1
|
Yu X, Meng W, Li Y, Luo X. A low-fouling electrochemical biosensor based on BSA hydrogel doped with carbon black for the detection of cortisol in human serum. Anal Chim Acta 2024; 1307:342645. [PMID: 38719410 DOI: 10.1016/j.aca.2024.342645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 05/30/2024]
Abstract
Electrochemical biosensors with high sensitivity can detect low concentrations of biomarkers, but their practical detection applications in complex biological environments such as human serum and sweat are severely limited by the biofouling. Herein, a conductive hydrogel based on bovine serum albumin (BSA) and conductive carbon black (CCB) was prepared for the construction of an antifouling biosensor. The BSA hydrogel (BSAG) was doped with CCB, and the prepared composite hydrogel exhibited good conductivity originated from the CCB and antifouling capability owing to the BSA hydrogel. An antifouling biosensor for the sensitive detection of cortisol was fabricated by drop-coating the conductive hydrogel onto a poly(3,4-ethylenedioxythiophene) (PEDOT) modified electrode and further immobilizing the cortisol aptamer. The constructed biosensor showed a linear range of 100 pg mL-1 - 10 μg mL-1 and a limit of detection of 26.0 pg mL-1 for the detection of cortisol, and it was capable of assaying cortisol accurately in complex human serum. This strategy of preparing antifouling and conductive hydrogels provides an effective way to develop robust electrochemical biosensors for biomarker detection in complex biological media.
Collapse
Affiliation(s)
- Xiaohang Yu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Weichen Meng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yang Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
2
|
Lee HR, Choi SH, Lee SH. Differential involvement of mitochondria in post-tetanic potentiation at intracortical excitatory synapses of the medial prefrontal cortex. Cereb Cortex 2024; 34:bhad476. [PMID: 38061690 DOI: 10.1093/cercor/bhad476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2022] [Accepted: 11/18/2023] [Indexed: 01/19/2024] Open
Abstract
Post-tetanic Ca2+ release from mitochondria produces presynaptic residual calcium, which contributes to post-tetanic potentiation. The loss of mitochondria-dependent post-tetanic potentiation is one of the earliest signs of Alzheimer's model mice. Post-tetanic potentiation at intracortical synapses of medial prefrontal cortex has been implicated in working memory. Although mitochondrial contribution to post-tetanic potentiation differs depending on synapse types, it is unknown which synapse types express mitochondria-dependent post-tetanic potentiation in the medial prefrontal cortex. We studied expression of mitochondria-dependent post-tetanic potentiation at different intracortical synapses of the rat medial prefrontal cortex. Post-tetanic potentiation occurred only at intracortical synapses onto layer 5 corticopontine cells from commissural cells and L2/3 pyramidal neurons. Among post-tetanic potentiation-expressing synapses, L2/3-corticopontine synapses in the prelimbic cortex were unique in that post-tetanic potentiation depends on mitochondria because post-tetanic potentiation at corresponding synapse types in other cortical areas was independent of mitochondria. Supporting mitochondria-dependent post-tetanic potentiation at L2/3-to-corticopontine synapses, mitochondria-dependent residual calcium at the axon terminals of L2/3 pyramidal neurons was significantly larger than that at commissural and corticopontine cells. Moreover, post-tetanic potentiation at L2/3-corticopontine synapses, but not at commissural-corticopontine synapses, was impaired in the young adult Alzheimer's model mice. These results would provide a knowledge base for comprehending synaptic mechanisms that underlies the initial clinical signs of neurodegenerative disorders.
Collapse
Affiliation(s)
- Hyoung-Ro Lee
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Hoon Choi
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Suk-Ho Lee
- Department of Physiology, College of Medicine, Seoul National University, Seoul 03080, Republic of Korea
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Piette C, Vandecasteele M, Bosch-Bouju C, Goubard V, Paillé V, Cui Y, Mendes A, Perez S, Valtcheva S, Xu H, Pouget P, Venance L. Intracellular Properties of Deep-Layer Pyramidal Neurons in Frontal Eye Field of Macaque Monkeys. Front Synaptic Neurosci 2021; 13:725880. [PMID: 34621162 PMCID: PMC8490863 DOI: 10.3389/fnsyn.2021.725880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
Although many details remain unknown, several positive statements can be made about the laminar distribution of primate frontal eye field (FEF) neurons with different physiological properties. Most certainly, pyramidal neurons in the deep layer of FEF that project to the brainstem carry movement and fixation signals but clear evidence also support that at least some deep-layer pyramidal neurons projecting to the superior colliculus carry visual responses. Thus, deep-layer neurons in FEF are functionally heterogeneous. Despite the useful functional distinctions between neuronal responses in vivo, the underlying existence of distinct cell types remain uncertain, mostly due to methodological limitations of extracellular recordings in awake behaving primates. To substantiate the functionally defined cell types encountered in the deep layer of FEF, we measured the biophysical properties of pyramidal neurons recorded intracellularly in brain slices issued from macaque monkey biopsies. Here, we found that biophysical properties recorded in vitro permit us to distinguish two main subtypes of regular-spiking neurons, with, respectively, low-resistance and low excitability vs. high-resistance and strong excitability. These results provide useful constraints for cognitive models of visual attention and saccade production by indicating that at least two distinct populations of deep-layer neurons exist.
