequency optogenetic stimulation of dmPFC afferents in BLA normalizes the enhanced prefrontal glutamate release onto dmPFC→BLA PNs and lastingly attenuates CRS-induced increase of anxiety-like behavior. Our findings thus reveal a target cell-based dysregulation of mPFC-to-amygdala transmission for stress-induced anxiety.
Collapse
Affiliation(s)
- Wei-Zhu Liu
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, 330031, Nanchang, China.,Department of Biological Science, School of Life Science, Nanchang University, 330031, Nanchang, China
| | - Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, 330031, Nanchang, China
| | - Zhi-Heng Zheng
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, 330031, Nanchang, China
| | - Jia-Xin Zou
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, 330031, Nanchang, China
| | - Xiao-Xuan Liu
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, 330031, Nanchang, China
| | - Shou-He Huang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, 330031, Nanchang, China
| | - Wen-Jie You
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, 330031, Nanchang, China
| | - Ye He
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, 330031, Nanchang, China
| | - Jun-Yu Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, 330031, Nanchang, China
| | - Xiao-Dong Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, 330031, Nanchang, China. .,Department of Biological Science, School of Life Science, Nanchang University, 330031, Nanchang, China. .,Department of Ophthalmology, the 2nd Affiliated Hospital, Medical School of Nanchang University, 330031, Nanchang, China.
| |
Collapse
|
36
|
McKlveen JM, Moloney RD, Scheimann JR, Myers B, Herman JP. "Braking" the Prefrontal Cortex: The Role of Glucocorticoids and Interneurons in Stress Adaptation and Pathology. Biol Psychiatry 2019; 86:669-681. [PMID: 31326084 DOI: 10.1016/j.biopsych.2019.04.032] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 01/06/2023]
Abstract
The medial prefrontal cortex (mPFC) receives information regarding stimuli and appropriately orchestrates neurophysiological, autonomic, and behavioral responses to stress. The cellular and neurochemical heterogeneity of the mPFC and its projections are key to fine-tuning of stress responses and adaptation. Output of the mPFC is mediated by glutamatergic pyramidal neurons whose activity is coordinated by an intricate network of interneurons. Excitatory/inhibitory (E/I) balance in the mPFC is critical for appropriate responsiveness to stress, and E/I imbalance occurs in numerous neuropsychiatric disorders that co-occur with chronic stress. Moreover, there is mounting data suggesting that chronic stress may precipitate E/I imbalance. This review will provide information regarding the cellular and anatomical makeup of the mPFC and discuss the impact of acute and chronic stress in adulthood and early life on interneuron function, with implications for E/I balance affecting functional connectivity. Specifically, the review will highlight the importance of interneuron type, connectivity, and location (both layer- and subregion-specific). The discussion of local mPFC networks will focus on stress context, including stressor duration (acute vs. chronic) and timing (early life vs. adulthood), as these factors have significant implications for the interpretation of experiments and mPFC E/I balance. Indeed, interneurons appear to play a prominent role in prefrontal adaptation, and a better understanding of the interactions between stress and interneuron function may yield insight to the transition from adaptation to pathology. Ultimately, determining the mechanisms mediating adaptive versus pathologic plasticity will promote the development of novel treatments for neuropsychiatric disorders related to prefrontal E/I imbalance.
Collapse
Affiliation(s)
- Jessica M McKlveen
- National Center for Complimentary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Rachel D Moloney
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Jessie R Scheimann
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - James P Herman
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
37
|
Tan T, Wang W, Williams J, Ma K, Cao Q, Yan Z. Stress Exposure in Dopamine D4 Receptor Knockout Mice Induces Schizophrenia-Like Behaviors via Disruption of GABAergic Transmission. Schizophr Bull 2019; 45:1012-1023. [PMID: 30476265 PMCID: PMC6737476 DOI: 10.1093/schbul/sby163] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A combination of genetic and environmental risk factors has been considered as the pathogenic cause for mental disorders including schizophrenia. Here, we sought to find out whether the abnormality of the dopamine system, coupled with the exposure to modest stress, is sufficient to trigger the manifestation of schizophrenia-like behaviors. We found that exposing dopamine D4 receptor knockout (D4KO) mice with 1-week restraint stress (2 h/d) induced significant deficits in sensorimotor gating, cognitive processes, social engagement, as well as the elevated exploratory behaviors, which are reminiscent to schizophrenia phenotypes. Electrophysiological studies found that GABAergic transmission was significantly reduced in prefrontal cortical neurons from stressed D4KO mice. Additionally, administration of diazepam, a GABA enhancer, restored GABAergic synaptic responses and ameliorated some behavioral abnormalities in stressed D4KO mice. These results have revealed that the combination of 2 key genetic and environmental susceptibility factors, dopamine dysfunction and stress, is a crucial trigger for schizophrenia-like phenotypes, and GABA system in the prefrontal cortex is a downstream convergent target that mediates some behavioral outcomes.
