1
|
Luo X, Li J, Cen Z, Feng G, Hong M, Huang L, Long Q. Exploring the therapeutic potential of lupeol: A review of its mechanisms, clinical applications, and advances in bioavailability enhancement. Food Chem Toxicol 2025; 196:115193. [PMID: 39662867 DOI: 10.1016/j.fct.2024.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Lupeol, a naturally occurring triterpenoid, has garnered significant attention for its diverse range of biological activities and potential therapeutic applications. This comprehensive review delves into the various aspects of lupeol, including its sources, extraction methods, chemical characteristics, pharmacokinetics, safety evaluation, mechanisms of action, and applications in disease treatment. We highlight the compound's unique carbon skeleton and its role in inflammation regulation, antioxidant activity, and broad-spectrum antimicrobial effects. The review also underscores lupeol's potential in cancer therapy, cardiovascular protection, metabolic disease management, and wound healing. Furthermore, we discuss the challenges and future perspectives of lupeol's clinical application, emphasizing the need for further research to improve its bioavailability and explore its full therapeutic potential. The review concludes by recognizing the significance of lupeol in drug development and healthcare, with expectations for future breakthroughs in medical applications.
Collapse
Affiliation(s)
- Xia Luo
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ji Li
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Zhifeng Cen
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Gang Feng
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Meiqi Hong
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Lizhen Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Qinqiang Long
- Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine (Institute of Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
2
|
Bian Y, Zhang Y, Ruan LY, Feng XS. Phytosterols in Plant-Derived Foods: Recent Updates in Extraction and Analysis Methods. Crit Rev Anal Chem 2024:1-19. [PMID: 39556048 DOI: 10.1080/10408347.2024.2427128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The physiological and officinal functions of phytosterols are of great significance, and recent dietary guidelines have underscored the significance of incorporating them into a balanced diet. Furthermore, it exhibits inhibitory effects on tumor growth, stimulates cellular immunity, possesses anti-inflammatory, antioxidant, and antidiabetic properties. To gain a more comprehensive understanding of the role of phytosterols in public health, it is crucial to establish simple, rapid, eco-conscious, efficient, and highly sensitive techniques for their extraction and determination across various matrices. This review presents a thorough overview of various techniques used for extracting and analyzing phytosterols in diverse plant-derived foods, encompassing a range of advanced technologies like solid-phase extraction, microextraction, supercritical fluid extraction, QuEChERS, alongside traditional approaches. The detection techniques include liquid chromatography-based methods, gas chromatography-based methods, supercritical fluid chromatography, and other methodologies. Additionally, we conduct a thorough examination and comparison of various techniques while proposing future prospects.
Collapse
Affiliation(s)
- Yu Bian
- School of Pharmacy, China Medical University, Shenyang, China
| | - Yuan Zhang
- School of Pharmacy, China Medical University, Shenyang, China
| | - Ling-Yun Ruan
- School of Pharmacy, China Medical University, Shenyang, China
| | - Xue-Song Feng
- School of Pharmacy, China Medical University, Shenyang, China
| |
Collapse
|
3
|
Dalimunthe A, Carensia Gunawan M, Dhiya Utari Z, Dinata MR, Halim P, Estherina S. Pakpahan N, Sitohang AI, Sukarno MA, Yuandani, Harahap Y, Setyowati EP, Park MN, Yusoff SD, Zainalabidin S, Prananda AT, Mahadi MK, Kim B, Harahap U, Syahputra RA. In-depth analysis of lupeol: delving into the diverse pharmacological profile. Front Pharmacol 2024; 15:1461478. [PMID: 39605919 PMCID: PMC11598436 DOI: 10.3389/fphar.2024.1461478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Lupeol, a naturally occurring lupane-type pentacyclic triterpenoid, is widely distributed in various edible vegetables, fruits, and medicinal plants. Notably, it is found in high concentrations in plants like Tamarindus indica, Allanblackia monticola, and Emblica officinalis, among others. Quantitative studies have highlighted its presence in Elm bark, Olive fruit, Aloe leaf, Ginseng oil, Mango pulp, and Japanese Pear bark. This compound is synthesized from squalene through the mevalonate pathway and can also be synthetically produced in the lab, addressing challenges in natural product synthesis. Over the past four decades, extensive research has demonstrated lupeol's multifaceted pharmacological properties, including anti-inflammatory, antioxidant, anticancer, and antibacterial effects. Despite its significant therapeutic potential, clinical applications of lupeol have been limited by its poor water solubility and bioavailability. Recent advancements have focused on nano-based delivery systems to enhance its bioavailability, and the development of various lupeol derivatives has further amplified its bioactivity. This review provides a comprehensive overview of the latest advancements in understanding the pharmacological benefits of lupeol. It also discusses innovative strategies to improve its bioavailability, thereby enhancing its clinical efficacy. The aim is to consolidate current knowledge and stimulate further research into the therapeutic potential of lupeol and its derivatives.
