1
|
Larsdotter-Mellström H, Eriksson K, Liblikas I I, Wiklund C, Borg-Karlson AK, Nylin S, Janz N, Carlsson MA. It's All in the Mix: Blend-Specific Behavioral Response to a Sexual Pheromone in a Butterfly. Front Physiol 2016; 7:68. [PMID: 26973536 PMCID: PMC4770038 DOI: 10.3389/fphys.2016.00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/12/2016] [Indexed: 11/29/2022] Open
Abstract
Among insects, sexual pheromones are typically mixtures of two to several components, all of which are generally required to elicit a behavioral response. Here we show for the first time that a complete blend of sexual pheromone components is needed to elicit a response also in a butterfly. Males of the Green-veined White, Pieris napi, emit an aphrodisiac pheromone, citral, from wing glands. This pheromone is requisite for females to accept mating with a courting male. Citral is a mixture of the two geometric isomers geranial (E-isomer) and neral (Z-isomer) in an approximate 1:1 ratio. We found that both these compounds are required to elicit acceptance behavior, which indicates synergistic interaction between processing of the isomers. Using functional Ca2+ imaging we found that geranial and neral evoke significantly different but overlapping glomerular activity patterns in the antennal lobe, which suggests receptors with different affinity for the two isomers. However, these glomeruli were intermingled with glomeruli responding to, for example, plant-related compounds, i.e., no distinct subpopulation of pheromone-responding glomeruli as in moths and other insects. In addition, these glomeruli showed lower specificity than pheromone-activated glomeruli in moths. We could, however, not detect any mixture interactions among four identified glomeruli, indicating that the synergistic effect may be generated at a higher processing level. Furthermore, correlations between glomerular activity patterns evoked by the single isomers and the blend did not change over time.
Collapse
Affiliation(s)
- Helena Larsdotter-Mellström
- Department of Zoology, Stockholm UniversityStockholm, Sweden; Centre for Evolutionary Biology, The University of Western AustraliaCrawley, WA, Australia
| | | | - Ilme Liblikas I
- Department of Organic Chemistry, Institute of Technology, University of Tartu Tartu, Estonia
| | | | - Anna K Borg-Karlson
- Department of Organic Chemistry, Institute of Technology, University of TartuTartu, Estonia; Department of Chemistry, KTH Royal Institute of TechnologyStockholm, Sweden
| | - Sören Nylin
- Department of Zoology, Stockholm University Stockholm, Sweden
| | - Niklas Janz
- Department of Zoology, Stockholm University Stockholm, Sweden
| | | |
Collapse
|
2
|
Perez M, Giurfa M, d'Ettorre P. The scent of mixtures: rules of odour processing in ants. Sci Rep 2015; 5:8659. [PMID: 25726692 PMCID: PMC4345350 DOI: 10.1038/srep08659] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/29/2015] [Indexed: 11/08/2022] Open
Abstract
Natural odours are complex blends of numerous components. Understanding how animals perceive odour mixtures is central to multiple disciplines. Here we focused on carpenter ants, which rely on odours in various behavioural contexts. We studied overshadowing, a phenomenon that occurs when animals having learnt a binary mixture respond less to one component than to the other, and less than when this component was learnt alone. Ants were trained individually with alcohols and aldehydes varying in carbon-chain length, either as single odours or binary mixtures. They were then tested with the mixture and the components. Overshadowing resulted from the interaction between chain length and functional group: alcohols overshadowed aldehydes, and longer chain lengths overshadowed shorter ones; yet, combinations of these factors could cancel each other and suppress overshadowing. Our results show how ants treat binary olfactory mixtures and set the basis for predictive analyses of odour perception in insects.
Collapse
Affiliation(s)
- Margot Perez
- Research Center on Animal Cognition; University of Toulouse; UPS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- Research Center on Animal Cognition; CNRS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- Laboratory of Experimental and Comparative Ethology, University Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| | - Martin Giurfa
- Research Center on Animal Cognition; University of Toulouse; UPS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
- Research Center on Animal Cognition; CNRS; 118 route de Narbonne, F-31062 Toulouse Cedex 9, France
| | - Patrizia d'Ettorre
- Laboratory of Experimental and Comparative Ethology, University Paris 13, Sorbonne Paris Cité, Villetaneuse, France
| |
Collapse
|
3
|
Thoma M, Hansson BS, Knaden M. Compound valence is conserved in binary odor mixtures in Drosophila melanogaster. ACTA ACUST UNITED AC 2014; 217:3645-55. [PMID: 25189369 DOI: 10.1242/jeb.106591] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Most naturally occurring olfactory signals do not consist of monomolecular odorants but, rather, are mixtures whose composition and concentration ratios vary. While there is ample evidence for the relevance of complex odor blends in ecological interactions and for interactions of chemicals in both peripheral and central neuronal processing, a fine-scale analysis of rules governing the innate behavioral responses of Drosophila melanogaster towards odor mixtures is lacking. In this study we examine whether the innate valence of odors is conserved in binary odor mixtures. We show that binary mixtures of attractants are more attractive than individual mixture constituents. In contrast, mixing attractants with repellents elicits responses that are lower than the responses towards the corresponding attractants. This decrease in attraction is repellent-specific, independent of the identity of the attractant and more stereotyped across individuals than responses towards the repellent alone. Mixtures of repellents are either less attractive than the individual mixture constituents or these mixtures represent an intermediate. Within the limits of our data set, most mixture responses are quantitatively predictable on the basis of constituent responses. In summary, the valence of binary odor mixtures is predictable on the basis of valences of mixture constituents. Our findings will further our understanding of innate behavior towards ecologically relevant odor blends and will serve as a powerful tool for deciphering the olfactory valence code.
Collapse
Affiliation(s)
- Michael Thoma
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Bill S Hansson
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Markus Knaden
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| |
Collapse
|
4
|
Responses to Pheromones in a Complex Odor World: Sensory Processing and Behavior. INSECTS 2014; 5:399-422. [PMID: 26462691 PMCID: PMC4592597 DOI: 10.3390/insects5020399] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 11/21/2022]
Abstract
Insects communicating with pheromones, be it sex- or aggregation pheromones, are confronted with an olfactory environment rich in a diversity of volatile organic compounds of which plants are the main releaser. Certain of these volatiles can represent behaviorally relevant information, such as indications about host- or non-host plants; others will provide essentially a rich odor background out of which the behaviorally relevant information needs to be extracted. In an attempt to disentangle mechanisms of pheromone communication in a rich olfactory environment, which might underlie interactions between intraspecific signals and a background, we will summarize recent literature on pheromone/plant volatile interactions. Starting from molecular mechanisms, describing the peripheral detection and central nervous integration of pheromone-plant volatile mixtures, we will end with behavioral output in response to such mixtures and its plasticity.