Collapse
Affiliation(s)
- Tao Tan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY,Sichuan Provincial Hospital for Women and Children, Chengdu, China
| | - Wei Wang
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Jamal Williams
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Kaijie Ma
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Qing Cao
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, School of Medicine and Biomedical Sciences, Buffalo, NY,To whom correspondence should be addressed; tel: 716-829-3058, fax: 716-829-2344, e-mail:
| |
Collapse
|
38
|
Storace A, Daniels S, Zhou Y, Kalisch B, Parker L, Rock E, Limebeer C, Lapointe T, Leri F. A study of limbic brain derived neurotrophic factor gene expression in male Sprague-Dawley rats trained on a learned helplessness task. Behav Brain Res 2019; 376:112174. [PMID: 31449911 DOI: 10.1016/j.bbr.2019.112174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/08/2019] [Accepted: 08/22/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Brain derived neurotrophic factor (BDNF) has been linked to the etiology and pathology of Major Depressive Disorder (MDD). Here, the relationship between learned helplessness (LH), a cognitive/motivational state relevant to MDD, and BDNF mRNA in various limbic regions, was investigated. METHODS In Sprague-Dawley male rats, LH was induced by escape training, using a triadic design of stressor controllability involving exposure to no shocks (NS), escapable shocks (ES) or yoked inescapable shocks (IES). LH was subsequently assessed in an active avoidance task, and levels of BDNF mRNA in limbic brain regions were compared across the triad following testing. RESULTS Although the IES group displayed greater LH, BDNF mRNA levels were lower in the hippocampus and higher in the nucleus accumbens of both IES and ES groups. In contrast, BDNF mRNA in the basolateral amygdala was elevated only in rats exposed to IES. CONCLUSION These results suggest that the inability to control an aversive stimulus can lead to a LH behavioural phenotype that is associated with region-specific alterations of BDNF gene expression in limbic nuclei.
Collapse
Affiliation(s)
- Alexandra Storace
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Stephen Daniels
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Yan Zhou
- Laboratory of the Biology of Addictive Disease, Rockefeller University, New York, NY, United States.
| | - Bettina Kalisch
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario, Canada.
| | - Linda Parker
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Erin Rock
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Cheryl Limebeer
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Thomas Lapointe
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
39
|
Chen X, Liu Z, Ma C, Ma L, Liu X. Parvalbumin Interneurons Determine Emotional Valence Through Modulating Accumbal Output Pathways. Front Behav Neurosci 2019; 13:110. [PMID: 31139063 PMCID: PMC6527764 DOI: 10.3389/fnbeh.2019.00110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin (PV) expressing GABAergic interneurons provide large source of GABA to spiny projection neurons (SPNs) in the striatum. However, the roles of PV+ interneurons in the regulation of SPNs in the ventral striatum and emotional states are largely unknown. Here, we investigated whether stimulation of ventral striatal (accumbal) PV+ interneurons would drive emotional valence in mice. We found that during conditioned place preference (CPP) training, activation of accumbal PV+ interneurons evoked place preference while suppressing them resulted in conditioned place aversion (CPA). Activation of PV+ interneurons during place conditioning increased Fos expression in SPNs in the direct pathway (dSPNs) and impaired lithium chloride-induced CPA. Activation of dSPNs and SPNs in the indirect pathway (iSPNs) induced CPP and CPA, respectively; conversely, suppression of dSPNs or iSPNs induced CPA or CPP. In addition, activation or suppression of calretinin-expressing (CR) GABAergic interneurons did not induce place preference or aversion. These data suggest that PV+ interneurons can bidirectionally determine the emotional valence through their regulation of accumbal SPN activities and raise the possibility that manipulation of PV+ interneuron activity may have the potential to alter emotional valence and treat related mental disorders.
