1
|
Ameer MZ, Rehman AU, Amjad Z, Khan S, Ameer F, Shirwany HAK, Hyder SA, Mohsin A, Haiy AU, Akhtar KH, Rehman AU. Cardiovascular outcomes with SGLT-2 inhibitors in individuals with diabetes and co-existing atrial fibrillation: A systematic review and meta-analysis. Int J Cardiol 2025; 426:133083. [PMID: 39993659 DOI: 10.1016/j.ijcard.2025.133083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/01/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Type 2 diabetes mellitus (T2DM) is a major risk factor for cardiovascular disease and atrial fibrillation. Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) have demonstrated benefit in reducing T2DM-related morbidity and mortality, but their effects in individuals with concomitant T2DM and atrial fibrillation remain unclear. This meta-analysis is the first to evaluate impact of SGLT-2i in this patient population. METHODS PubMed/MEDLINE, Cochrane Library, and reference lists of the included articles were systematically searched. Results were pooled using a random-effects model and outcomes were reported as risk ratios (RR) with 95 % confidence intervals (CIs). Meta-regression analyses based on baseline patient characteristics were conducted to assess potential sources of heterogeneity. RESULTS Seven retrospective cohort studies and one randomized controlled trial corresponding to 37,229 patients were included, of whom 13,030 received SGLT-2i and 24,199 received other oral anti-diabetic drugs. Follow-up ranged from 2 to 5 years. SGLT-2i use was associated with decreased risk of all-cause mortality (RR = 0.37; 95 % CI: 0.28-0.50), heart failure (RR = 0.66; 95 % CI: 0.53-0.83), stroke (RR = 0.76; 95 % CI: 0.66-0.88), and cardiovascular mortality (RR = 0.57; 95 % CI: 0.44-0.74). No significant difference was observed for myocardial infarction (RR = 0.94; 95 % CI: 0.78-1.12). Results were largely consistent across shorter (<3 years) and longer (≥3 years) follow-up durations. Meta-regression demonstrated no significant associations with baseline patient characteristics (age, gender, prior MI, or prior stroke). CONCLUSION SGLT-2i reduced all-cause mortality, heart failure, stroke, and cardiovascular mortality in individuals with T2DM and atrial fibrillation. Large-scale, randomized controlled trials are warranted to confirm these findings.
Collapse
Affiliation(s)
| | - Aqeeb Ur Rehman
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Zunaira Amjad
- Services Institute of Medical Sciences, Lahore, Pakistan
| | - Shajia Khan
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | | | - Hamid A K Shirwany
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Syed Anas Hyder
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aleenah Mohsin
- Rhode Island Hospital, Brown University, Providence, RI, USA
| | - Ata Ul Haiy
- Department of Internal Medicine, UHS Wilson Medical Center, Johnson City, NY, USA
| | - Khawaja Hassan Akhtar
- Department of Cardiovascular Medicine, University of Oklahoma Health Sciences Center, OK, USA
| | - Afzal Ur Rehman
- Department of Cardiology, UHS Heart and Vascular Institute, Johnson City, NY, USA
| |
Collapse
|
2
|
Chang SY, Liao MC, Miyata KN, Pang Y, Zhao XP, Peng J, Rivard A, Ingelfinger JR, Chan JSD, Zhang SL. Canagliflozin inhibits hedgehog interacting protein (Hhip) induction of tubulopathy in diabetic Akita mice. Transl Res 2025; 277:13-26. [PMID: 39756674 DOI: 10.1016/j.trsl.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/18/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025]
Abstract
Renal hedgehog interacting protein (Hhip) activates sodium-glucose cotransporter 2 (Sglt2) expression and promotes tubular senescence in murine diabetic kidney disease (DKD), yet its underlying mechanism(s) are poorly understood. Here we study the effect of the SGLT2 inhibitor, canagliflozin on tubulopathy (fibrosis and apoptosis) in Akita/HhipRPTC-transgenic (Tg) mice with overexpression of Hhip in their renal proximal tubular cells (RPTCs) and its relevant mechanisms. The DKD-tubulopathy with pronounced Sglt2 expression was aggravated in the kidney of Akita/HhipRPTC-Tg cf. Akita/non-Tg mice. A strong association was observed between Hhip and tubular senescence in Nephroseq from the Nakagawa chronic kidney disease study. Both in vivo and in vitro, excessive Hhip in RPTCs triggered RPTC senescence (polyploidization and cytoskeleton destabilization) and released extracellular vesicles (EVs) carrying Hhip (EVsHhip), most of which were apoptotic bodies (ABsHhip) or microvesicles (MVsHhip) and little exosomes (EXOsHhip). Further, Hhip stimulated β2-microglobulin, which further interacts with EVsHhip, together facilitating RPTC turn-over from cellular senescence to fibrosis and/or apoptosis, ultimately leading to advanced tubulopathy. In contrast, canagliflozin administration offset the action of Hhip in RPTCs, thereby preventing DKD progression. In conclusion, canagliflozin prevented excessive Hhip-mediated tubulopathy, possibly via the inhibition of excessive Hhip carried by extracellular vehicles in DKD.
