1
|
Arnsten AFT, Joyce MKP, Roberts AC. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. Neurosci Biobehav Rev 2023; 145:105000. [PMID: 36529312 PMCID: PMC9898199 DOI: 10.1016/j.neubiorev.2022.105000] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
ARNSTEN, A.F.T., M.K.P. Joyce and A.C. Roberts. The Aversive Lens: Stress effects on the prefrontal-cingulate cortical pathways that regulate emotion. NEUROSCI BIOBEHAV REV XXX-XXX, 2022. The symptoms of major-depressive-disorder include psychic pain and anhedonia, i.e. seeing the world through an "aversive lens". The neurobiology underlying this shift in worldview is emerging. Here these data are reviewed, focusing on how activation of subgenual cingulate (BA25) induces an "aversive lens", and how higher prefrontal cortical (PFC) areas (BA46/10/32) provide top-down regulation of BA25 but are weakened by excessive dopamine and norepinephrine release during stress exposure, and dendritic spine loss with chronic stress exposure. These changes may generate an attractor state, which maintains the brain under the control of BA25, requiring medication or neuromodulatory treatments to return connectivity to a more flexible state. In line with this hypothesis, effective anti-depressant treatments reduce the activity of BA25 and restore top-down regulation by higher circuits, e.g. as seen with SSRI medications, ketamine, deep brain stimulation of BA25, or rTMS to strengthen dorsolateral PFC. This research has special relevance in an era of chronic stress caused by the COVID19 pandemic, political unrest and threat of climate change.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Mary Kate P Joyce
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Angela C Roberts
- Department Physiology, Development and Neuroscience, and Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
2
|
Giron CG, Lin TTZ, Kan RLD, Zhang BBB, Yau SY, Kranz GS. Non-Invasive Brain Stimulation Effects on Biomarkers of Tryptophan Metabolism: A Scoping Review and Meta-Analysis. Int J Mol Sci 2022; 23:9692. [PMID: 36077088 PMCID: PMC9456364 DOI: 10.3390/ijms23179692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Abnormal activation of the kynurenine and serotonin pathways of tryptophan metabolism is linked to a host of neuropsychiatric disorders. Concurrently, noninvasive brain stimulation (NIBS) techniques demonstrate high therapeutic efficacy across neuropsychiatric disorders, with indications for modulated neuroplasticity underlying such effects. We therefore conducted a scoping review with meta-analysis of eligible studies, conforming with the PRISMA statement, by searching the PubMed and Web of Science databases for clinical and preclinical studies that report the effects of NIBS on biomarkers of tryptophan metabolism. NIBS techniques reviewed were electroconvulsive therapy (ECT), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS). Of the 564 search results, 65 studies were included with publications dating back to 1971 until 2022. The Robust Bayesian Meta-Analysis on clinical studies and qualitative analysis identified general null effects by NIBS on biomarkers of tryptophan metabolism, but moderate evidence for TMS effects on elevating serum serotonin levels. We cannot interpret this as evidence for or against the effects of NIBS on these biomarkers, as there exists several confounding methodological differences in this literature. Future controlled studies are needed to elucidate the effects of NIBS on biomarkers of tryptophan metabolism, an under-investigated question with substantial implications to clinical research and practice.
Collapse
Affiliation(s)
- Cristian G. Giron
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tim T. Z. Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Rebecca L. D. Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bella B. B. Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Suk Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Godbersen GM, Murgaš M, Gryglewski G, Klöbl M, Unterholzner J, Rischka L, Spies M, Baldinger-Melich P, Winkler D, Lanzenberger R. Coexpression of Gene Transcripts with Monoamine Oxidase A Quantified by Human In Vivo Positron Emission Tomography. Cereb Cortex 2022; 32:3516-3524. [PMID: 34952543 DOI: 10.1093/cercor/bhab430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022] Open
Abstract
The monoamine oxidase A (MAO-A) is integral to monoamine metabolism and is thus relevant to the pathophysiology of various neuropsychiatric disorders; however, associated gene-enzyme relations are not well understood. This study aimed to unveil genes coexpressed with MAO-A. Therefore, 18 179 mRNA expression maps (based on the Allen Human Brain Atlas) were correlated with the cerebral distribution volume (VT) of MAO-A assessed in 36 healthy subjects (mean age ± standard deviation: 32.9 ± 8.8 years, 18 female) using [11C]harmine positron emission tomography scans. Coexpression analysis was based on Spearman's ρ, over-representation tests on Fisher's exact test with false discovery rate (FDR) correction. The analysis revealed 35 genes in cortex (including B-cell translocation gene family, member 3, implicated in neuroinflammation) and 247 genes in subcortex (including kallikrein-related peptidase 10, implicated in Alzheimer's disease). Significantly over-represented Gene Ontology terms included "neuron development", "neuron differentiation", and "cell-cell signaling" as well as "axon" and "neuron projection". In vivo MAO-A enzyme distribution and MAOA expression did not correlate in cortical areas (ρ = 0.08) while correlation was found in subcortical areas (ρ = 0.52), suggesting influences of region-specific post-transcriptional and -translational modifications. The herein reported information could contribute to guide future genetic studies, deepen the understanding of associated pathomechanisms and assist in the pursuit of novel therapeutic targets.
