1
|
Yang Q, Deng H, Shi Y, Qiu Q, Wang J, Ping W, Gu J, Zhang W. Determination of Fungicides in Fresh Fruit Juice Using Magnetic Solid-Phase Extraction Coupled With Gas Chromatography-Triple Quadrupole Mass Spectrometry. J Chromatogr Sci 2025; 63:bmaf024. [PMID: 40350984 DOI: 10.1093/chromsci/bmaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2025] [Indexed: 05/14/2025]
Abstract
A fast, simple and effective method was developed and validated for determination of 11 fungicides using magnetic solid-phase extraction with NH2-Fe3O4@GO (graphene oxide) combined with gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS). To carry out the extraction of the fungicides from samples, NH2-Fe3O4@GO nanocomposites were synthesized and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The target analytes were extracted on NH2-Fe3O4@GO and then eluted by ethyl acetate and acetonitrile (1:1 v/v). Finally, the extraction solvent concentrated by nitrogen blowing was analyzed by GC-MS/MS, which demonstrated good linearity between 0.05 and 5.0 mg L-1. The limits of detection (signal-to-noise ratio = 3) and the limits of quantification (signal-to-noise ratio = 10) for the 11 fungicides ranged from 1.0 to 3.5 and 3.0 to 10.5 μg kg-1, respectively. The accuracy and precision of the proposed method were evaluated by measuring tagged samples; the recoveries and relative standard deviations ranged from 75.3% to 103.9% and 2.19% to 4.68%, respectively. The utility of the adsorbent was demonstrated to determine trace fungicides in fresh fruit juice samples.
Collapse
Affiliation(s)
- Qinghua Yang
- Department of Physics and Chemistry, Nantong Center for Disease Control and Prevention, Gongnong South Road 189, Chongchuan District, Nantong City 226002, Jiangsu Province, PR China
- Department of Physics and Chemistry, Nantong Food Safety Testing Center, Gongnong South Road 189, Chongchuan District, Nantong City 226002, Jiangsu Province, PR China
| | - Honghai Deng
- School of Information Science and Technology, Nantong University, Seyuan load 9, Nantong 226019, PR China
| | - Yilan Shi
- Department of Physics and Chemistry, Nantong Center for Disease Control and Prevention, Gongnong South Road 189, Chongchuan District, Nantong City 226002, Jiangsu Province, PR China
- Department of Physics and Chemistry, Nantong Food Safety Testing Center, Gongnong South Road 189, Chongchuan District, Nantong City 226002, Jiangsu Province, PR China
| | - Qianying Qiu
- Department of Physics and Chemistry, Nantong Center for Disease Control and Prevention, Gongnong South Road 189, Chongchuan District, Nantong City 226002, Jiangsu Province, PR China
- Department of Physics and Chemistry, Nantong Food Safety Testing Center, Gongnong South Road 189, Chongchuan District, Nantong City 226002, Jiangsu Province, PR China
| | - Jinxin Wang
- Department of Physics and Chemistry, Nantong Center for Disease Control and Prevention, Gongnong South Road 189, Chongchuan District, Nantong City 226002, Jiangsu Province, PR China
- Department of Physics and Chemistry, Nantong Food Safety Testing Center, Gongnong South Road 189, Chongchuan District, Nantong City 226002, Jiangsu Province, PR China
| | - Wenhui Ping
- Department of Physics and Chemistry, Nantong Center for Disease Control and Prevention, Gongnong South Road 189, Chongchuan District, Nantong City 226002, Jiangsu Province, PR China
- Department of Physics and Chemistry, Nantong Food Safety Testing Center, Gongnong South Road 189, Chongchuan District, Nantong City 226002, Jiangsu Province, PR China
| | - Jun Gu
- Department of Physics and Chemistry, Nantong Center for Disease Control and Prevention, Gongnong South Road 189, Chongchuan District, Nantong City 226002, Jiangsu Province, PR China
- Department of Physics and Chemistry, Nantong Food Safety Testing Center, Gongnong South Road 189, Chongchuan District, Nantong City 226002, Jiangsu Province, PR China
| | - Weibing Zhang
- Department of Physics and Chemistry, Nantong Center for Disease Control and Prevention, Gongnong South Road 189, Chongchuan District, Nantong City 226002, Jiangsu Province, PR China
| |
Collapse
|
2
|