Collapse
Affiliation(s)
- Shiao-Ying Chang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Min-Chun Liao
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Kana N Miyata
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada; Division of Nephrology, Department of Internal Medicine, Saint Louis University, 1008 Spring Ave. St Louis, MO 63110, USA
| | - Yuchao Pang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Xin-Ping Zhao
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Junzheng Peng
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Alain Rivard
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Julie R Ingelfinger
- Pediatric Nephrology Unit, Mass General Hospital for Children at Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - John S D Chan
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada
| | - Shao-Ling Zhang
- Department of Medicine, Université de Montréal, Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), 900 Saint Denis Street, Montréal, QC H2 X 0A9, Canada.
| |
Collapse
|
3
|
Martos-Guillami N, Vergara A, Llorens-Cebrià C, Motto AE, Martínez-Díaz I, Gonçalves F, Garcias-Ramis MM, Allo-Urzainqui E, Narváez A, Bermejo S, Muñoz V, León-Román J, Ferrer-Costa R, Jacobs-Cachá C, Vilardell-Vilà J, Soler MJ. SGLT2i and GLP1-RA exert additive cardiorenal protection with a RAS blocker in uninephrectomized db/db mice. Front Pharmacol 2024; 15:1415879. [PMID: 39434906 PMCID: PMC11491409 DOI: 10.3389/fphar.2024.1415879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/20/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Diabetic Kidney Disease (DKD) is the main cause of end-stage renal disease in the developed world. The current treatment of the DKD with renin-angiotensin system (RAS) blockade does not totally halt the progression to end stage kidney disease. Currently, several drugs have shown to delay DKD progression such as sodium-glucose co-transporter-2 inhibitors (SGLT2i) and glucagon-like-1 receptor agonists (GLP-1RA). We hypothesized that by combining several drugs that prevent DKD progression on top of RAS blockade a synergistic effect would be achieved in terms of cardiorenal protection. In the present study, we analysed if the combination of a RAS blocker (ramipril) with a SGLT2i (empagliflozin) and/or GLP-1RA (semaglutide) in a type 2 diabetic mouse model could have add-on effects in kidney and heart protection. Methods Male and female uninephrectomized type 2 diabetic db/db mice were treated with empagliflozin and/or semaglutide on top of ramipril during 8 weeks. During the study body weight, water and food intake were weekly monitored, glycaemia biweekly and albuminuria and glomerular filtration rate (GFR) before and after the treatment. At the end of the experiment, kidney and heart were isolated for histological and gene expression studies as well as for intrarenal RAS state assessment. Results Semaglutide combined with ramipril and/or empagliflozin significantly decreased albuminuria but only when combined with both compounds, semaglutide further decreased blood glucose, glomerular hyperfiltration in male mice and glomerular mesangial matrix expansion. In kidney, only the triple treatment with empagliflozin, semaglutide and ramipril reduced the expression of the proinflammatory and profibrotic genes ccl2 and TGFß1. In addition, the combination of empagliflozin and semaglutide on top of RAS blockade was superior in decreasing cardiomyocyte hypertrophy and heart fibrosis in db/db mice. Discussion Our results suggest that the combination of SGLT2i with GLP-1RA is superior in cardiorenal protection in DKD than the drugs administered alone on top of RAS blockade.