Collapse
|
5
|
Schubert M, Hansson BS, Sachse S. The banana code-natural blend processing in the olfactory circuitry of Drosophila melanogaster. Front Physiol 2014; 5:59. [PMID: 24600405 PMCID: PMC3929855 DOI: 10.3389/fphys.2014.00059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/30/2014] [Indexed: 11/13/2022] Open
Abstract
Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly's olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I). In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca(2+) signals in input and output neurons of the Drosophila antennal lobe (AL), the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions.
Collapse
Affiliation(s)
- Marco Schubert
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Bill S Hansson
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| | - Silke Sachse
- Department of Evolutionary Neuroethology, Max Planck Institute for Chemical Ecology Jena, Germany
| |
Collapse
|
6
|
Synchronous firing of antennal-lobe projection neurons encodes the behaviorally effective ratio of sex-pheromone components in male Manduca sexta. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:963-79. [PMID: 24002682 DOI: 10.1007/s00359-013-0849-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 10/26/2022]
Abstract
Olfactory stimuli that are essential to an animal's survival and reproduction are often complex mixtures of volatile organic compounds in characteristic proportions. Here, we investigated how these proportions are encoded in the primary olfactory processing center, the antennal lobe, of male Manduca sexta moths. Two key components of the female's sex pheromone, present in an approximately 2:1 ratio, are processed in each of two neighboring glomeruli in the macroglomerular complex (MGC) of males of this species. In wind-tunnel flight experiments, males exhibited behavioral selectivity for ratios approximating the ratio released by conspecific females. The ratio between components was poorly represented, however, in the firing-rate output of uniglomerular MGC projection neurons (PNs). PN firing rate was mostly insensitive to the ratio between components, and individual PNs did not exhibit a preference for a particular ratio. Recording simultaneously from pairs of PNs in the same glomerulus, we found that the natural ratio between components elicited the most synchronous spikes, and altering the proportion of either component decreased the proportion of synchronous spikes. The degree of synchronous firing between PNs in the same glomerulus thus selectively encodes the natural ratio that most effectively evokes the natural behavioral response to pheromone.
Collapse
|
7
|
Auffarth B. Understanding smell—The olfactory stimulus problem. Neurosci Biobehav Rev 2013; 37:1667-79. [DOI: 10.1016/j.neubiorev.2013.06.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 05/09/2013] [Accepted: 06/13/2013] [Indexed: 01/30/2023]
|
8
|
Lei H, Chiu HY, Hildebrand JG. Responses of protocerebral neurons in Manduca sexta to sex-pheromone mixtures. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:997-1014. [PMID: 23974854 DOI: 10.1007/s00359-013-0844-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 06/28/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022]
Abstract
Male Manduca sexta moths are attracted to a mixture of two components of the female's sex pheromone at the natural concentration ratio. Deviation from this ratio results in reduced attraction. Projection neurons innervating prominent male-specific glomeruli in the male's antennal lobe produce maximal synchronized spiking activity in response to synthetic mixtures of the two components centering around the natural ratio, suggesting that behaviorally effective mixture ratios are encoded by synchronous neuronal activity. We investigated the physiological activity and morphology of downstream protocerebral neurons that responded to antennal stimulation with single pheromone components and their mixtures at various concentration ratios. Among the tested neurons, only a few gave stronger responses to the mixture at the natural ratio whereas most did not distinguish among the mixtures that were tested. We also found that the population response distinguished among the two pheromone components and their mixtures, prior to the peak population response. This observation is consistent with our previous finding that synchronous firing of antennal-lobe projection neurons reaches its maximum before the firing rate reaches its peak. Moreover, the response patterns of protocerebral neurons are diverse, suggesting that the representation of olfactory stimuli at the level of protocerebrum is complex.
Collapse
Affiliation(s)
- Hong Lei
- Department of Neuroscience, University of Arizona, Tucson, AZ, 85721, USA,
| | | | | |
Collapse
|
9
|
Peripheral coding of sex pheromone blends with reverse ratios in two helicoverpa species. PLoS One 2013; 8:e70078. [PMID: 23894593 PMCID: PMC3720945 DOI: 10.1371/journal.pone.0070078] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
The relative proportions of components in a pheromone blend play a major role in sexual recognition in moths. Two sympatric species, Helicoverpa armigera and Helicoverpa assulta, use (Z)-11-hexadecenal (Z11-16: Ald) and (Z)-9-hexadecenal (Z9-16: Ald) as essential sex pheromone components but in very different ratios, 97∶3 and 7∶93 respectively. Using wind tunnel tests, single sensillum recording and in vivo calcium imaging, we comparatively studied behavioral responses and physiological activities at the level of antennal sensilla and antennal lobe (AL) in males of the two species to blends of the two pheromone components in different ratios (100∶0, 97∶3, 50∶50, 7∶93, 0∶100). Z11-16: Ald and Z9-16: Ald were recognized by two populations of olfactory sensory neurons (OSNs) in different trichoid sensilla on antennae of both species. The ratios of OSNs responding to Z11-16:Ald and Z9-16:Ald OSNs were 100∶28.9 and 21.9∶100 in H. armigera and H. assulta, respectively. The Z11-16:Ald OSNs in H. armigera exhibited higher sensitivity and efficacy than those in H. assulta, while the Z9-16:Ald OSNs in H. armigera had the same sensitivity but lower efficacy than those in H. assulta. At the dosage of 10 µg, Z11-16: Ald and Z9-16: Ald evoked calcium activity in 8.5% and 3.0% of the AL surface in H. armigera, while 5.4% and 8.6% of AL in H. assulta, respectively. The calcium activities in the AL reflected the peripheral input signals of the binary pheromone mixtures and correlated with the behavioral output. These results demonstrate that the binary pheromone blends were precisely coded by the firing frequency of individual OSNs tuned to Z11-16: Ald or Z9-16: Ald, as well as their population sizes. Such information was then accurately reported to ALs of H. armigera and H. assulta, eventually producing different behaviors.