Collapse
Affiliation(s)
- Aminah Dalimunthe
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Mega Carensia Gunawan
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Zahirah Dhiya Utari
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muhammad Riza Dinata
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Princella Halim
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | - Alex Insandus Sitohang
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - M. Andriansyah Sukarno
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Yuandani
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | | | | | - Moon Nyeo Park
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Syaratul Dalina Yusoff
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satirah Zainalabidin
- Biomedical Science, Centre of Toxicology and Health Risk Study, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Arya Tjipta Prananda
- Faculty of Medicine, Universitas Sumatera Utara, Medan, Sumatera Utara, Indonesia
| | - Mohd Kaisan Mahadi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Bonglee Kim
- Department of Internal Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Urip Harahap
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Rony Abdi Syahputra
- Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
4
|
Chaudhary MK, Misra A, Tripathi D, Srivastava PK, Srivastava S. Impact of seasonal variation on four labdane-type diterpenoids in Coleus forskholii Briq. Nat Prod Res 2024; 38:2342-2347. [PMID: 36695524 DOI: 10.1080/14786419.2023.2171413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/27/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023]
Abstract
The present study has been planned to evaluate the impact of seasonal variation in labdane-type diterpenoids namely isoforskolin, forskolin, 1,9-dideoxyforskolin and 1-deoxyforskolin in Coleus forskholii (roots). The plant samples were harvested in different seasons from our experimental field located at CSIR-NBRI garden, Lucknow (India) and metabolite contents were estimated through validated high performance thin layer chromatography (HPTLC) method. The HPTLC plate was developed in tertiary mobile phase of toluene-ethyl acetate-methanol (8.5-1-0.05 v/v) for separation of all the four metabolites. The metabolite content viz. isoforskolin, forskolin, 1,9-dideoxyforskolin and 1-deoxyforskolin varies from 0.0247% to 0.198%, 0.238 to 0.730%, 0.056 to 0.161% and 0.0401 to 0.332% on dry weight basis respectively. The maximum content of metabolites was recorded in winter season and was found optimum for harvesting of C. forskholii roots. Optimization of harvesting season for this industrially valuable medicinal plant will lead to sustainable sources of good quality raw material to herbal drug industry.
Collapse
Affiliation(s)
- Mridul Kant Chaudhary
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P., India
- Department of Botany, KS Saket PG College, Ayodhya, U.P., India
| | - Ankita Misra
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P., India
| | - Deepali Tripathi
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P., India
| | | | - Sharad Srivastava
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P., India
| |
Collapse
|
5
|
Chaudhary MK, Misra A, Srivastava PK, Srivastava S. Influence of Seasonal Variation on Diosgenin Content in Costus speciosus (J. Koenig) Sm. Rhizome Quantified Through Validated RP-HPLC-PDA Method. Pharmacogn Mag 2023. [DOI: 10.1177/09731296221137404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Background Costus speciosus (J. Koenig) Sm. (Syn. Cheilocostus speciosus) is an ethnic anti-diabetic plant, used for its high diosgenin content. Objectives This study aimed to evaluate the seasonal variation of diosgenin content in Costus speciosus rhizome, quantified through validated RP-HPLC method. Materials and Methods The rhizomes were collected in four different seasons, such as rainy (August), autumn (October), winter (February) and summer (May), from Lucknow, India. The HPLC method validation was done in terms of linearity, precision, repeatability, accuracy, sensitivity and robustness. Results Diosgenin was separated under isocratic elution on an RP-HPLC column (4.6 × 250 mm, 5 µm) with a mobile phase consisting of methanol and water, eluted at retention time (Rt) of 18.396 min and content was calculated with the help of standard curve. The limit of detection and limit of quantification (LOQ) was found to be 522.68 and 1583.90 ng (nanogram), respectively. The diosgenin content varies significantly in different seasons. Conclusion The diosgenin content was found higher in rainy (193.97 µg/mg) season and was concluded to be optimum season for collection of rhizomes as quality raw material. Harvesting at optimal season may fulfill the commercial demand of diosgenin and may reduce the diosgenin-intended overexploitation of the species from the wild.