Collapse
Affiliation(s)
- Nerea Martos-Guillami
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ander Vergara
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III (RD21/0005/0016), Madrid, Spain
| | - Carmen Llorens-Cebrià
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Aku Enam Motto
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Laboratory of Physiology/ Pharmacology, Unit of Pathophysiology, Bioactive Substances and Safety, Faculty of Sciences, University of Lomé, Lomé, Togo
| | - Irene Martínez-Díaz
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Francisco Gonçalves
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Magdalena Garcias-Ramis
- Clinical Biochemistry Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus. Barcelona, Barcelona, Spain
| | - Estibaliz Allo-Urzainqui
- Clinical Biochemistry Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus. Barcelona, Barcelona, Spain
| | - Alonso Narváez
- Urology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sheila Bermejo
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III (RD21/0005/0016), Madrid, Spain
| | - Vicent Muñoz
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan León-Román
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Roser Ferrer-Costa
- Clinical Biochemistry Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus. Barcelona, Barcelona, Spain
| | - Conxita Jacobs-Cachá
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III (RD21/0005/0016), Madrid, Spain
- Clinical Biochemistry Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus. Barcelona, Barcelona, Spain
| | - Jordi Vilardell-Vilà
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María José Soler
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Nephrology Department, Vall d’Hebron Hospital Universitari, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III (RD21/0005/0016), Madrid, Spain
| |
Collapse
|
4
|
Pitsiava S, Dimakopoulos G, Tsimihodimos V, Kotsa K, Koufakis T. Association between clinical and laboratory factors and response to sodium-glucose cotransporter 2 inhibitors in patients with type 2 diabetes: a retrospective observational study. Expert Opin Pharmacother 2024; 25:1095-1104. [PMID: 38822807 DOI: 10.1080/14656566.2024.2364054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND This study aimed to investigate the association between clinical and laboratory parameters and response to therapy with sodium-glucose cotransporter 2 inhibitors (SGLT2i) in patients with type 2 diabetes mellitus (T2D). RESEARCH DESIGN AND METHODS We retrospectively analyzed the medical records of people with T2D in whom SGLT2i was started. Clinical and laboratory parameters were recorded before, 3 and 6 months after starting treatment. Specific criteria were applied to classify participants into good and poor responders in terms of weight loss (primary outcome) and glycemic control (secondary outcome), separately. RESULTS Fifty individuals (64% men) with a mean age of 65.8 ± 8.5 years were included in the analysis. 86% and 64% of the participants were classified into good response categories for glycemic control and weight loss, respectively. Good responders in terms of glycemic control had lower high-density lipoprotein cholesterol levels at baseline compared to poor responders (43.3 vs 57.4 mg/dl, p = 0.044). In the logistic regression analysis, a higher baseline weight was associated with a better response to therapy in terms of weight loss (p = 0.04). CONCLUSIONS Our findings suggest that specific clinical and laboratory parameters are associated with response to SGLT2i treatment and can contribute to a more personalized approach to T2D care.
Collapse
Affiliation(s)
- Sofia Pitsiava
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Georgios Dimakopoulos
- BIOSTATS, Epirus Science and Technology Park Campus of the University of Ioannina, Ioannina, Greece
| | - Vasilis Tsimihodimos
- Department of Internal Medicine, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theocharis Koufakis
- Second Propedeutic Department of Internal Medicine, Hippokration General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
5
|
Tziastoudi M, Pissas G, Golfinopoulos S, Filippidis G, Dousdampanis P, Eleftheriadis T, Stefanidis I. Sodium-Glucose Transporter 2 (SGLT2) Inhibitors and Iron Deficiency in Heart Failure and Chronic Kidney Disease: A Literature Review. Life (Basel) 2023; 13:2338. [PMID: 38137939 PMCID: PMC10744560 DOI: 10.3390/life13122338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Heart failure (HF) and chronic kidney disease (CKD) are associated with high mortality. In both disorders, impaired iron homeostasis, mostly in the form of a functional iron deficiency, is a frequent co-morbidity. In HF, functional iron deficiency and management by i.v. iron supplementation have been proven to affect both prognosis and functional capacity. In the same context, iron supplementation is routine for the adequate management of renal anemia in CKD. In numerous recent studies in HF and in CKD, sodium-glucose transporter 2 (SGLT2) inhibitor treatment has been proven to significantly reduce mortality. Furthermore, the same trials showed that these drugs alleviate iron deficiency and anemia. These effects of SGLT2 inhibitors may be due to an amelioration of inflammation with reduced interleukin-6 (IL-6) and to an enhancement of autophagy with increased sirtuin 1 (SIRT1), both associated with modified production of hepcidin and enhanced ferritinophagy. However, the exact pathogenic basis of the beneficial SGLT2 inhibitor action is not fully elucidated. Nevertheless, effects on iron homeostasis might be a potential explanatory mechanism for the powerful SGLT2 inhibitors' cardiovascular and renal outcome benefits. In addition, the interaction between iron supplementation and SGLT2 inhibitors and its potential impact on prognosis remains to be clarified by future studies. This review represents a significant effort to explore the complex relationships involved, seeking to elucidate the intricate mechanisms by which SGLT2 inhibitors influence iron homeostasis.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Clinic of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (G.P.); (S.G.); (G.F.); (P.D.); (T.E.)
