1
|
Amato E, Taroc EZM, Forni PE. Illuminating the terminal nerve: Uncovering the link between GnRH-1 neuron and olfactory development. J Comp Neurol 2024; 532:e25599. [PMID: 38488687 PMCID: PMC10958589 DOI: 10.1002/cne.25599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 02/19/2024] [Indexed: 03/18/2024]
Abstract
During embryonic development, the olfactory placode (OP) generates migratory neurons, including olfactory pioneer neurons, cells of the terminal nerve (TN), gonadotropin-releasing hormone-1 (GnRH-1) neurons, and other uncharacterized neurons. Pioneer neurons from the OP induce olfactory bulb (OB) morphogenesis. In mice, GnRH-1 neurons appear in the olfactory system around mid-gestation and migrate via the TN axons to different brain regions. The GnRH-1 neurons are crucial in controlling the hypothalamic-pituitary-gonadal axis. Kallmann syndrome is characterized by impaired olfactory system development, defective OBs, secretion of GnRH-1, and infertility. The precise mechanistic link between the olfactory system and GnRH-1 development remains unclear. Studies in humans and mice highlight the importance of the prokineticin-2/prokineticin-receptor-2 (Prokr2) signaling pathway in OB morphogenesis and GnRH-1 neuronal migration. Prokr2 loss-of-function mutations can cause Kallmann syndrome (KS), and hence the Prokr2 signaling pathway represents a unique model to decipher the olfactory/GnRH-1 connection. We discovered that Prokr2 is expressed in the TN neurons during the critical period of GnRH-1 neuron formation, migration, and induction of OB morphogenesis. Single-cell RNA sequencing identified that the TN is formed by neurons distinct from the olfactory neurons. The TN neurons express multiple genes associated with KS. Our study suggests that the aberrant development of pioneer/TN neurons might cause the KS spectrum.
Collapse
Affiliation(s)
- Enrico Amato
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ed Zandro M. Taroc
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Paolo E. Forni
- Department of Biological Sciences, The Center for Neuroscience Research, The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
2
|
Raghavan A, Ghosh S. Influence of Graphene-Based Nanocomposites in Neurogenesis and Neuritogenesis: A Brief Summary. ACS APPLIED BIO MATERIALS 2024; 7:711-726. [PMID: 38265040 DOI: 10.1021/acsabm.3c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Graphene is a prospective candidate for various biomedical applications, including drug transporters, bioimaging agents, and scaffolds for tissue engineering, thanks to its superior electrical conductivity and biocompatibility. The clinical issue of nerve regeneration and rehabilitation still has a major influence on people's lives. Nanomaterials based on graphene have been exploited extensively to promote nerve cell differentiation and proliferation. Their high electrical conductivity and mechanical robustness make them appropriate for nerve tissue engineering. Combining graphene with other substances, such as biopolymers, may transmit biochemical signals that support brain cell division, proliferation, and regeneration. The utilization of nanocomposites based on graphene in neurogenesis and neuritogenesis is the primary emphasis of this review. Here are some examples of the many synthetic strategies used. For neuritogenesis and neurogenesis, it has also been explored to combine electrical stimulation with graphene-based materials.
Collapse
Affiliation(s)
- Akshaya Raghavan
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Amato E, Taroc EZM, Forni PE. Illuminating the Terminal Nerve: Uncovering the Link between GnRH-1 and Olfactory Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555770. [PMID: 37693459 PMCID: PMC10491181 DOI: 10.1101/2023.08.31.555770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
During embryonic development, the olfactory placode (OP) generates migratory neurons, including olfactory pioneer neurons, cells of the terminal nerve (TN), Gonadotropin-releasing hormone-1 (GnRH-1) neurons, and other uncharacterized neurons. Pioneer neurons from the olfactory placode induce olfactory bulb morphogenesis. In mice, GnRH-1 neurons appear in the olfactory system around mid-gestation and migrate via the terminal nerve axons to different brain regions. The GnRH-1 neurons are crucial in controlling the hypothalamic-pituitary-gonadal (HPG) axis. Kallmann syndrome is characterized by impaired olfactory system development, defective olfactory bulbs, defective secretion of GnRH-1, and infertility. The precise mechanistic link between the olfactory system and GnRH-1 development remains unclear. Studies in humans and mice highlight the importance of the Prokineticin-2/Prokineticin-Receptor-2 (Prokr2) signaling pathway in olfactory bulb morphogenesis and GnRH-1 neuronal migration. Prokr2 loss-of-function mutations can cause Kallmann syndrome, and hence the Prokr2 signaling pathway represents a unique model to decipher the olfactory/GnRH-1 connection. We discovered that Prokr2 is expressed in the TN neurons during the critical period of GnRH-1 neuron formation, migration, and induction of olfactory bulb morphogenesis. Single-cell RNA sequencing identified that the TN is formed by neurons that are distinct from the olfactory neurons. The TN neurons express multiple genes associated with KS. Our study suggests that the aberrant development of pioneer/TN neurons might cause the KS spectrum. Key Points 1) Pioneer or terminal nerve neurons play a crucial role in initiating the development of the olfactory bulbs. We found that the Prokineticin Receptor-2 gene, associated with Kallmann syndrome, is expressed by the olfactory pioneer/terminal nerve neurons.2) We genetically traced, isolated, and conducted Single-cell RNA sequencing on terminal nerve neurons of rodents. This analysis revealed a significant enrichment of gene expression related to Kallmann syndrome.3) Our study indicates that the investigation of Pioneer/terminal nerve neurons should be a pivotal focal point for comprehending developmental defects affecting olfactory and GnRH-1 systems.