Collapse
|
10
|
Allmann S, Späthe A, Bisch-Knaden S, Kallenbach M, Reinecke A, Sachse S, Baldwin IT, Hansson BS. Feeding-induced rearrangement of green leaf volatiles reduces moth oviposition. eLife 2013; 2:e00421. [PMID: 23682312 PMCID: PMC3654435 DOI: 10.7554/elife.00421] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 04/12/2013] [Indexed: 11/18/2022] Open
Abstract
The ability to decrypt volatile plant signals is essential if herbivorous insects are to optimize their choice of host plants for their offspring. Green leaf volatiles (GLVs) constitute a widespread group of defensive plant volatiles that convey a herbivory-specific message via their isomeric composition: feeding of the tobacco hornworm Manduca sexta converts (Z)-3- to (E)-2-GLVs thereby attracting predatory insects. Here we show that this isomer-coded message is monitored by ovipositing M. sexta females. We detected the isomeric shift in the host plant Datura wrightii and performed functional imaging in the primary olfactory center of M. sexta females with GLV structural isomers. We identified two isomer-specific regions responding to either (Z)-3- or (E)-2-hexenyl acetate. Field experiments demonstrated that ovipositing Manduca moths preferred (Z)-3-perfumed D. wrightii over (E)-2-perfumed plants. These results show that (E)-2-GLVs and/or specific (Z)-3/(E)-2-ratios provide information regarding host plant attack by conspecifics that ovipositing hawkmoths use for host plant selection. DOI:http://dx.doi.org/10.7554/eLife.00421.001 Plants have developed a variety of strategies to defend themselves against herbivorous animals, particularly insects. In addition to mechanical defences such as thorns and spines, plants also produce compounds known as secondary metabolites that keep insects and other herbivores at bay by acting as repellents or toxins. Some of these metabolites are produced on a continuous basis by plants, whereas others—notably compounds called green-leaf volatiles—are only produced once the plant has been attacked. Green-leaf volatiles—which are also responsible for the smell of freshly cut grass—have been observed to provide plants with both direct protection, by inhibiting or repelling herbivores, and indirect protection, by attracting predators of the herbivores themselves. The hawkmoth Manduca sexta lays its eggs on various plants, including tobacco plants and sacred Datura plants. Once the eggs have hatched into caterpillars, they start eating the leaves of their host plant, and if present in large numbers, these caterpillars can quickly defoliate and destroy it. In an effort to defend itself, the host plant releases green-leaf volatiles to attract various species of Geocoris, and these bugs eat the eggs. One of the green-leaf volatiles released by tobacco plants is known as (Z)-3-hexenal, but enzymes released by M. sexta caterpillars change some of these molecules into (E)-2-hexenal, which has the same chemical formula but a different structure. The resulting changes in the ‘volatile profile’ alerts Geocoris bugs to the presence of M. sexta eggs and caterpillars on the plant. Now Allmann et al. show that adult female M. sexta moths can also detect similar changes in the volatile profile emitted by sacred Datura plants that have been damaged by M. sexta caterpillars. This alerts the moths to the fact that Geocoris bugs are likely to be attacking eggs and caterpillars on the plant, or on their way to the plant, so they lay their eggs on other plants. This reduces competition for resources and also reduces the risk of newly laid eggs being eaten by predators. Allmann et al. also identified the neural mechanism that allows moths to detect changes in the volatile profile of plants—the E- and Z- odours lead to different activation patterns in the moth brain. DOI:http://dx.doi.org/10.7554/eLife.00421.002
Collapse
Affiliation(s)
- Silke Allmann
- Department of Molecular Ecology , Max Planck Institute for Chemical Ecology , Jena , Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Animals typically perceive their olfactory environment as a complex blend of natural odor cues. In insects, the initial processing of odors occurs in the antennal lobe (AL). Afferent peripheral input from olfactory sensory neurons (OSNs) is modified via mostly inhibitory local interneurons (LNs) and transferred by projection neurons (PNs) to higher brain centers. Here we performed optophysiological studies in the AL of the moth, Manduca sexta, and recorded odor-evoked calcium changes in response to antennal stimulation with five monomolecular host volatiles and their artificial mixture. In a double staining approach, we simultaneously measured OSN network input in concert with PN output across the glomerular array. By comparing odor-evoked activity patterns and response intensities between the two processing levels, we show that host mixtures could generally be predicted from the linear summation of their components at the input of the AL, but output neurons established a unique, nonlinear spatial pattern separate from individual component identities. We then assessed whether particularly high levels of signal modulation correspond to behavioral relevance. One of our mixture components, phenyl acetaldehyde, evoked significant levels of nonlinear input-output modulation in observed spatiotemporal activation patterns that were unique from the other individual odorants tested. This compound also accelerated behavioral activity in subsequent wind tunnel tests, whereas another compound that did not exhibit high levels of modulation also did not affect behavior. These results suggest that the high degree of input-output modulation exhibited by the AL for specific odors can correlate to behavioral output.
Collapse
|
12
|
Capurro A, Baroni F, Olsson SB, Kuebler LS, Karout S, Hansson BS, Pearce TC. Non-linear blend coding in the moth antennal lobe emerges from random glomerular networks. FRONTIERS IN NEUROENGINEERING 2012; 5:6. [PMID: 22529799 PMCID: PMC3329896 DOI: 10.3389/fneng.2012.00006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 03/14/2012] [Indexed: 01/01/2023]
Abstract
Neural responses to odor blends often exhibit non-linear interactions to blend components. The first olfactory processing center in insects, the antennal lobe (AL), exhibits a complex network connectivity. We attempt to determine if non-linear blend interactions can arise purely as a function of the AL network connectivity itself, without necessitating additional factors such as competitive ligand binding at the periphery or intrinsic cellular properties. To assess this, we compared blend interactions among responses from single neurons recorded intracellularly in the AL of the moth Manduca sexta with those generated using a population-based computational model constructed from the morphologically based connectivity pattern of projection neurons (PNs) and local interneurons (LNs) with randomized connection probabilities from which we excluded detailed intrinsic neuronal properties. The model accurately predicted most of the proportions of blend interaction types observed in the physiological data. Our simulations also indicate that input from LNs is important in establishing both the type of blend interaction and the nature of the neuronal response (excitation or inhibition) exhibited by AL neurons. For LNs, the only input that significantly impacted the blend interaction type was received from other LNs, while for PNs the input from olfactory sensory neurons and other PNs contributed agonistically with the LN input to shape the AL output. Our results demonstrate that non-linear blend interactions can be a natural consequence of AL connectivity, and highlight the importance of lateral inhibition as a key feature of blend coding to be addressed in future experimental and computational studies.