| | | | | | | | | | | | - Ioannis Stefanidis
- Clinic of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41334 Larisa, Greece; (G.P.); (S.G.); (G.F.); (P.D.); (T.E.)
| |
Collapse
|
6
|
Khezri MR, Ghasemnejad-Berenji H, Ghasemnejad-Berenji M. Protective effects of empagliflozin on testicular injury induced by torsion/detorsion in adult male rats. J Pediatr Urol 2023; 19:545.e1-545.e7. [PMID: 37394304 DOI: 10.1016/j.jpurol.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Abstract
INTRODUCTION Testicular torsion is a known urologic emergency condition and one of the common causes of infertility in males. Hence, prompt diagnosis and treatment play a crucial role in prevention of testicular injury. It has been observed that empagliflozin, a drug for management of hyperglycemia, has anti-oxidative properties against different pathologies, the most important of which are ischemia reperfusion related injuries. OBJECTIVE This study aims to evaluate the protective effects of empagliflozin on a testicular torsion injury in adolescent rats followed by ischemia/reperfusion (I/R) phenomena. STUDY DESIGN Thirty-six rats were randomly assigned into three groups including sham-operated group received all surgical procedures except testicular torsion-detorsion, torsion/detorsion + dimethyl sulfoxide (DMSO) as vehicle, and torsion/detorsion + empagliflozin (10 mg/kg). Testicular torsion was performed for 2 h through rotating right testis 720° in the clockwise direction. Thirty minutes before detorsion, a single intraperitoneal dose of empagliflozin was injected to treatment group. Four hours later, orchiectomy was conducted for histopathological and biochemical examinations of testicular tissue specimens. RESULTS The malondialdehyde (MDA) content in the torsion/detorsion animals was markedly greater than in the animals under sham operated procedure. Moreover, the testicular MDA levels in the torsion/detorsion + empagliflozin group were significantly lower than in the torsion/detorsion group. Also, significant decreases observed in catalase, superoxide dismutase, and glutathione peroxidase activities in the torsion/detorsion group in comparison with sham operated group. These values were significantly improved in the empagliflozin group. Furthermore, histopathological examinations also revealed severe testicular injury which were improved by empagliflozin administration. DISCUSSION Empagliflozin prevented increases in oxidative stress markers and subsequently reduced the tissue injury induced by torsion/detorsion in the current study. CONCLUSION It can be concluded that administration of empagliflozin before prevents I/R related cellular damage in testicular torsion, possibly via oxidative stress inhibition.
Collapse
Affiliation(s)
| | - Hojjat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
7
|
Dai ZC, Chen JX, Zou R, Liang XB, Tang JX, Yao CW. Role and mechanisms of SGLT-2 inhibitors in the treatment of diabetic kidney disease. Front Immunol 2023; 14:1213473. [PMID: 37809091 PMCID: PMC10552262 DOI: 10.3389/fimmu.2023.1213473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is a chronic inflammatory condition that affects approximately 20-40% of individuals with diabetes. Sodium-glucose co-transporter 2 (SGLT-2) inhibitors, emerging as novel hypoglycemic agents, have demonstrated significant cardiorenal protective effects in patients with DKD. Initially, it was believed that the efficacy of SGLT-2 inhibitors declined as the estimated glomerular filtration rate (eGFR) decreased, which led to their preferential use in DKD patients at G1-G3 stages. However, recent findings from the DAPA-CKD and EMPA-KIDNEY studies have revealed equally beneficial cardiorenal effects of SGLT-2 inhibitors in individuals at stage G4 DKD, although the underlying mechanism behind this phenomenon remains unclear. In this comprehensive analysis, we provide a systematic review of the mechanisms and functioning of SGLT-2 inhibitors, potential renal protection mechanisms, and the therapeutic efficacy and safety of SGLT-2 inhibitors in kidney diseases, with a particular focus on stage G4 DKD. Gaining a deeper understanding of the renal protective effect of SGLT-2 inhibitors and their underlying mechanisms is highly significance for the successful utilization of these inhibitors in the treatment of diverse kidney disorders.