Collapse
Affiliation(s)
- G M Godbersen
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - M Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - G Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - M Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - J Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - L Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - M Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - P Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - D Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| | - R Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna 1090, Austria
| |
Collapse
|
4
|
Popa N, Bachar D, Roberts AC, Santangelo AM, Gascon E. Region-specific microRNA alterations in marmosets carrying SLC6A4 polymorphisms are associated with anxiety-like behavior. EBioMedicine 2022; 82:104159. [PMID: 35905539 PMCID: PMC9334339 DOI: 10.1016/j.ebiom.2022.104159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Psychiatric diseases such as depression and anxiety are multifactorial conditions, highly prevalent in western societies. Human studies have identified a number of high-risk genetic variants for these diseases. Among them, polymorphisms in the promoter region of the serotonin transporter gene (SLC6A4) have attracted much attention. However, due to the paucity of experimental models, molecular alterations induced by these genetic variants and how they correlate to behavioral deficits have not been examined. In this regard, marmosets have emerged as a powerful model in translational neuroscience to investigate molecular underpinnings of complex behaviors. METHODS Here, we took advantage of naturally occurring genetic polymorphisms in marmoset SLC6A4 gene that have been linked to anxiety-like behaviors. Using FACS-sorting, we profiled microRNA contents in different brain regions of genotyped and behaviorally-phenotyped marmosets. FINDINGS We revealed that marmosets bearing different SLC6A4 variants exhibit distinct microRNAs signatures in a region of the prefrontal cortex whose activity has been consistently altered in patients with depression/anxiety. We also identified Deleted in Colorectal Cancer (DCC), a gene previously linked to these diseases, as a downstream target of the differently expressed microRNAs. Significantly, we showed that levels of both microRNAs and DCC in this region were highly correlated to anxiety-like behaviors. INTERPRETATION Our findings establish links between genetic variants, molecular modifications in specific cortical regions and complex behavioral responses, providing new insights into gene-behavior relationships underlying human psychopathology. FUNDING This work was supported by France National Agency, NRJ Foundation, Celphedia and Fondation de France as well as the Wellcome Trust.
Collapse
Affiliation(s)
- Natalia Popa
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Dipankar Bachar
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Angela C Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Andrea M Santangelo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Eduardo Gascon
- Aix Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France.
| |
Collapse
|
5
|
Vraka C, Murgaš M, Rischka L, Geist BK, Lanzenberger R, Gryglewski G, Zenz T, Wadsak W, Mitterhauser M, Hacker M, Philippe C, Pichler V. Simultaneous radiomethylation of [ 11C]harmine and [ 11C]DASB and kinetic modeling approach for serotonergic brain imaging in the same individual. Sci Rep 2022; 12:3283. [PMID: 35228586 PMCID: PMC8885643 DOI: 10.1038/s41598-022-06906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Abstract
Simultaneous characterization of pathologies by multi-tracer positron emission tomography (PET) is among the most promising applications in nuclear medicine. Aim of this work was the simultaneous production of two PET-tracers in one module and test the relevance for human application. [11C]harmine and [11C]DASB were concurrently synthesized in a 'two-in-one-pot' reaction in quality for application. Dual-tracer protocol was simulated using 16 single PET scans in different orders of tracer application separated by different time intervals. Volume of distribution was calculated for single- and dual-tracer measurements using Logan's plot and arterial input function in 13 brain regions. The 'two-in-one-pot' reaction yielded equivalent amounts of both radiotracers with comparable molar activities. The simulations of the dual-tracer application were comparable to the single bolus injections in 13 brain regions, when [11C]harmine was applied first and [11C]DASB second, with an injection time interval of 45 min (rxy = 0.90). Our study shows the successful simultaneous dual-tracer production leading to decreased radiation burden and costs. The simulation of dual subject injection to quantify the monoamine oxidase-A and serotonin transporter distribution proved its high potential. Multi-tracer imaging may drive more sophisticated study designs and diminish the day-to-day differences in the same individual as well as increase PET scanner efficiency.