Collapse
Affiliation(s)
- Alberto Capurro
- Department of Engineering, Centre for Bioengineering, University of Leicester Leicester, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Deisig N, Kropf J, Vitecek S, Pevergne D, Rouyar A, Sandoz JC, Lucas P, Gadenne C, Anton S, Barrozo R. Differential interactions of sex pheromone and plant odour in the olfactory pathway of a male moth. PLoS One 2012; 7:e33159. [PMID: 22427979 PMCID: PMC3299628 DOI: 10.1371/journal.pone.0033159] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 02/05/2012] [Indexed: 11/18/2022] Open
Abstract
Most animals rely on olfaction to find sexual partners, food or a habitat. The olfactory system faces the challenge of extracting meaningful information from a noisy odorous environment. In most moth species, males respond to sex pheromone emitted by females in an environment with abundant plant volatiles. Plant odours could either facilitate the localization of females (females calling on host plants), mask the female pheromone or they could be neutral without any effect on the pheromone. Here we studied how mixtures of a behaviourally-attractive floral odour, heptanal, and the sex pheromone are encoded at different levels of the olfactory pathway in males of the noctuid moth Agrotis ipsilon. In addition, we asked how interactions between the two odorants change as a function of the males' mating status. We investigated mixture detection in both the pheromone-specific and in the general odorant pathway. We used a) recordings from individual sensilla to study responses of olfactory receptor neurons, b) in vivo calcium imaging with a bath-applied dye to characterize the global input response in the primary olfactory centre, the antennal lobe and c) intracellular recordings of antennal lobe output neurons, projection neurons, in virgin and newly-mated males. Our results show that heptanal reduces pheromone sensitivity at the peripheral and central olfactory level independently of the mating status. Contrarily, heptanal-responding olfactory receptor neurons are not influenced by pheromone in a mixture, although some post-mating modulation occurs at the input of the sexually isomorphic ordinary glomeruli, where general odours are processed within the antennal lobe. The results are discussed in the context of mate localization.
Collapse
Affiliation(s)
- Nina Deisig
- UMR 1272 Physiologie de l'Insecte: Signalisation et Communication, INRA, Route de Saint-Cyr, Versailles, France, Université Pierre et Marie Curie, 7 Quai Saint Bernard, Paris, France
| | - Jan Kropf
- UMR 1272 Physiologie de l'Insecte: Signalisation et Communication, INRA, Route de Saint-Cyr, Versailles, France, Université Pierre et Marie Curie, 7 Quai Saint Bernard, Paris, France
| | - Simon Vitecek
- UMR 1272 Physiologie de l'Insecte: Signalisation et Communication, INRA, Route de Saint-Cyr, Versailles, France, Université Pierre et Marie Curie, 7 Quai Saint Bernard, Paris, France
| | - Delphine Pevergne
- UMR 1272 Physiologie de l'Insecte: Signalisation et Communication, INRA, Route de Saint-Cyr, Versailles, France, Université Pierre et Marie Curie, 7 Quai Saint Bernard, Paris, France
| | - Angela Rouyar
- UMR 1272 Physiologie de l'Insecte: Signalisation et Communication, INRA, Route de Saint-Cyr, Versailles, France, Université Pierre et Marie Curie, 7 Quai Saint Bernard, Paris, France
| | - Jean-Christophe Sandoz
- CNRS, UMR 5169, Université Paul Sabatier, Research Center for Animal Cognition, Toulouse, France
| | - Philippe Lucas
- UMR 1272 Physiologie de l'Insecte: Signalisation et Communication, INRA, Route de Saint-Cyr, Versailles, France, Université Pierre et Marie Curie, 7 Quai Saint Bernard, Paris, France
| | - Christophe Gadenne
- UMR 1272 Physiologie de l'Insecte: Signalisation et Communication, INRA, Route de Saint-Cyr, Versailles, France, Université Pierre et Marie Curie, 7 Quai Saint Bernard, Paris, France
| | - Sylvia Anton
- UMR 1272 Physiologie de l'Insecte: Signalisation et Communication, INRA, Route de Saint-Cyr, Versailles, France, Université Pierre et Marie Curie, 7 Quai Saint Bernard, Paris, France
- * E-mail:
| | - Romina Barrozo
- UMR 1272 Physiologie de l'Insecte: Signalisation et Communication, INRA, Route de Saint-Cyr, Versailles, France, Université Pierre et Marie Curie, 7 Quai Saint Bernard, Paris, France
| |
Collapse
|
14
|
Schmuker M, Yamagata N, Nawrot MP, Menzel R. Parallel representation of stimulus identity and intensity in a dual pathway model inspired by the olfactory system of the honeybee. FRONTIERS IN NEUROENGINEERING 2011; 4:17. [PMID: 22232601 PMCID: PMC3246696 DOI: 10.3389/fneng.2011.00017] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/01/2011] [Indexed: 11/13/2022]
Abstract
The honeybee Apis mellifera has a remarkable ability to detect and locate food sources during foraging, and to associate odor cues with food rewards. In the honeybee's olfactory system, sensory input is first processed in the antennal lobe (AL) network. Uniglomerular projection neurons (PNs) convey the sensory code from the AL to higher brain regions via two parallel but anatomically distinct pathways, the lateral and the medial antenno-cerebral tract (l- and m-ACT). Neurons innervating either tract show characteristic differences in odor selectivity, concentration dependence, and representation of mixtures. It is still unknown how this differential stimulus representation is achieved within the AL network. In this contribution, we use a computational network model to demonstrate that the experimentally observed features of odor coding in PNs can be reproduced by varying lateral inhibition and gain control in an otherwise unchanged AL network. We show that odor coding in the l-ACT supports detection and accurate identification of weak odor traces at the expense of concentration sensitivity, while odor coding in the m-ACT provides the basis for the computation and following of concentration gradients but provides weaker discrimination power. Both coding strategies are mutually exclusive, which creates a tradeoff between detection accuracy and sensitivity. The development of two parallel systems may thus reflect an evolutionary solution to this problem that enables honeybees to achieve both tasks during bee foraging in their natural environment, and which could inspire the development of artificial chemosensory devices for odor-guided navigation in robots.