Collapse
Affiliation(s)
| | | | | | | | - Ji-Xin Tang
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Cui-Wei Yao
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Diseases of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
8
|
Gad EM, Abdel-rahman HG, Abd-el-fattah ME, Kamal MM, Eltahan AS, Dessouki AA. Renoprotective impact of Dapagliflozin and Mulberry extracts toward Fr-STZ induced diabetic nephropathy in rats: Biochemical and Molecular aspects.. [DOI: 10.21203/rs.3.rs-3186379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Among the most typical reasons of end-stage renal disease (ESRD) is diabetic nephropathy (DN), which is also rated as a major microvascular complication of diabetes mellitus. The existent study looked at the impact of dapagliflozin, mulberry fruit and leaves extracts and their combination on the kidney of diabetic rats. To induce diabetic nephropathy, experimental rats were supplied with 10% fructose (Fr) in drinking water for the first two weeks. Each Fr-fed animal received an intraperitoneal injection of a low single dose of STZ (40 mg/kg) after being fasted for the whole night. Sixty albino rats were separated into six equivalent groups. Group I control rats, group II untreated diabetic rats, group III–VI are diabetic groups; received dapagliflozin for 4 weeks, mulberry fruit extract, mulberry leaves extract and combination of DAPA, MFE and MLE, respectively for 6 weeks. Untreated diabetic rats exhibited considerable rise in serum glucose, urea, creatinine, KIM-1, β2-MG, TNF-α, and TGβ1 levels compared to control rats, while treated diabetic ones manifested significant decrease in these measures in contrast to the untreated diabetic rats. Also, renal tissue IL-6, NF-κB and NADPH oxidase manifested significant increase in untreated diabetic rats, while treated groups revealed significant decline in comparison to the untreated one. DAPA and mulberry fruit and leaves extracts optimized IL-10 and renin expression in renal tissue. Histopathological picture of kidney, revealed significant improvement in rats received DAPA and mulberry extracts compared to untreated diabetic rats. It could be concluded that, DAPA, mulberry fruits and leaves extracts alleviated diabetic nephropathy complications. Therefore, combining these ingredients in a supplement may be promising for modulating diabetic nephropathy.
Collapse
|
9
|
The membrane-associated protein 17 (MAP17) is up-regulated in response to empagliflozin on top of RAS blockade in experimental diabetic nephropathy. Clin Sci (Lond) 2023; 137:87-104. [PMID: 36524468 DOI: 10.1042/cs20220447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have proven to delay diabetic kidney disease (DKD) progression on top of the standard of care with the renin-angiotensin system (RAS) blockade. The molecular mechanisms underlying the synergistic effect of SGLT2i and RAS blockers is poorly understood. We gave a SGLT2i (empagliflozin), an angiotensin-converting enzyme inhibitor (ramipril), or a combination of both drugs for 8 weeks to diabetic (db/db) mice. Vehicle-treated db/db and db/m mice were used as controls. At the end of the experiment, mice were killed, and the kidneys were saved to perform a differential high-throughput proteomic analysis by mass spectrometry using isobaric tandem mass tags (TMT labeling) that allow relative quantification of the identified proteins. The differential proteomic analysis revealed 203 proteins differentially expressed in one or more experimental groups (false discovery rate < 0.05 and Log2 fold change ≥ ±1). Fourteen were differentially expressed in the kidneys from the db/db mice treated with empagliflozin with ramipril. Among them, MAP17 was up-regulated. These findings were subsequently validated by Western blot. The combined therapy of empagliflozin and ramipril up-regulated MAP17 in the kidney of a diabetic mice model. MAP17 is a major scaffolding protein of the proximal tubular cells that places transporters together, namely SGLT2 and NHE3. Our results suggest that SGLT2i on top of RAS blockade may protect the kidney by boosting the inactivation of NHE3 via the up-regulation of key scaffolder proteins such as MAP17.