Jain R, Singh MK, Ali N, Khan MR, Bajaj A, Mudiam MKR. Innovative disposable in-tip cellulose paper (DICP) device for facile determination of pesticides in postmortem blood samples: A proof-of-concept study. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1245:124268. [PMID: 39126993 DOI: 10.1016/j.jchromb.2024.124268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Accurately identifying and quantifying toxicants is crucial for medico-legal investigations in forensic toxicology; however, low analyte concentrations and the complex samples matrix make this work difficult. Therefore, a simplified sample preparation procedure is crucial to streamline the analysis to minimize sample handling errors, reduce cost and improve the overall efficiency of analysis of toxicants. To address these challenges, an innovative disposable in-tip cellulose paper (DICP) device has been developed for the extraction of three pesticides viz. Chlorpyrifos, Quinalphos and Carbofuran from postmortem blood samples. The DICP device leverages cellulose paper strips housed within a pipette tip to streamline the extraction process, significantly reducing solvent usage, time, and labor while maintaining high analytical accuracy. The extraction of pesticides from postmortem blood using the DICP device involves a streamlined process characterized by adsorption and desorption. The diluted blood samples were processed through the DICP device via repeated aspirating and dispensing calyces to adsorb the pesticides onto the cellulose paper. The adsorbed pesticides are then eluted using acetone, which is collected for GC-MS analysis. The method was meticulously optimized, achieving a limit of quantification in the range of 0.009-0.01 µg mL-1. The intra-day and inter-day precisions were consistently less than 5 % and 10 %, respectively, with accuracy ranging from 94-106 %. Relative recoveries for the analytes were observed to be between 60 % and 93.3 %, and matrix effects were determined to be less than 10 %. The method's sustainability was validated with a whiteness score of 98.8, an AGREE score of 0.64, a BAGI score of 70 and ComplexMoGAPI score of 77. Applicability was demonstrated through successful analysis of real postmortem blood samples and proficiency testing samples, highlighting its potential utility in forensic toxicology.
Collapse
Affiliation(s)
- Rajeev Jain
- Central Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Govt. of India, Dakshin Marg, Sector - 36A, Chandigarh 160036, India.
| | - Mukesh Kumar Singh
- Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurugram 122016, Haryana, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammad Rashid Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Atul Bajaj
- Central Forensic Science Laboratory, Directorate of Forensic Science Services, Ministry of Home Affairs, Govt. of India, Dakshin Marg, Sector - 36A, Chandigarh 160036, India
| | - Mohana Krishna Reddy Mudiam
- Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurugram 122016, Haryana, India; Analytical & Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Wang Q, Jiu R, Wang Y, Li Z, Chen J, Liu H, Liu J, Cao J. Degradation and detection of organophosphorus pesticides based on peptides and MXene-peptide composite materials. Analyst 2024; 149:3951-3960. [PMID: 38940008 DOI: 10.1039/d4an00674g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Safety problems caused by organophosphorus pesticide (OP) residues are constantly occurring, so the development of new methods for the degradation and detection of OPs is of great scientific significance. In the present study, β-sheet peptides and β-hairpin peptides for catalyzing the hydrolysis of OPs were designed and synthesized. The peptide sequences with the highest hydrolytic activity (EHSGGVTVDPPLTVEHSAG) were screened by investigating the effect of the location of the active sites of the peptide and the peptide's structure on the degradation of OPs. In addition, the relationship between the peptides' conformation and hydrolytic activity was further analyzed based on density functional theory calculations. The noncovalent interactions of the peptides with the OPs and the electrostatic potential on the molecular surface and molecular docking properties were also investigated. It was found that peptides with approximate active amino acids consisting of the catalytic triad and with the hairpin structure had enhanced hydrolytic activity toward the hydrolysis of OPs. To develop an electrochemical sensor technique to detect OPs, the conductive MXene (Ti3C2) material was first immobilized with a caffeic acid monolayer via enediol-metal complex chemistry and then bound with the β-hairpin peptide (EHSGGVTVDPPLTVEHSAG) via carboxy-amine condensation chemistry between the -COOH of caffeic acid and the -NH2 of the peptide to prepare a MXene-peptide composite. Then, the prepared composite was modified on the surface of a glassy carbon electrode to construct an electrochemical sensor for the detection of OPs. The developed technique could be used to monitor OPs within 15 min with a two orders of linear working range and with a detection limit of 0.15 μM. Meanwhile, the sensor showed good reliability for the detection of OPs in real vegetables.