Collapse
Affiliation(s)
- Michael Schmuker
- Neuroinformatics and Theoretical Neuroscience, Institute of Biology, Freie Universität Berlin Berlin, Germany
| | | | | | | |
Collapse
|
15
|
Fletcher ML. Analytical processing of binary mixture information by olfactory bulb glomeruli. PLoS One 2011; 6:e29360. [PMID: 22206012 PMCID: PMC3243692 DOI: 10.1371/journal.pone.0029360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/27/2011] [Indexed: 11/18/2022] Open
Abstract
Odors are rarely composed of a single compound, but rather contain a large and complex variety of chemical components. Often, these mixtures are perceived as having unique qualities that can be quite different than the combination of their components. In many cases, a majority of the components of a mixture cannot be individually identified. This synthetic processing of odor information suggests that individual component representations of the mixture must interact somewhere along the olfactory pathway. The anatomical nature of sensory neuron input into segregated glomeruli with the bulb suggests that initial input of odor information into the bulb is analytic. However, a large network of interneurons within the olfactory bulb could allow for mixture interactions via mechanisms such as lateral inhibition. Currently in mammals, it is unclear if postsynaptic mitral/tufted cell glomerular mixture responses reflect the analytical mixture input, or provide the initial basis for synthetic processing with the olfactory system. To address this, olfactory bulb glomerular binary mixture representations were compared to representations of each component using transgenic mice expressing the calcium indicator G-CaMP2 in olfactory bulb mitral/tufted cells. Overall, dorsal surface mixture representations showed little mixture interaction and often appeared as a simple combination of the component representations. Based on this, it is concluded that dorsal surface glomerular mixture representations remain largely analytical with nearly all component information preserved.
Collapse
Affiliation(s)
- Max L Fletcher
- Department of Neurobiology and Anatomy, University of Texas Medical School, Houston, Texas, United States of America.
| |
Collapse
|
16
|
Carlsson MA, Bisch-Knaden S, Schäpers A, Mozuraitis R, Hansson BS, Janz N. Odour maps in the brain of butterflies with divergent host-plant preferences. PLoS One 2011; 6:e24025. [PMID: 21901154 PMCID: PMC3162027 DOI: 10.1371/journal.pone.0024025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
Butterflies are believed to use mainly visual cues when searching for food and oviposition sites despite that their olfactory system is morphologically similar to their nocturnal relatives, the moths. The olfactory ability in butterflies has, however, not been thoroughly investigated. Therefore, we performed the first study of odour representation in the primary olfactory centre, the antennal lobes, of butterflies. Host plant range is highly variable within the butterfly family Nymphalidae, with extreme specialists and wide generalists found even among closely related species. Here we measured odour evoked Ca2+ activity in the antennal lobes of two nymphalid species with diverging host plant preferences, the specialist Aglais urticae and the generalist Polygonia c-album. The butterflies responded with stimulus-specific combinations of activated glomeruli to single plant-related compounds and to extracts of host and non-host plants. In general, responses were similar between the species. However, the specialist A. urticae responded more specifically to its preferred host plant, stinging nettle, than P. c-album. In addition, we found a species-specific difference both in correlation between responses to two common green leaf volatiles and the sensitivity to these compounds. Our results indicate that these butterflies have the ability to detect and to discriminate between different plant-related odorants.
Collapse
|
17
|
Kuebler LS, Olsson SB, Weniger R, Hansson BS. Neuronal processing of complex mixtures establishes a unique odor representation in the moth antennal lobe. Front Neural Circuits 2011; 5:7. [PMID: 21772814 PMCID: PMC3128929 DOI: 10.3389/fncir.2011.00007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 04/27/2011] [Indexed: 12/03/2022] Open
Abstract
Animals typically perceive natural odor cues in their olfactory environment as a complex mixture of chemically diverse components. In insects, the initial representation of an odor mixture occurs in the first olfactory center of the brain, the antennal lobe (AL). The contribution of single neurons to the processing of complex mixtures in insects, and in particular moths, is still largely unknown. Using a novel multicomponent stimulus system to equilibrate component and mixture concentrations according to vapor pressure, we performed intracellular recordings of projection and interneurons in an attempt to quantitatively characterize mixture representation and integration properties of single AL neurons in the moth. We found that the fine spatiotemporal representation of 2–7 component mixtures among single neurons in the AL revealed a highly combinatorial, non-linear process for coding host mixtures presumably shaped by the AL network: 82% of mixture responding projection neurons and local interneurons showed non-linear spike frequencies in response to a defined host odor mixture, exhibiting an array of interactions including suppression, hypoadditivity, and synergism. Our results indicate that odor mixtures are represented by each cell as a unique combinatorial representation, and there is no general rule by which the network computes the mixture in comparison to single components. On the single neuron level, we show that those differences manifest in a variety of parameters, including the spatial location, frequency, latency, and temporal pattern of the response kinetics.