Collapse
|
10
|
Prognostic impact of renal function trajectories in patients with STEMI and kidney dysfunction undergoing primary percutaneous coronary intervention: analysis of ten years all comers registry. Hellenic J Cardiol 2022; 66:1-10. [DOI: 10.1016/j.hjc.2022.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/13/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
|
11
|
Llorens-Cebrià C, Molina-Van den Bosch M, Vergara A, Jacobs-Cachá C, Soler MJ. Antioxidant Roles of SGLT2 Inhibitors in the Kidney. Biomolecules 2022; 12:143. [PMID: 35053290 PMCID: PMC8773577 DOI: 10.3390/biom12010143] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/23/2022] Open
Abstract
The reduction-oxidation (redox) system consists of the coupling and coordination of various electron gradients that are generated thanks to serial reduction-oxidation enzymatic reactions. These reactions happen in every cell and produce radical oxidants that can be mainly classified into reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS modulate cell-signaling pathways and cellular processes fundamental to normal cell function. However, overproduction of oxidative species can lead to oxidative stress (OS) that is pathological. Oxidative stress is a main contributor to diabetic kidney disease (DKD) onset. In the kidney, the proximal tubular cells require a high energy supply to reabsorb proteins, metabolites, ions, and water. In a diabetic milieu, glucose-induced toxicity promotes oxidative stress and mitochondrial dysfunction, impairing tubular function. Increased glucose level in urine and ROS enhance the activity of sodium/glucose co-transporter type 2 (SGLT2), which in turn exacerbates OS. SGLT2 inhibitors have demonstrated clear cardiovascular benefits in DKD which may be in part ascribed to the generation of a beneficial equilibrium between oxidant and antioxidant mechanisms.
Collapse
Affiliation(s)
- Carmen Llorens-Cebrià
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
| | - Mireia Molina-Van den Bosch
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
| | - Ander Vergara
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RD21/0005/0016, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Conxita Jacobs-Cachá
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RD21/0005/0016, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria José Soler
- Nephrology and Transplantation Research Group, Vall d’Hebron Institut de Recerca (VHIR), Vall d’Hebron Barcelona Hospital Campus, Vall d’Hebron Hospital Universitari, 08035 Barcelona, Spain; (C.L.-C.); (M.M.-V.d.B.); (A.V.)
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), RD21/0005/0016, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Wong J, Chan KY, Lo K. Sodium-glucose co-transporter 2 inhibitors on weight change and cardiometabolic profiles in individuals with overweight or obesity and without diabetes: A meta-analysis. Obes Rev 2021; 22:e13336. [PMID: 34542222 DOI: 10.1111/obr.13336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/20/2022]
Abstract
Several meta-analyses have been conducted to evaluate the weight loss effect of sodium-glucose cotransporter 2 (SGLT-2) inhibitors in patients with type 2 diabetes, whereas pooled analysis focusing on individuals without diabetes is lacking. The objective of this systematic review and meta-analysis is to evaluate the effect of SGLT-2 inhibitor monotherapy on weight change and cardiometabolic profiles. Multiple databases were searched for randomized controlled trials reporting weight change effect of SGLT-2 inhibitor treatment compared with placebo for more than 12 weeks among individuals with overweight or obesity and without diabetes. A total of eight randomized controlled trials with 750 subjects were identified. SGLT-2 monotherapy was associated with significant reduction in body weight of -2.32 kg, compared to -1.01 kg for placebo, giving a mean difference of -1.31 kg. Significant reductions in body mass index and fasting blood glucose were observed, but not for the changes in waist circumference, fat mass, blood pressure, and lipid profile compared with placebo. SGLT-2 inhibitor monotherapy for 12 weeks or more can result in modest weight loss among people with overweight or obesity and without diabetes. Depending on pre-existing comorbidities or risk factors, SGLT-2 inhibitors can be considered adjuncts in the treatment of obesity.