Collapse
Affiliation(s)
- Qiuying Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Ruiqing Jiu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Yunyao Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Zongda Li
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jianan Chen
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Haochi Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jifeng Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Quality and Healthy of Tianjin, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, PR China.
| | - Jia Cao
- Tianjin Vocational College of Bioengineering, China
| |
Collapse
|
4
|
Zhang H, Jin J, Wang X, Han W, Qin L, Chen L, Mao X, Liu Z, Xiang X. Bioenzyme-nanoenzyme-chromogen all-in-one test strip for convenient and sensitive detection of malathion in water environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171512. [PMID: 38453081 DOI: 10.1016/j.scitotenv.2024.171512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
The presence of pesticide residues in aquatic environments poses a significant threat to both aquatic ecosystems and human health. The presence of these residues can result in significant harm to aquatic ecosystems and can negatively impact the health of aquatic organisms. Consequently, this issue requires urgent attention and effective measures to mitigate its impact. However, developing sensitive and rapid detection methods remains a challenge. In this study, an all-in-one test strip, which integrated bioenzymes, nanoenzymes, and a chromogen, was developed in combination with an enzyme labeling instrument for a highly sensitive and convenient sensing of malathion residues. The oxidase activity of heme chloride (Hemin) in the strip can catalyze the oxidation of H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB) to produce a blue-colored oxide. Simultaneously, the alkaline phosphatase (ALP) present in the strip can break down l-ascorbic acid-2-phosphate to produce ascorbic acid (AA). This AA then acts to reduce the oxidized form of TMB, turning it into a colorless substance and leading to the disappearance of its fluorescent signal. In the presence of a pesticide, the activity of ALP is inhibited and formation of AA is blocked, thereby preventing the reduction of oxidized TMB and producing a colored signal. According to this principle, the integrated test strip detected the target pesticide with high performance as per the optical density value determined via an enzyme marker. The detection limit of the test strip was 0.209 ng/mL with good sensitivity. The method was used for detecting malathion in actual river water samples, and the recoveries were in the range of 93.53 %-96.87 %. The newly devised technique effectively identified malathion in samples of natural water. This research has introduced a novel approach for the precise and convenient surveillance of pesticide remnants. Additionally, these discoveries could inspire the advancement of proficient multi-enzyme detection systems.
Collapse
Affiliation(s)
- Hanwen Zhang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Jiabin Jin
- National Narcotic Laboratory Zhejiang Regional Center (NNLZRC), Hangzhou, Zhejiang 310021, China
| | - Xini Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wei Han
- College of the Environment and Safety Engineering, Jiangsu University, Zhenjiag, Jiangsu 212013, China
| | - Lei Qin
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lin Chen
- Institute of Sericultural and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Xiaoyan Mao
- Center for Membrane Separation and Water Science & Technology, State Key Lab Base of Green Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhenjiang Liu
- College of the Environment and Safety Engineering, Jiangsu University, Zhenjiag, Jiangsu 212013, China
| | - Xingwei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China.
| |
Collapse
|
5
|
Talha A, Raja DA, Hussain D, Malik MI. Gold nanoparticle-based selective and efficient spectrophotometric assay for the insecticide methamidophos. Mikrochim Acta 2024; 191:164. [PMID: 38413405 DOI: 10.1007/s00604-024-06237-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/24/2024] [Indexed: 02/29/2024]
Abstract
A reliable, rapid, and inexpensive nano-sized chemosensor is presented for methamidophos (MET) - an insecticide. Poly(lactic acid) (PLA)-stabilized gold nanoparticles (AuNPs) were synthesized by a simple one-pot, two-phase chemical reduction method. The synthesized PLA-AuNPs were subsequently employed for selective, efficient, and quantitative detection of MET. MET is one of the highly toxic pesticides used for eradication of agricultural and urban insects. Upon the addition of MET, the wine-red color of PLA-AuNPs swiftly transformed into greyish-blue, further corroborated by a significant bathochromic and hyperchromic shift in the SPR band. The presence of other interfering insecticides, metal salts, and drugs did not have any pronounced effect on quantitative MET detection. The detection limit, the quantification limit, and linear dynamic range of MET utilizing PLA-AuNPs were 0.0027 µM, 0.005 µM, and 0.005-1000 µM, respectively. The PLA-AuNP-based assay renders an efficient, rapid, accurate, and selective quantification of MET in food, biological, and environmental samples. The proposed sensor provides an appropriate platform for fast and on-the-spot determination of MET without requiring a well-equipped lab setup.
Collapse
Affiliation(s)
- Abu Talha
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Daim Asif Raja
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Dilshad Hussain
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Imran Malik
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
- Third World Center for Science and Technology, International Center for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
6
|
Zhao F, Wang L, Li M, Wang M, Liu G, Ping J. Nanozyme-based biosensor for organophosphorus pesticide monitoring: Functional design, biosensing strategy, and detection application. Trends Analyt Chem 2023; 165:117152. [DOI: 10.1016/j.trac.2023.117152] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
|