Collapse
Affiliation(s)
- Linda S Kuebler
- Department of Evolutionary Neuroethology, Max-Planck-Institute for Chemical Ecology Jena, Germany
| | | | | | | |
Collapse
|
18
|
Trona F, Anfora G, Bengtsson M, Witzgall P, Ignell R. Coding and interaction of sex pheromone and plant volatile signals in the antennal lobe of the codling moth Cydia pomonella. ACTA ACUST UNITED AC 2011; 213:4291-303. [PMID: 21113011 DOI: 10.1242/jeb.047365] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the codling moth Cydia pomonella (Lepidoptera: Tortricidae) plant volatiles attract males and females by upwind flight and synergise the male response to the female-produced sex pheromone, indicating a close relationship between the perception of social and environmental olfactory signals. We have studied the anatomical and functional organisation of the antennal lobe (AL), the primary olfactory centre, of C. pomonella with respect to the integration of sex pheromone and host-plant volatile information. A three-dimensional reconstruction of the glomerular structure of the AL revealed 50±2 and 49±2 glomeruli in males and females, respectively. These glomeruli are functional units involved in the coding of odour quality. The glomerular map of the AL was then integrated with electrophysiological recordings of the response of individual neurons in the AL of males and females to sex pheromone components and behaviourally active plant volatiles. By means of intracellular recordings and stainings, we physiologically characterised ca. 50 neurons in each sex, revealing complex patterns of activation and a wide variation in response dynamics to these test compounds. Stimulation with single chemicals and their two-component blends produced both synergistic and inhibitory interactions in projection neurons innervating ordinary glomeruli and the macroglomerular complex. Our results show that the sex pheromone and plant odours are processed in an across-fibre coding pattern. The lack of a clear segregation between the pheromone and general odour subsystems in the AL of the codling moth suggests a level of interaction that has not been reported from other insects.
Collapse
Affiliation(s)
- Federica Trona
- IASMA Research and Innovation Center, Fondazione E. Mach, via E. Mach 1, 38010 S. Michele a/A (TN), Italy.
| | | | | | | | | |
Collapse
|
19
|
Najar-Rodriguez AJ, Galizia CG, Stierle J, Dorn S. Behavioral and neurophysiological responses of an insect to changing ratios of constituents in host plant-derived volatile mixtures. ACTA ACUST UNITED AC 2011; 213:3388-97. [PMID: 20833933 DOI: 10.1242/jeb.046284] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ratios of compounds in host plant odors fluctuate with the phenological stage of the plant. In the present study, we investigated the effect of changing ratios of host plant volatile constituents on herbivore insect attraction and olfactory information processing. We tested a synthetic mixture of bioactive peach shoot volatiles with different concentrations of one of the mixture constituents, benzonitrile, on oriental fruit moth Cydia (=Grapholita) molesta females. Y-tube olfactometer bioassays showed that female attraction to the mixture was maintained while increasing the benzonitrile level up to 100 times. Further increases led to behaviorally ineffective mixtures. Then, we recorded odor-evoked neural activity patterns in the antennal lobes, the main olfactory center of the brain, using calcium imaging. Benzonitrile-containing mixtures elicited strong activation in two glomeruli, which were found to process mixture-related information in specific ways. Activation in one glomerulus directly paralleled behavioral effects of the different ratios tested whereas a deviating pattern was noted in the other glomerulus. Our results indicate that the ratio of constituents in a volatile mixture can be varied to a certain degree without reducing female attraction. Thus, volatile blends in nature might vary quantitatively within a certain range without affecting odor-guided host location. Neurophysiological results showed that the processing of mixture-related information inside the antennal lobes is not uniform across glomeruli. Thus, final processing of this information probably takes place in higher-order brain centers.
Collapse
Affiliation(s)
- A J Najar-Rodriguez
- ETH Zurich, Institute of Plant, Animal and Agroecosystem Sciences/Applied Entomology, Schmelzbergstrasse 9/LFO, 8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
20
|
Khan AG, Parthasarathy K, Bhalla US. Odor representations in the mammalian olfactory bulb. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:603-611. [PMID: 20836051 DOI: 10.1002/wsbm.85] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A first key step in studying a sensory modality is to define how the brain represents the features of the sensory stimulus. This has proven to be a challenge in olfaction, where even the stimulus features have been a matter of considerable debate. In this review, we focus on olfactory representations in the first stage of the olfactory pathway, the olfactory bulb (OB). We examine the diverging viewpoints on spatially organized versus distributed representations. We then consider how odor sampling through respiration is a key part of the odorant code. Finally, we ask how the bulb handles the challenging task of representing mixtures. We suggest that current evidence points toward a representation that is spatially organized at the inputs but later distributed, with the spatial organization not being used for much computation. Nevertheless, this is a simple representation that effectively represents multiple individual odorants, as well as odor mixtures.
Collapse
Affiliation(s)
- Adil Ghani Khan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - K Parthasarathy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Upinder Singh Bhalla
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| |
Collapse
|
21
|
Deisig N, Giurfa M, Sandoz JC. Antennal lobe processing increases separability of odor mixture representations in the honeybee. J Neurophysiol 2010; 103:2185-94. [PMID: 20181736 DOI: 10.1152/jn.00342.2009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Local networks within the primary olfactory centers reformat odor representations from olfactory receptor neurons to second-order neurons. By studying the rules underlying mixture representation at the input to the antennal lobe (AL), the primary olfactory center of the insect brain, we recently found that mixture representation follows a strict elemental rule in honeybees: the more a component activates the AL when presented alone, the more it is represented in a mixture. We now studied mixture representation at the output of the AL by imaging a population of second-order neurons, which convey AL processed odor information to higher brain centers. We systematically measured odor-evoked activity in 22 identified glomeruli in response to four single odorants and all their possible binary, ternary and quaternary mixtures. By comparing input and output responses, we determined how the AL network reformats mixture representation and what advantage this confers for odor discrimination. We show that increased inhibition within the AL leads to more synthetic, less elemental, mixture representation at the output level than that at the input level. As a result, mixture representations become more separable in the olfactory space, thus allowing better differentiation among floral blends in nature.