Collapse
Affiliation(s)
- John Wong
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kwan Yi Chan
- School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kenneth Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| |
Collapse
|
13
|
Ravindran S, Munusamy S. Renoprotective mechanisms of sodium-glucose co-transporter 2 (SGLT2) inhibitors against the progression of diabetic kidney disease. J Cell Physiol 2021; 237:1182-1205. [PMID: 34713897 DOI: 10.1002/jcp.30621] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 12/19/2022]
Abstract
Sodium-glucose co-transporter 2 inhibitors (SGLT2-Is) have emerged as a promising class of antidiabetic drugs with cardioprotective and renoprotective effects in patients with type 2 diabetes (T2D). The sodium-glucose co-transporters 1 and 2 (SGLT 1 and SGLT2) located in the renal proximal tubules are responsible for glucose reabsorption from the glomerular filtrate back into the systemic circulation. Inhibition of SGLT2, which accounts for about 90% of the glucose reabsorption, leads to a significant reduction in blood glucose levels and a concomitant increase in the urinary excretion of glucose (glycosuria). Multiple mechanisms contribute to the nephroprotective effects of SGLT2-Is in T2D patients. These include: (1) Restoration of the tubuloglomerular feedback by increasing sodium delivery at macula densa, leading to afferent arteriolar constriction and reduced glomerular hyperfiltration, (2) Decreased activation of the intra-renal renin-angiotensin-aldosterone system, which also contributes to reducing glomerular hyperfiltration, (3) Increased production of ketone bodies, which serves as an alternate fuel for adenosine triphosphate production in mitochondria, which helps in attenuating inflammation, and (4) Protection against hypoxia, oxidative stress, and fibrosis. This review elaborates on the key mechanisms that underlie the nephroprotective effects and the adverse effects of SGLT2-Is in T2D patients with progressive diabetic kidney disease.
Collapse
Affiliation(s)
| | - Shankar Munusamy
- Department of Pharmaceutical and Administrative Sciences, Drake University College of Pharmacy and Health Sciences, Des Moines, Iowa, USA
| |
Collapse
|
14
|
Trujillo H, Caravaca-Fontán F, Caro J, Morales E, Praga M. The Forgotten Antiproteinuric Properties of Diuretics. Am J Nephrol 2021; 52:435-449. [PMID: 34233330 DOI: 10.1159/000517020] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/30/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Although diuretics are one of the most widely used drugs by nephrologists, their antiproteinuric properties are not generally taken into consideration. SUMMARY Thiazide diuretics have been shown to reduce proteinuria by >35% in several prospective controlled studies, and these values are markedly increased when combined with a low-salt diet. Thiazide-like diuretics (indapamide and chlorthalidone) have shown similar effectiveness. The antiproteinuric effect of mineralocorticoid receptor antagonists (spironolactone, eplerenone, and finerenone) has been clearly established through prospective and controlled studies, and treatment with finerenone reduces the risk of chronic kidney disease progression in type-2 diabetic patients. The efficacy of other diuretics such as amiloride, triamterene, acetazolamide, or loop diuretics has been less explored, but different investigations suggest that they might share the same antiproteinuric properties of other diuretics that should be evaluated through controlled studies. Although the inclusion of sodium-glucose cotransporter-2 inhibitors (SGLT2i) among diuretics is a controversial issue, their renoprotective and cardioprotective properties, confirmed in various landmark trials, constitute a true revolution in the treatment of patients with kidney disease. Recent subanalyses of these trials have shown that the early antiproteinuric effect induced by SGLT2i predicts long-term preservation of kidney function. Key Message: Whether the early reduction in proteinuria induced by diuretics other than finerenone and SGLT2i, as summarized in this review, also translates into long-term renoprotection requires further prospective and observational studies. In any case, it is important for the clinician to be aware of the antiproteinuric properties of drugs so often used in daily clinical practice.