Collapse
Affiliation(s)
- Chrysoula Vraka
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Barbara Katharina Geist
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Zenz
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- CBmed GmbH, Center for Biomarker Research in Medicine, Graz, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Kranz GS, Spies M, Vraka C, Kaufmann U, Klebermass EM, Handschuh PA, Ozenil M, Murgaš M, Pichler V, Rischka L, Nics L, Konadu ME, Ibeschitz H, Traub-Weidinger T, Wadsak W, Hahn A, Hacker M, Lanzenberger R. High-dose testosterone treatment reduces monoamine oxidase A levels in the human brain: A preliminary report. Psychoneuroendocrinology 2021; 133:105381. [PMID: 34416504 DOI: 10.1016/j.psyneuen.2021.105381] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/22/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
The sex hormones testosterone and estradiol influence brain structure and function and are implicated in the pathogenesis, prevalence and disease course of major depression. Recent research employing gender-affirming hormone treatment (GHT) of gender dysphoric individuals and utilizing positron emission tomography (PET) indicates increased serotonin transporter binding upon high-dosages of testosterone treatment. Here, we investigated the effects of GHT on levels of monoamine oxidase A (MAO-A), another key target of antidepressant treatment. Participants underwent PET with the radioligand [11C]harmine to assess cerebral MAO-A distribution volumes (VT) before and four months after initiation of GHT. By the time this study was terminated for technical reasons, 18 transgender individuals undergoing GHT (11 transmen, TM and 7 transwomen, TW) and 17 cis-gender subjects had been assessed. Preliminary analysis of available data revealed statistically significant MAO-A VT reductions in TM under testosterone treatment in six of twelve a priori defined regions of interest (middle frontal cortex (-10%), anterior cingulate cortex (-9%), medial cingulate cortex (-10.5%), insula (-8%), amygdala (-9%) and hippocampus (-8.5%, all p<0.05)). MAO-A VT did not change in TW receiving estrogen treatment. Despite the limited sample size, pronounced MAO-A VT reduction could be observed, pointing towards a potential effect of testosterone. Considering MAO-A's central role in regulation of serotonergic neurotransmission, changes to MAO-A VT should be further investigated as a possible mechanism by which testosterone mediates risk for, symptomatology of, and treatment response in affective disorders.
Collapse
Affiliation(s)
- Georg S Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR , China; Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Ulrike Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Austria
| | - Eva-Maria Klebermass
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Austria
| | - Patricia A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marius Ozenil
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Verena Pichler
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria; Department of Pharmaceutical Chemistry, University of Vienna, Austria
| | - Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Melisande E Konadu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Harald Ibeschitz
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Tatjana Traub-Weidinger
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Andreas Hahn
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria.
| |
Collapse
|
7
|
Myelo- and cytoarchitectonic microstructural and functional human cortical atlases reconstructed in common MRI space. Neuroimage 2021; 239:118274. [PMID: 34146709 DOI: 10.1016/j.neuroimage.2021.118274] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/14/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022] Open
Abstract
The parcellation of the brain's cortical surface into anatomically and/or functionally distinct areas is a topic of ongoing investigation and interest. We provide digital versions of six classical human brain atlases in common MRI space. The cortical atlases represent a range of modalities, including cyto- and myeloarchitecture (Campbell, Smith, Brodmann and Von Economo), myelogenesis (Flechsig), and mappings of symptomatic information in relation to the spatial location of brain lesions (Kleist). Digital reconstructions of these important cortical atlases widen the range of modalities for which cortex-wide imaging atlases are currently available and offer the opportunity to compare and combine microstructural and lesion-based functional atlases with in-vivo imaging-based atlases.
Collapse
|
8
|
Gryglewski G, Murgaš M, Klöbl M, Reed MB, Unterholzner J, Michenthaler P, Lanzenberger R. Enrichment of Disease-Associated Genes in Cortical Areas Defined by Transcriptome-Based Parcellation. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 7:10-23. [PMID: 33711548 DOI: 10.1016/j.bpsc.2021.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Parcellation of the cerebral cortex serves the investigation of the emergence of uniquely human brain functions and disorders. Transcriptome data enable the characterization of the molecular properties of cortical areas in unprecedented detail. Previously, we predicted the expression of 18,686 genes in the entire human brain based on microarray data. Here, we employed these data to parcellate the cortex and study the regional enrichment of disease-associated genes. METHODS We performed agglomerative hierarchical clustering based on normalized transcriptome data to delineate areas with distinct gene expression profiles. Subsequently, we tested these profiles for the enrichment of gene sets associated with brain disorders by genome-wide association studies and expert-curated databases using gene set enrichment analysis. RESULTS Transcriptome-based parcellation identified borders in line with major anatomical landmarks and the functional differentiation of primary motor, somatosensory, visual, and auditory areas. Gene set enrichment analysis based on curated databases suggested new roles of specific areas in psychiatric and neurological disorders while reproducing well-established links for movement and neurodegenerative disorders, for example, amyotrophic lateral sclerosis (motor cortex) and Alzheimer's disease (entorhinal cortex). Meanwhile, gene sets derived from genome-wide association studies on psychiatric disorders exhibited similar enrichment patterns driven by pleiotropic genes expressed in the posterior fusiform gyrus and inferior parietal lobule. CONCLUSIONS The identified enrichment patterns suggest the vulnerability of specific cortical areas to various influences that might alter the risk of developing one or several brain disorders. For several diseases, specific genes were highlighted, which could lead to the discovery of novel disease mechanisms and urgently needed treatments.