Collapse
Affiliation(s)
- Nina Deisig
- Research Centre for Animal Cognition (UMR 5169), Université de Toulouse, UPS, Toulouse, France
| | | | | |
Collapse
|
22
|
Neural correlates of behavior in the moth Manduca sexta in response to complex odors. Proc Natl Acad Sci U S A 2009; 106:19219-26. [PMID: 19907000 DOI: 10.1073/pnas.0910592106] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With Manduca sexta as a model system, we analyzed how natural odor mixtures that are most effective in eliciting flight and foraging behaviors are encoded in the primary olfactory center in the brain, the antennal lobe. We used gas chromatography coupled with multiunit neural-ensemble recording to identify key odorants from flowers of two important nectar resources, the desert plants Datura wrightii and Agave palmeri, that elicited responses from individual antennal-lobe neurons. Neural-ensemble responses to the A. palmeri floral scent, comprising >60 odorants, could be reproduced by stimulation with a mixture of six of its constituents that had behavioral effectiveness equivalent to that of the complete scent. Likewise, a mixture of three floral volatiles from D. wrightii elicited normal flight and feeding behaviors. By recording responses of neural ensembles to mixtures of varying behavioral effectiveness, we analyzed the coding of behaviorally "meaningful" odors. We considered four possible ensemble-coding mechanisms--mean firing rate, mean instantaneous firing rate, pattern of synchronous ensemble firing, and total net synchrony of firing--and found that mean firing rate and the pattern of ensemble synchrony were best correlated with behavior (R = 41% and 43%, respectively). Stepwise regression analysis showed that net synchrony and mean instantaneous firing rate contributed little to the variation in the behavioral results. We conclude that a combination of mean-rate coding and synchrony of firing of antennal-lobe neurons underlies generalization among related, behaviorally effective floral mixtures while maintaining sufficient contrast for discrimination of distinct scents.
Collapse
|
23
|
Abstract
Odors evoke complex spatiotemporal responses in the insect antennal lobe (AL) and mammalian olfactory bulb. However, the behavioral relevance of spatiotemporal coding remains unclear. In the present work we combined behavioral analyses with calcium imaging of odor induced activity in the honeybee AL to evaluate the relevance of this temporal dimension in the olfactory code. We used a new way for evaluation of odor similarity of binary mixtures in behavioral studies, which involved testing whether a match of odor-sampling time is necessary between training and testing conditions for odor recognition during associative learning. Using graded changes in the similarity of the mixture ratios, we found high correlations between the behavioral generalization across those mixtures and a gradient of activation in AL output. Furthermore, short odor stimuli of 500 ms or less affected how well odors were matched with a memory template, and this time corresponded to a shift from a sampling-time-dependent to a sampling-time-independent memory. Accordingly, 375 ms corresponded to the time required for spatiotemporal AL activity patterns to reach maximal separation according to imaging studies. Finally, we compared spatiotemporal representations of binary mixtures in trained and untrained animals. AL activity was modified by conditioning to improve separation of odor representations. These data suggest that one role of reinforcement is to "tune" the AL such that relevant odors become more discriminable.
Collapse
|
24
|
Coureaud G, Hamdani Y, Schaal B, Thomas-Danguin T. Elemental and configural processing of odour mixtures in the newborn rabbit. J Exp Biol 2009; 212:2525-31. [DOI: 10.1242/jeb.032235] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
The processing of odour mixtures by young organisms is poorly understood. Recently, the perception of an AB mixture, known to engage configural perception in adult humans, was suggested also to be partially configural in newborn rabbits. In particular, pups did not respond to AB after they had learned A or B. However, two alternative hypotheses might be suggested to explain this result: the presence in the mixture of a novel odorant that inhibits the response to the learned stimulus, and the unevenness of the sensory and cognitive processes engaged during the conditioning and the behavioural testing. We conducted four experiments to explore these alternative hypotheses. In experiment 1, the learning of A or B ended in responses to mixtures including a novel odorant (AC or BC). Experiment 2 pointed to the absence of overshadowing. Therefore, a novelty effect cannot explain the non-response to AB after the learning of A or B. In experiment 3,pups having learned A or B in AC or BC did not respond to AB. However, they generalized odour information acquired in AB to AC or BC in experiment 4. Thus, the balancing of the perceptual tasks between the conditioning and retention test does not enhance the response to the AB mixture. To sum up, the present experiments give concrete support to the partially configural perception of specific odour mixtures by newborn rabbits.
Collapse
Affiliation(s)
- Gérard Coureaud
- Centre Européen des Sciences du Goût, Equipe d'Ethologie et de Psychobiologie Sensorielle, UMR 5170 CNRS/UB/INRA, Dijon 21000, France
| | - Younes Hamdani
- Centre Européen des Sciences du Goût, Equipe d'Ethologie et de Psychobiologie Sensorielle, UMR 5170 CNRS/UB/INRA, Dijon 21000, France
| | - Benoist Schaal
- Centre Européen des Sciences du Goût, Equipe d'Ethologie et de Psychobiologie Sensorielle, UMR 5170 CNRS/UB/INRA, Dijon 21000, France
| | | |
Collapse
|
25
|
Krofczik S, Menzel R, Nawrot MP. Rapid odor processing in the honeybee antennal lobe network. Front Comput Neurosci 2009; 2:9. [PMID: 19221584 PMCID: PMC2636688 DOI: 10.3389/neuro.10.009.2008] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Accepted: 12/17/2008] [Indexed: 12/03/2022] Open
Abstract
In their natural environment, many insects need to identify and evaluate behaviorally relevant odorants on a rich and dynamic olfactory background. Behavioral studies have demonstrated that bees recognize learned odors within <200 ms, indicating a rapid processing of olfactory input in the sensory pathway. We studied the role of the honeybee antennal lobe network in constructing a fast and reliable code of odor identity using in vivo intracellular recordings of individual projection neurons (PNs) and local interneurons (LNs). We found a complementary ensemble code where odor identity is encoded in the spatio-temporal pattern of response latencies as well as in the pattern of activated and inactivated PN firing. This coding scheme rapidly reaches a stable representation within 50-150 ms after stimulus onset. Testing an odor mixture versus its individual compounds revealed different representations in the two morphologically distinct types of lateral- and median PNs (l- and m-PNs). Individual m-PNs mixture responses were dominated by the most effective compound (elemental representation) whereas l-PNs showed suppressed responses to the mixture but not to its individual compounds (synthetic representation). The onset of inhibition in the membrane potential of l-PNs coincided with the responses of putative inhibitory interneurons that responded significantly faster than PNs. Taken together, our results suggest that processing within the LN network of the AL is an essential component of constructing the antennal lobe population code.