Collapse
Affiliation(s)
- Xi Chen
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhiyuan Liu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chaonan Ma
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xing Liu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A Comprehensive Overview on Stress Neurobiology: Basic Concepts and Clinical Implications. Front Behav Neurosci 2018; 12:127. [PMID: 30034327 PMCID: PMC6043787 DOI: 10.3389/fnbeh.2018.00127] [Citation(s) in RCA: 438] [Impact Index Per Article: 62.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022] Open
Abstract
Stress is recognized as an important issue in basic and clinical neuroscience research, based upon the founding historical studies by Walter Canon and Hans Selye in the past century, when the concept of stress emerged in a biological and adaptive perspective. A lot of research after that period has expanded the knowledge in the stress field. Since then, it was discovered that the response to stressful stimuli is elaborated and triggered by the, now known, stress system, which integrates a wide diversity of brain structures that, collectively, are able to detect events and interpret them as real or potential threats. However, different types of stressors engage different brain networks, requiring a fine-tuned functional neuroanatomical processing. This integration of information from the stressor itself may result in a rapid activation of the Sympathetic-Adreno-Medullar (SAM) axis and the Hypothalamus-Pituitary-Adrenal (HPA) axis, the two major components involved in the stress response. The complexity of the stress response is not restricted to neuroanatomy or to SAM and HPA axes mediators, but also diverge according to timing and duration of stressor exposure, as well as its short- and/or long-term consequences. The identification of neuronal circuits of stress, as well as their interaction with mediator molecules over time is critical, not only for understanding the physiological stress responses, but also to understand their implications on mental health.
Collapse
Affiliation(s)
- Lívea Dornela Godoy
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matheus Teixeira Rossignoli
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Polianna Delfino-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Physiology Department, Ribeirão Preto School of Medicine, University of São Paulo, São Paulo, Brazil
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
41
|
Salivary kynurenic acid response to psychological stress: inverse relationship to cortical glutamate in schizophrenia. Neuropsychopharmacology 2018; 43:1706-1711. [PMID: 29728648 PMCID: PMC6006286 DOI: 10.1038/s41386-018-0072-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/04/2018] [Accepted: 04/09/2018] [Indexed: 12/22/2022]
Abstract
Frontal glutamatergic synapses are thought to be critical for adaptive, long-term stress responses. Prefrontal cortices, including the anterior cingulate cortex (ACC) contribute to stress perception and regulation, and are involved in top-down regulation of peripheral glucocorticoid and inflammatory responses to stress. Levels of kynurenic acid (KYNA) in saliva increase in response to psychological stress, and this stress-induced effect may be abnormal in people with schizophrenia. Here we test the hypothesis that ACC glutamatergic functioning may contribute to the stress-induced salivary KYNA response in schizophrenia. In 56 patients with schizophrenia and 58 healthy controls, our results confirm that levels of KYNA in saliva increase following psychological stress. The magnitude of the effect correlated negatively with proton magnetic resonance spectroscopy (MRS) glutamate + glutamine (r = -.31, p = .017) and glutamate (r = -0.27, p = .047) levels in the ACC in patients but not in the controls (all p ≥ .45). Although, a causal relationship cannot be ascertained in this cross-sectional study, these findings suggest a potentially meaningful link between central glutamate levels and kynurenine pathway response to stress in individuals with schizophrenia.
Collapse
|
42
|
Chemogenetic Activation of Prefrontal Cortex Rescues Synaptic and Behavioral Deficits in a Mouse Model of 16p11.2 Deletion Syndrome. J Neurosci 2018; 38:5939-5948. [PMID: 29853627 DOI: 10.1523/jneurosci.0149-18.2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 05/21/2018] [Indexed: 01/27/2023] Open
Abstract
Microdeletion of the human 16p11.2 gene locus has been linked to autism spectrum disorder (ASD) and intellectual disability and confers risk for a number of other neurodevelopmental deficits. Transgenic mice carrying 16p11.2 deletion (16p11+/-) display phenotypes reminiscent of those in human patients with 16p11.2 deletion syndrome, but the molecular mechanisms and treatment strategies for these phenotypes remain unknown. In this study, we have found that both male and female 16p11+/- mice exhibit deficient NMDA receptor (NMDAR) function in the medial prefrontal cortex (mPFC), a brain region critical for high-level "executive" functions. Elevating the activity of mPFC pyramidal neurons with a CaMKII-driven Gq-DREADD (Gq-coupled designer receptors exclusively activated by designer drugs) led to the significant increase of NR2B subunit phosphorylation and the restoration of NMDAR function, as well as the amelioration of cognitive and social impairments in 16p11+/- mice. These results suggest that NMDAR hypofunction in PFC may contribute to the pathophysiology of 16p11.2 deletion syndrome and that restoring PFC activity is sufficient to rescue the behavioral deficits.SIGNIFICANCE STATEMENT The 16p11.2 deletion syndrome is strongly associated with autism spectrum disorder and intellectual disability. Using a mouse model carrying the 16p11.2 deletion, 16p11+/-, we identified NMDA receptor hypofunction in the prefrontal cortex (PFC). Elevating the activity of PFC pyramidal neurons with a chemogenetic tool, Gq-DREADD, led to the restoration of NMDA receptor function and the amelioration of cognitive and social impairments in 16p11+/- mice. These results have revealed a novel route for potential therapeutic intervention of 16p11.2 deletion syndrome.