Collapse
Affiliation(s)
- Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Manfred Klöbl
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Murray Bruce Reed
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Jakob Unterholzner
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Paul Michenthaler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Beliveau V, Ozenne B, Strother S, Greve DN, Svarer C, Knudsen GM, Ganz M. The structure of the serotonin system: A PET imaging study. Neuroimage 2019; 205:116240. [PMID: 31600591 DOI: 10.1016/j.neuroimage.2019.116240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022] Open
Abstract
The human brain atlas of the serotonin (5-HT) system does not conform with commonly used parcellations of neocortex, since the spatial distribution of homogeneous 5-HT receptors and transporter is not aligned with such brain regions. This discrepancy indicates that a neocortical parcellation specific to the 5-HT system is needed. We first outline issues with an existing parcellation of the 5-HT system, and present an alternative parcellation derived from brain MR- and high-resolution PET images of five different 5-HT targets from 210 healthy controls. We then explore how well this new 5-HT parcellation can explain mRNA levels of all 5-HT genes. The parcellation derived here represents a characterization of the 5-HT system which is more stable and explains the underlying 5-HT molecular imaging data better than other atlases, and may hence be more sensitive to capture region-specific changes modulated by 5-HT.
Collapse
Affiliation(s)
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen, Denmark; Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Strother
- Rotman Research Institute, Baycrest, and Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit, Copenhagen, Denmark; Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Langenecker SA, Mickey BJ, Eichhammer P, Sen S, Elverman KH, Kennedy SE, Heitzeg MM, Ribeiro SM, Love TM, Hsu DT, Koeppe RA, Watson SJ, Akil H, Goldman D, Burmeister M, Zubieta JK. Cognitive Control as a 5-HT 1A-Based Domain That Is Disrupted in Major Depressive Disorder. Front Psychol 2019; 10:691. [PMID: 30984083 PMCID: PMC6450211 DOI: 10.3389/fpsyg.2019.00691] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/12/2019] [Indexed: 12/21/2022] Open
Abstract
Heterogeneity within Major Depressive Disorder (MDD) has hampered identification of biological markers (e.g., intermediate phenotypes, IPs) that might increase risk for the disorder or reflect closer links to the genes underlying the disease process. The newer characterizations of dimensions of MDD within Research Domain Criteria (RDoC) domains may align well with the goal of defining IPs. We compare a sample of 25 individuals with MDD compared to 29 age and education matched controls in multimodal assessment. The multimodal RDoC assessment included the primary IP biomarker, positron emission tomography (PET) with a selective radiotracer for 5-HT1A [(11C)WAY-100635], as well as event-related functional MRI with a Go/No-go task targeting the Cognitive Control network, neuropsychological assessment of affective perception, negative memory bias and Cognitive Control domains. There was also an exploratory genetic analysis with the serotonin transporter (5-HTTLPR) and monamine oxidase A (MAO-A) genes. In regression analyses, lower 5-HT1A binding potential (BP) in the MDD group was related to diminished engagement of the Cognitive Control network, slowed resolution of interfering cognitive stimuli, one element of Cognitive Control. In contrast, higher/normative levels of 5-HT1A BP in MDD (only) was related to a substantial memory bias toward negative information, but intact resolution of interfering cognitive stimuli and greater engagement of Cognitive Control circuitry. The serotonin transporter risk allele was associated with lower 1a BP and the corresponding imaging and cognitive IPs in MDD. Lowered 5HT 1a BP was present in half of the MDD group relative to the control group. Lowered 5HT 1a BP may represent a subtype including decreased engagement of Cognitive Control network and impaired resolution of interfering cognitive stimuli. Future investigations might link lowered 1a BP to neurobiological pathways and markers, as well as probing subtype-specific treatment targets.
Collapse
Affiliation(s)
- Scott A. Langenecker
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Brian J. Mickey
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Peter Eichhammer
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Srijan Sen
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | | | - Susan E. Kennedy
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Mary M. Heitzeg
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Saulo M. Ribeiro
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Tiffany M. Love
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - David T. Hsu
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
| | - Robert A. Koeppe
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Stanley J. Watson
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Huda Akil
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - David Goldman
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Margit Burmeister
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Jon-Kar Zubieta
- The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|