Collapse
Affiliation(s)
- Sabine Krofczik
- Institut für Biologie – Neurobiologie, Freie Universität BerlinGermany
- Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Randolf Menzel
- Institut für Biologie – Neurobiologie, Freie Universität BerlinGermany
- Bernstein Center for Computational NeuroscienceBerlin, Germany
| | - Martin P. Nawrot
- Institut für Biologie – Neurobiologie, Freie Universität BerlinGermany
- Bernstein Center for Computational NeuroscienceBerlin, Germany
| |
Collapse
|
26
|
Lei H, Vickers N. Central processing of natural odor mixtures in insects. J Chem Ecol 2008; 34:915-27. [PMID: 18581181 DOI: 10.1007/s10886-008-9487-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Revised: 04/10/2008] [Accepted: 04/28/2008] [Indexed: 01/24/2023]
Abstract
In nature, virtually all olfactory stimuli are mixtures of many single odorants. Behavioral experiments repeatedly have demonstrated that an animal's olfactory system is capable of discriminating behaviorally relevant from irrelevant odor mixtures. However, the sensory mechanisms that underlie such discriminative capability remain elusive. The limited anatomical and physiological evidence collected from both insect and vertebrate models that pertains to this topic is scattered in the literature dating back to early 1980s. Thus, a synthesis of this information that includes more recent findings is needed in order to provide a basis for probing the fundamental question from a new angle. In this review, we discuss several proposed models for mixture processing, along with experimental data gathered from both the initial stage of olfactory processing (i.e., antennal lobe in insects or olfactory bulb in vertebrates) and higher areas of the brain, with an emphasis on how the lateral circuits in the antennal lobe or olfactory bulb may contribute to mixture processing. Based on empirical data as well as theoretical modeling, we conclude that odor mixtures may be represented both at the single-neuron level and at the population level. The difference between these two types of processing may reside in the degree of plasticity, with the former being hard-wired and the latter being more subjected to network modulation.
Collapse
Affiliation(s)
- Hong Lei
- ARL-Neurobiology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
27
|
Namiki S, Iwabuchi S, Kanzaki R. Representation of a mixture of pheromone and host plant odor by antennal lobe projection neurons of the silkmoth Bombyx mori. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:501-15. [PMID: 18389256 DOI: 10.1007/s00359-008-0325-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2007] [Revised: 03/04/2008] [Accepted: 03/07/2008] [Indexed: 11/26/2022]
Abstract
Pheromone-source orientation behavior can be modified by coexisting plant volatiles. Some host plant volatiles enhance the pheromonal responses of olfactory receptor neurons and increase the sensitivity of orientation behavior in the Lepidoptera species. Although many electrophysiological studies have focused on the pheromonal response of olfactory interneurons, the response to the mixture of pheromone and plant odor is not yet known. Using the silkmoth, Bombyx mori, we investigated the physiology of interneurons in the antennal lobe (AL), the primary olfactory center in the insect brain, in response to a mixture of the primary pheromone component bombykol and cis-3-hexen-1-ol, a mulberry leaf volatile. Application of the mixture enhanced the pheromonal responses of projection neurons innervating the macroglomerular complex in the AL. In contrast, the mixture of pheromone and cis-3-hexen-1-ol had little influence on the responses of projection neurons innervating the ordinary glomeruli whereas other plant odors dynamically modified the response. Together this suggests moths can process plant odor information under conditions of simultaneous exposure to sex pheromone.
Collapse
Affiliation(s)
- Shigehiro Namiki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | | | | |
Collapse
|
28
|
Piñero JC, Giovanni Galizia C, Dorn S. Synergistic behavioral responses of female oriental fruit moths (Lepidoptera:Tortricidae) to synthetic host plant-derived mixtures are mirrored by odor-evoked calcium activity in their antennal lobes. JOURNAL OF INSECT PHYSIOLOGY 2008; 54:333-343. [PMID: 17997410 DOI: 10.1016/j.jinsphys.2007.10.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 10/02/2007] [Accepted: 10/03/2007] [Indexed: 05/25/2023]
Abstract
Attraction of many gravid female herbivore insects to suitable host plants is mediated largely by olfactory cues. Behaviorally, synergism among odor mixtures constituents underlies this attraction in some systems. Yet, the representation of synergistic odor-mixture effects is unknown in the antennal lobe, the first processing center for olfactory information in insect brains. Using both behavioral and physiological data we demonstrate that in the oriental fruit moth, Cydia (Grapholita) molesta, a minor constituent of a plant-derived synthetic mixture plays a key role in behavioral discrimination and in neural representation of mixtures. Behaviorally, minute amounts of benzonitrile added to an unattractive 4-compound mixture resulted in a bioactive 5-compound mixture that was as attractive to mated female moths as the natural blend. Physiologically, the bioactive benzonitrile-containing mixture elicited strong activation of one additional, new type of glomerulus that showed specific synergisms for this mixture. The specific pattern of activated glomeruli elicited by the addition of benzonitrile demonstrates a physiological correlate to the behaviorally observed synergism, and emphasizes the key role of a minor component of a complex mixture. While minor constituents of mixtures are often overlooked, they may, as conclusively documented here, be determinant for successful recognition and behavioral discrimination of suitable host plants by herbivore insects.
Collapse
Affiliation(s)
- Jaime C Piñero
- ETH Zurich, Institute of Plant Sciences/Applied Entomology, Schmelzbergstrasse 9/LFO, Zurich, Switzerland
| | | | | |
Collapse
|
29
|
Processing of odor mixtures in the Drosophila antennal lobe reveals both global inhibition and glomerulus-specific interactions. J Neurosci 2007; 27:11966-77. [PMID: 17978037 DOI: 10.1523/jneurosci.3099-07.2007] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To understand how odor information is represented and processed in the antennal lobe (AL) of Drosophila melanogaster, we have optically recorded glomerular calcium responses to single odors and odor mixtures from olfactory sensory neurons (OSNs) and projection neurons (PNs). Odor mixtures offer a good tool to analyze odor processing because experimental results can be tested against clear predictions. At the level of the OSNs, the representation of odor mixtures could be predicted from the response patterns of the components in most cases. PN responses to mixtures, however, provide evidences of interglomerular inhibition. Application of picrotoxin (PTX), an antagonist of GABA(A)-like receptors, enhanced odor responses, modified their temporal course, and eliminated mixture suppression at the PN level. Our results can be best explained by postulating the existence of at least two local networks in the fly AL: a glomerulus specific network, which includes excitatory and inhibitory connections and a PTX sensitive inhibitory global network that acts on all glomeruli with proportional strength to the global AL input.
Collapse
|