Collapse
Affiliation(s)
- Mridul Kant Chaudhary
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
- Department of Botany, KS Saket PG College, Ayodhya, Uttar Pradesh, India
| | - Ankita Misra
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | | | - Sharad Srivastava
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| |
Collapse
|
6
|
Khatoon S, Irshad S. A validated high-performance thin-layer chromatography method for the determination of two bioactive lignans, phyllanthin and hypophyllanthin, in the seasonal variation study of Phyllanthus amarus. JPC-J PLANAR CHROMAT 2021. [DOI: 10.1007/s00764-021-00129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Choudhary N, Choudhary S, Kumar A, Singh V. Deciphering the multi-scale mechanisms of Tephrosia purpurea against polycystic ovarian syndrome (PCOS) and its major psychiatric comorbidities: Studies from network pharmacological perspective. Gene 2020; 773:145385. [PMID: 33383117 DOI: 10.1016/j.gene.2020.145385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 11/08/2020] [Accepted: 12/18/2020] [Indexed: 12/21/2022]
Abstract
Tephrosia purpurea (T. purpurea), a plant belonging to Fabaceae (pea) family, is a well-known Ayurvedic herb and commonly known as Sarapunkha in traditional Indian medicinal system. Described as "Sarwa wranvishapaka", i.e. having a capability to heal all types of wounds, it is particularly recognized for its usage in splenomegaly. Towards exploring the comprehensive effects of T. purpurea against polycystic ovarian syndrome (PCOS) and three comorbid neuropsychiatric diseases (anxiety, depression, and bipolar disorder), its constituent phytochemicals (PCs) were extensively reviewed and their network pharmacology evaluation was carried out in this study. The complex regulatory potential of its 76 PCs against PCOS is enquired by developing and analyzing high confidence tripartite networks of protein targets of each phytochemical at both pathway and disease association scales. We also developed a high-confidence human Protein-Protein Interaction (PPI) sub-network specific to PCOS, explored its modular architecture, and probed 30 drug-like phytochemicals (DPCs) having multi-module regulatory potential. The phytochemicals showing good binding affinity towards their protein targets were also evaluated for similarity against currently available approved drugs present in DrugBank. Multi-targeting and synergistic capacities of 12 DPCs against 10 protein targets were identified and evaluated using molecular docking and interaction analyses. Eight DPCs as a potential source of PCOS and its comorbidity regulators are reported in T. purpurea. The results of network-pharmacology study highlight the therapeutic relevance of T. purpurea as PCOS-regulator and demonstrate the effectiveness of the approach in revealing action-mechanism of Ayurvedic herbs from holistic perspective.
Collapse
Affiliation(s)
- Neha Choudhary
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Shilpa Choudhary
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India
| | - Arun Kumar
- Molecular Biology Laboratory, Drug Standardization Unit, Dr. DP Rastogi Central Research Institute of Homeopathy, Ministry of AYUSH, Govt. of India, Noida, Uttar Pradesh 201301, India
| | - Vikram Singh
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala 176206, India.