Collapse
|
4
|
Chen B, Li F, Jia B, So KF, Wei JA, Liu Y, Qu Y, Zhou L. Celsr3 Inactivation in the Brainstem Impairs Rubrospinal Tract Development and Mouse Behaviors in Motor Coordination and Mechanic-Induced Response. Mol Neurobiol 2022; 59:5179-5192. [PMID: 35678978 PMCID: PMC9363480 DOI: 10.1007/s12035-022-02910-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
Inactivation of Celsr3 in the forebrain results in defects of longitudinal axonal tracts such as the corticospinal tract. In this study, we inactivated Celsr3 in the brainstem using En1-Cre mice (Celsr3 cKO) and analyzed axonal and behavioral phenotypes. Celsr3 cKO animals showed an 83% reduction of rubrospinal axons and 30% decrease of corticospinal axons in spinal segments, associated with increased branching of dopaminergic fibers in the ventral horn. Decreases of spinal motoneurons, neuromuscular junctions, and electromyographic signal amplitude of the biceps were also found in mutant animals. Mutant mice had impaired motor coordination and defective response to heavy mechanical stimulation, but no disability in walking and food pellet handling. Transsynaptic tracing demonstrated that rubrospinal axons synapse on spinal neurons in the deep layer of the dorsal horn, and mechanical stimulation of hindpaws induced strong calcium signal of red nuclei in control mice, which was less prominent in mutant mice. In conclusion, Celsr3 regulates development of spinal descending axons and the motor network in cell and non-cell autonomous manners, and the maturation of the rubrospinal system is required for motor coordination and response to mechanical stimulation.
Collapse
Affiliation(s)
- Boli Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, People's Republic of China
| | - Fuxiang Li
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, People's Republic of China
| | - Bin Jia
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, People's Republic of China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, People's Republic of China
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, People's Republic of China
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical, Neuroscience Institute of Jinan University, Guangzhou, 510632, People's Republic of China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, People's Republic of China
- Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, People's Republic of China
| | - Ji-An Wei
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yuchu Liu
- School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Yibo Qu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, People's Republic of China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, People's Republic of China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Jinan University, Huangpu Avenue West 601, Guangzhou, 510632, People's Republic of China.
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, 266071, Shandong, People's Republic of China.
- Department of Neurology and Stroke Center, The First Affiliated Hospital & Clinical, Neuroscience Institute of Jinan University, Guangzhou, 510632, People's Republic of China.
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, People's Republic of China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Jiangsu, People's Republic of China.