Collapse
|
43
|
Inactivation of Basolateral Amygdala Prevents Stress-Induced Astroglial Loss in the Prefrontal Cortex. Mol Neurobiol 2018; 56:350-366. [DOI: 10.1007/s12035-018-1057-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/02/2018] [Indexed: 10/17/2022]
|
44
|
Yu W, Xu H, Xue Y, An D, Li H, Chen W, Yu D, Sun Y, Ma J, Tang Y, Xiao Z, Yin S. 5-HT 2CR antagonist/5-HT 2CR inverse agonist recovered the increased isolation-induced aggressive behavior of BALB/c mice mediated by ADAR1 (p110) expression and Htr2c RNA editing. Brain Behav 2018; 8:e00929. [PMID: 29541541 PMCID: PMC5840448 DOI: 10.1002/brb3.929] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Social isolation enhances the aggressive behavior of animals, but the detailed mechanism remains unclear. Epigenetic studies have suggested that Htr2c RNA editing is closely related to aggressive behavior. This study aims to obtain a fundamental understanding of how social isolation impacts adenosine deaminase acting on RNA 1 (ADAR1, RNA editing enzyme) and Htr2c RNA editing, leading to aggressive behavior, and explore the effective solutions for the recovery of this behavior. METHODS We evaluated 21-day-old BALB/c mice with and without isolation for aggressive behavior using a resident-intruder test. Immune-reactivity and protein expression of ADAR1 (p110) were measured using immunohistochemistry and Western blotting. Htr2c RNA editing was evaluated using pyrosequencing. In addition, the 5-HT 2C R antagonist SB243213/5-HT 2C R inverse agonist SB206553 was used to treat the isolated mice, and the performance of both treatments on the behavior, ADAR1 (p110) expression, and Htr2c RNA editing in isolated mice was examined. RESULTS Both the protein expression and immune-reactivity of ADAR1 (p110) in the amygdala decreased, but the percentage of Htr2c RNA editing at A and B sites of amygdala only showed a moderate increase in isolated BALB/c mice with enhanced aggressive behavior compared to the age-matched group-housed BALB/c mice. Additionally, treatment with the 5-HT 2C R antagonist SB243213/5-HT 2C R inverse agonist SB206553 recovered the enhanced aggressive behavior of isolated mice and returned the protein expression and immune-reactivity of ADAR1 (p110) back to the normal level. Moreover, compared to the age-matched isolated mice treated with physiological saline, isolated mice treated with 5-HT 2C R inverse agonist SB206553 showed a lower percentage of Htr2c RNA editing at both A and B sites, and the same result occurred in isolated mice treated with 5-HT 2C R antagonist SB243213 at B site of Htr2c RNA editing. CONCLUSIONS The 5-HT 2C R antagonist SB243213/5-HT 2C R inverse agonist SB206553 recovered increased aggressive behavior of isolated BALB/c mice mediated by ADAR1 (p110) expression and Htr2c RNA editing.
Collapse
Affiliation(s)
- Weizhi Yu
- College of Basic Medical Sciences Dalian Medical University Dalian China
| | - Hong Xu
- College of Basic Medical Sciences Dalian Medical University Dalian China
| | - Ying Xue
- College of Basic Medical Sciences Dalian Medical University Dalian China
| | - Dong An
- College of Basic Medical Sciences Dalian Medical University Dalian China
| | - Huairui Li
- The 2nd Affiliated Hospital Dalian Medical University Dalian China
| | - Wei Chen
- College of Basic Medical Sciences Dalian Medical University Dalian China
| | - Deqin Yu
- College of Basic Medical Sciences Dalian Medical University Dalian China
| | - Yiping Sun
- College of Basic Medical Sciences Dalian Medical University Dalian China
| | - Jianmei Ma
- College of Basic Medical Sciences Dalian Medical University Dalian China
| | - Yiyuan Tang
- Texas Tech Neuroimaging Institute Texas Tech University Lubbock TX USA
| | - Zhaoyang Xiao
- The 2nd Affiliated Hospital Dalian Medical University Dalian China
| | - Shengming Yin
- College of Basic Medical Sciences Dalian Medical University Dalian China
| |
Collapse
|