| |
Collapse
|
8
|
Zhang P, Qin D, Chen J, Zhang Z. Plants in the Genus Tephrosia: Valuable Resources for Botanical Insecticides. INSECTS 2020; 11:insects11100721. [PMID: 33096762 PMCID: PMC7589259 DOI: 10.3390/insects11100721] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
Simple Summary There is an increasing interest in botanical insecticides worldwide. Plants from the genus Tephrosia are rich in bioactive phytochemicals, particularly rotenoids which include rotenone, deguelin, rotenolone, and tephrosin. Rotenoids have strong insecticidal activities against a wider range of pests. However, there has been no treatise thus far focusing on Tephrosia as insecticidal plants. This article is intended to review phytochemicals produced by selected species, their insecticidal activities, and the current status on the use of Tephrosia as botanical insecticidal plants for insect pest control. Abstract Synthetic insecticides are effective in controlling insect pests but can also harm nontarget organisms and the environment. During the last 40 years, there has been an increasing interest in alternative insecticides, particularly those derived from plants, commonly known as botanical insecticides. However, commercially available botanical insecticides remain limited. Rotenone is one of the earliest identified compounds and was used as fish poison and pest management. Due to its link with Parkinson disease, the use of rotenone was banned in many developed countries. Rotenone used to be isolated from Derris spp. and Lonchocarpus spp., and it can also be isolated from Tephrosia species. In this article, we present basic botanical information on selected Tephrosia species and their major compounds related to insecticidal activities and highlight the current use of extracts derived from some species, Tephrosia vogelii in particular, for control of insect pests in stored grains and crop production. The crude extracts contain multiple bioactive compounds, mainly rotenone, deguelin, rotenolone, and tephrosin, which act in either additive or synergistic fashion, resulting in effective control of insect pests. There are about 400 species in the genus Tephrosia, and species and even strains or variants vary greatly in these active compounds. We argue that a systematic evaluation of bioactive compounds in different species are needed, and species or strains with high insecticidal activities should be selected for use in the sustainable control of insect pests.
Collapse
Affiliation(s)
- Peiwen Zhang
- A Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (P.Z.); (D.Q.)
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
| | - Deqiang Qin
- A Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (P.Z.); (D.Q.)
| | - Jianjun Chen
- Department of Environmental Horticulture and Mid-Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Apopka, FL 32703, USA
- Correspondence: (J.C.); (Z.Z.)
| | - Zhixiang Zhang
- A Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China; (P.Z.); (D.Q.)
- Correspondence: (J.C.); (Z.Z.)
| |
Collapse
|
9
|
Rao AS, Yadav SS, Singh P, Nandal A, Singh N, Ganaie SA, Yadav N, Kumar R, Bhandoria MS, Bansal P. A comprehensive review on ethnomedicine, phytochemistry, pharmacology, and toxicity of Tephrosia purpurea (L.) Pers. Phytother Res 2020; 34:1902-1925. [PMID: 32147928 DOI: 10.1002/ptr.6657] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/07/2020] [Accepted: 02/16/2020] [Indexed: 12/16/2022]
Abstract
Tephrosia purpurea (L.) Pers. is a well-known plant in Ayurveda and named "Sarwa wranvishapaka" for its property to heal wounds. Traditionally, it is practiced for impotency, asthma, dyspepsia, hemorrhoids, syphilis gonorrhea, rheumatism, enlargement of kidney and spleen. It is an important component of herbal preparations like Tephroli and Yakrifti used to cure liver disorders. Various phytocompounds including pongamol, purpurin, purpurenone, tephrosin, bulnesol, tephrostachin, β-sitosterol, and so on have been reported. Modern pharmacological studies have shown that the plant have wound healing, antileishmanial, anticarcinogenic, antimicrobial, antioxidant, hepatoprotective, antifertility, antispermatogenic, anti-diarrheal, diuretic, and insecticidal properties. Acetylcholinesterase inhibitory action reported from this plant aids its utilization for the development of drugs for Alzheimer's and dementia neurological disorders. Among the known active compounds of T. purpurea, tephrostachin is responsible for antiplasmodial activity, tephrosin, pongaglabol, and semiglabrin exerts antiulcer activity while quercetin, rutin, β-sitosterol, and lupeol are mainly responsible for its anti-inflammatory and anti-cancer properties. From different toxicological studies, concentrations up to 2,000 mg/kg were considered safe. The present review comprehensively summarizes the ethnomedicine, phytochemistry, pharmacology, and toxicology of T. purpurea. Further research on elucidation of the structure-function relationship among active compounds, understanding of multi-target network pharmacology and clinical applications will intensify its therapeutic potential.
Collapse
Affiliation(s)
- A S Rao
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - S S Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Priya Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Abhishek Nandal
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Neetu Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - S A Ganaie
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Neelam Yadav
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Sonipat, India
| | - Rajesh Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - M S Bhandoria
- Department of Botany, Govt. College, Mahendergarh, India
| | | |
Collapse
|