Collapse
Affiliation(s)
- Charlotte Piette
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Marie Vandecasteele
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Clémentine Bosch-Bouju
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Valérie Goubard
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Vincent Paillé
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Yihui Cui
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Alexandre Mendes
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Sylvie Perez
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Silvana Valtcheva
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Hao Xu
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| | - Pierre Pouget
- INSERM, CNRS, Institut du Cerveau, Sorbonne Université, Paris, France
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL University, Paris, France
| |
Collapse
|
4
|
Yang CH, Lee KH, Ho WK, Lee SH. Inter-spike mitochondrial Ca 2+ release enhances high frequency synaptic transmission. J Physiol 2020; 599:1567-1594. [PMID: 33140422 DOI: 10.1113/jp280351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/27/2020] [Indexed: 01/03/2023] Open
Abstract
KEY POINTS Presynaptic mitochondria not only absorb but also release Ca2+ during high frequency stimulation (HFS) when presynaptic [Ca2+ ] is kept low (<500 nm) by high cytosolic Ca2+ buffer or strong plasma membrane calcium clearance mechanisms under physiological external [Ca2+ ]. Mitochondrial Ca2+ release (MCR) does not alter the global presynaptic Ca2+ transients. MCR during HFS enhances short-term facilitation and steady state excitatory postsynaptic currents by increasing vesicular release probability. The intra-train MCR may provide residual calcium at interspike intervals, and thus support high frequency neurotransmission at central glutamatergic synapses. ABSTRACT Emerging evidence indicates that mitochondrial Ca2+ buffering contributes to local regulation of synaptic transmission. It is unknown, however, whether mitochondrial Ca2+ release (MCR) occurs during high frequency synaptic transmission. Confirming the previous notion that 2 μm tetraphenylphosphonium (TPP+ ) is a specific inhibitor of the mitochondrial Na+ /Ca2+ exchanger (mNCX), we studied the role of MCR via mNCX in short-term plasticity during high frequency stimulation (HFS) at the calyx of Held synapse of the rat. TPP+ reduced short-term facilitation (STF) and steady state excitatory postsynaptic currents during HFS at mature calyx synapses under physiological extracellular [Ca2+ ] ([Ca2+ ]o = 1.2 mm), but not at immature calyx or at 2 mm [Ca2+ ]o . The inhibitory effects of TPP+ were stronger at synapses with morphologically complex calyces harbouring many swellings and at 32°C than at simple calyx synapses and at room temperature. These effects of TPP+ on STF were well correlated with those on the presynaptic mitochondrial [Ca2+ ] build-up during HFS. Mitochondrial [Ca2+ ] during HFS was increased by TPP+ at mature calyces under 1.2 mm [Ca2+ ]o , and further enhanced at 32°C, but not under 2 mm [Ca2+ ]o or at immature calyces. The close correlation of the effects of TPP+ on mitochondrial [Ca2+ ] with those on STF suggests that mNCX contributes to STF at the calyx of Held synapses. The intra-train MCR enhanced vesicular release probability without altering global presynaptic [Ca2+ ]. Our results suggest that MCR during HFS elevates local [Ca2+ ] near synaptic sites at interspike intervals to enhance STF and to support stable synaptic transmission under physiological [Ca2+ ]o .
Collapse
Affiliation(s)
- Che Ho Yang
- Department of Physiology, Cell Physiology Lab., Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Centre, Seoul, Republic of Korea
| | - Kyu-Hee Lee
- Department of Physiology, Cell Physiology Lab., Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Centre, Seoul, Republic of Korea
| | - Won-Kyung Ho
- Department of Physiology, Cell Physiology Lab., Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Centre, Seoul, Republic of Korea.,Department of Brain and Cognitive Science, Seoul National University, Seoul, Republic of Korea
| | - Suk-Ho Lee
- Department of Physiology, Cell Physiology Lab., Seoul National University College of Medicine and Neuroscience Research Institute, Seoul National University Medical Research Centre, Seoul, Republic of Korea.,Department of Brain and Cognitive Science, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Lee J, Choi JH, Rah JC. Frequency-dependent gating of feedforward inhibition in thalamofrontal synapses. Mol Brain 2020; 13:68. [PMID: 32375833 PMCID: PMC7201790 DOI: 10.1186/s13041-020-00608-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/22/2020] [Indexed: 11/10/2022] Open
Abstract
Thalamic recruitment of feedforward inhibition is known to enhance the fidelity of the receptive field by limiting the temporal window during which cortical neurons integrate excitatory inputs. Feedforward inhibition driven by the mediodorsal nucleus of the thalamus (MD) has been previously observed, but its physiological function and regulation remain unknown. Accumulating evidence suggests that elevated neuronal activity in the prefrontal cortex is required for the short-term storage of information. Furthermore, the elevated neuronal activity is supported by the reciprocal connectivity between the MD and the medial prefrontal cortex (mPFC). Therefore, detailed knowledge about the synaptic connections during high-frequency activity is critical for understanding the mechanism of short-term memory. In this study, we examined how feedforward inhibition of thalamofrontal connectivity is modulated by activity frequency. We observed greater short-term synaptic depression during disynaptic inhibition than in thalamic excitatory synapses during high-frequency activities. The strength of feedforward inhibition became weaker as the stimulation continued, which, in turn, enhanced the range of firing jitter in a frequency-dependent manner. We postulated that this phenomenon was primarily due to the increased failure rate of evoking action potentials in parvalbumin-expressing inhibitory neurons. These findings suggest that the MD-mPFC pathway is dynamically regulated by an excitatory-inhibitory balance in an activity-dependent manner. During low-frequency activities, excessive excitations are inhibited, and firing is restricted to a limited temporal range by the strong feedforward inhibition. However, during high-frequency activities, such as during short-term memory, the activity can be transferred in a broader temporal range due to the decreased feedforward inhibition.
Collapse
Affiliation(s)
- Jungmin Lee
- Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea
| | - Joon Ho Choi
- Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea
| | - Jong-Cheol Rah
- Korea Brain Research Institute, 61 Cheomdan-ro, Daegu, 41062, Republic of Korea. .,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu, 42988, Republic of Korea.
| |
Collapse
|