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
5
|
Schembs L, Willems A, Hasenpusch-Theil K, Cooper JD, Whiting K, Burr K, Bøstrand SMK, Selvaraj BT, Chandran S, Theil T. The ciliary gene INPP5E confers dorsal telencephalic identity to human cortical organoids by negatively regulating Sonic hedgehog signaling. Cell Rep 2022; 39:110811. [PMID: 35584663 PMCID: PMC9620745 DOI: 10.1016/j.celrep.2022.110811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 02/07/2022] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
Defects in primary cilia, cellular antennas that control multiple intracellular signaling pathways, underlie several neurodevelopmental disorders, but it remains unknown how cilia control essential steps in human brain formation. Here, we show that cilia are present on the apical surface of radial glial cells in human fetal forebrain. Interfering with cilia signaling in human organoids by mutating the INPP5E gene leads to the formation of ventral telencephalic cell types instead of cortical progenitors and neurons. INPP5E mutant organoids also show increased Sonic hedgehog (SHH) signaling, and cyclopamine treatment partially rescues this ventralization. In addition, ciliary expression of SMO, GLI2, GPR161, and several intraflagellar transport (IFT) proteins is increased. Overall, these findings establish the importance of primary cilia for dorsal and ventral patterning in human corticogenesis, indicate a tissue-specific role of INPP5E as a negative regulator of SHH signaling, and have implications for the emerging roles of cilia in the pathogenesis of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Leah Schembs
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Ariane Willems
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Kerstin Hasenpusch-Theil
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - James D Cooper
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Katie Whiting
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Karen Burr
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Sunniva M K Bøstrand
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Bhuvaneish T Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh EH16 4SB, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Thomas Theil
- Centre for Discovery Brain Sciences, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK.
| |
Collapse
|
6
|
Stoner ZA, Ketchum EM, Sheltz-Kempf S, Blinkiewicz PV, Elliott KL, Duncan JS. Fzd3 Expression Within Inner Ear Afferent Neurons Is Necessary for Central Pathfinding. Front Neurosci 2022; 15:779871. [PMID: 35153658 PMCID: PMC8828977 DOI: 10.3389/fnins.2021.779871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
During development the afferent neurons of the inner ear make precise wiring decisions in the hindbrain reflective of their topographic distribution in the periphery. This is critical for the formation of sensory maps capable of faithfully processing both auditory and vestibular input. Disorganized central projections of inner ear afferents in Fzd3 null mice indicate Wnt/PCP signaling is involved in this process and ear transplantation in Xenopus indicates that Fzd3 is necessary in the ear but not the hindbrain for proper afferent navigation. However, it remains unclear in which cell type of the inner ear Fzd3 expression is influencing the guidance of inner ear afferents to their proper synaptic targets in the hindbrain. We utilized Atoh1-cre and Neurod1-cre mouse lines to conditionally knockout Fzd3 within the mechanosensory hair cells of the organ of Corti and within the inner ear afferents, respectively. Following conditional deletion of Fzd3 within the hair cells, the central topographic distribution of inner ear afferents was maintained with no gross morphological defects. In contrast, conditional deletion of Fzd3 within inner ear afferents leads to central pathfinding defects of both cochlear and vestibular afferents. Here, we show that Fzd3 is acting in a cell autonomous manner within inner ear afferents to regulate central pathfinding within the hindbrain.
Collapse
Affiliation(s)
- Zachary A. Stoner
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Elizabeth M. Ketchum
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Sydney Sheltz-Kempf
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Paige V. Blinkiewicz
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
| | - Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA, United States
- *Correspondence: Karen L. Elliott,
| | - Jeremy S. Duncan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, United States
- Department of Biomedical Sciences, Western Michigan University Homer Stryker MD School of Medicine, Kalamazoo, MI, United States
- Jeremy S. Duncan,
| |
Collapse
|
7
|
Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat Neurosci 2021; 24:584-594. [PMID: 33723434 PMCID: PMC8012207 DOI: 10.1038/s41593-020-00794-1] [Citation(s) in RCA: 230] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023]
Abstract
The human cortex comprises diverse cell types that emerge from an initially uniform neuroepithelium that gives rise to radial glia, the neural stem cells of the cortex. To characterize the earliest stages of human brain development, we performed single-cell RNA-sequencing across regions of the developing human brain, including the telencephalon, diencephalon, midbrain, hindbrain and cerebellum. We identify nine progenitor populations physically proximal to the telencephalon, suggesting more heterogeneity than previously described, including a highly prevalent mesenchymal-like population that disappears once neurogenesis begins. Comparison of human and mouse progenitor populations at corresponding stages identifies two progenitor clusters that are enriched in the early stages of human cortical development. We also find that organoid systems display low fidelity to neuroepithelial and early radial glia cell types, but improve as neurogenesis progresses. Overall, we provide a comprehensive molecular and spatial atlas of early stages of human brain and cortical development.
Collapse
Affiliation(s)
- Ugomma C Eze
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Aparna Bhaduri
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| | | | - Tomasz J Nowakowski
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA
- Department of Anatomy, University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Arnold R Kriegstein
- Department of Neurology, University of California, San Francisco (UCSF), San Francisco, CA, USA.
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco (UCSF), San Francisco, CA, USA.
| |
Collapse
|