Collapse
Affiliation(s)
- Hernando Trujillo
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain,
| | | | - Jara Caro
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
| | - Enrique Morales
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Manuel Praga
- Department of Nephrology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Instituto de Investigación Hospital Universitario 12 de Octubre (imas12), Madrid, Spain
- Department of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Chewcharat A, Prasitlumkum N, Thongprayoon C, Bathini T, Medaura J, Vallabhajosyula S, Cheungpasitporn W. Efficacy and Safety of SGLT-2 Inhibitors for Treatment of Diabetes Mellitus among Kidney Transplant Patients: A Systematic Review and Meta-Analysis. Med Sci (Basel) 2020; 8:E47. [PMID: 33213078 PMCID: PMC7712903 DOI: 10.3390/medsci8040047] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The objective of this systematic review was to evaluate the efficacy and safety profiles of sodium-glucose co-transporter 2 (SGLT-2) inhibitors for treatment of diabetes mellitus (DM) among kidney transplant patients. METHODS We conducted electronic searches in Medline, Embase, Scopus, and Cochrane databases from inception through April 2020 to identify studies that investigated the efficacy and safety of SGLT-2 inhibitors in kidney transplant patients with DM. Study results were pooled and analyzed utilizing random-effects model. RESULTS Eight studies with 132 patients (baseline estimated glomerular filtration rate (eGFR) of 64.5 ± 19.9 mL/min/1.73m2) treated with SGLT-2 inhibitors were included in our meta-analysis. SGLT-2 inhibitors demonstrated significantly lower hemoglobin A1c (HbA1c) (WMD = -0.56% [95%CI: -0.97, -0.16]; p = 0.007) and body weight (WMD = -2.16 kg [95%CI: -3.08, -1.24]; p < 0.001) at end of study compared to baseline level. There were no significant changes in eGFR, serum creatinine, urine protein creatinine ratio, and blood pressure. By subgroup analysis, empagliflozin demonstrated a significant reduction in body mass index (BMI) and body weight. Canagliflozin revealed a significant decrease in HbA1C and systolic blood pressure. In terms of safety profiles, fourteen patients had urinary tract infection. Only one had genital mycosis, one had acute kidney injury, and one had cellulitis. There were no reported cases of euglycemic ketoacidosis or acute rejection during the treatment. CONCLUSION Among kidney transplant patients with excellent kidney function, SGLT-2 inhibitors for treatment of DM are effective in lowering HbA1C, reducing body weight, and preserving kidney function without reporting of serious adverse events, including euglycemic ketoacidosis and acute rejection.
Collapse
Affiliation(s)
- Api Chewcharat
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Cambridge, MA 02138, USA
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Charat Thongprayoon
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Tarun Bathini
- Department of Internal Medicine, University of Arizona, Tuscon, AZ 85721, USA;
| | - Juan Medaura
- Department of Internal Medicine, Division of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| | - Saraschandra Vallabhajosyula
- Section of Interventional Cardiology, Department of Medicine, Division of Cardiovascular Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Wisit Cheungpasitporn
- Department of Medicine, Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Department of Internal Medicine, Division of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA;
| |
Collapse
|
16
|
Ortiz A. Ckj consolidation among Q1 Urology and Nephrology journals. Clin Kidney J 2020; 13:723-727. [PMID: 33123351 PMCID: PMC7577766 DOI: 10.1093/ckj/sfaa197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 12/21/2022] Open
Abstract
The Clinical Kidney Journal (ckj) impact factor from Clarivate’s Web of Science for 2019 was 3.388. This consolidates ckj among journals in the top 25% (first quartile, Q1) in the Urology and Nephrology field according to the journal impact factor. The manuscripts contributing the most to the impact factor focused on chronic kidney disease (CKD) epidemiology and evaluation, CKD complications and their management, cost-efficiency of renal replacement therapy, pathogenesis of CKD, familial kidney disease and the environment–genetics interface, onconephrology, technology, SGLT2 inhibitors and outcome prediction. We provide here an overview of the hottest and most impactful topics for 2017–19.
Collapse
Affiliation(s)
- Alberto Ortiz
- IIS-Fundación Jiménez Diaz, Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto Carlos III-FEDER, Madrid, Spain
| |
Collapse
|
17
|
Sarzani R, Giulietti F, Di Pentima C, Spannella F. Sodium-glucose co-transporter-2 inhibitors: peculiar "hybrid" diuretics that protect from target organ damage and cardiovascular events. Nutr Metab Cardiovasc Dis 2020; 30:1622-1632. [PMID: 32631704 DOI: 10.1016/j.numecd.2020.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
AIMS Sodium-glucose co-transporter-2 inhibitors (SGLT2i) have been proven to lead to relevant cardiovascular benefits, regardless of glycemic control function. SGLT2i have on the one hand led to reduction in cardiovascular events such as heart failure and on the other hand to renal protection. Blood pressure reduction and kidney function play a central role in these outcomes. This focused review describes the main mechanisms and clinical aspects of SGLT2i. DATA SYNTHESIS These drugs act on the proximal renal tubule and behave as diuretics with a "hybrid" mechanism, as they can favour both natriuresis and enhanced diuresis due to an osmotic effect dependent on glycosuria, resulting in blood pressure decrease. The exclusive peculiarity of these "diuretics", which distinguishes them from loop and thiazide diuretics, lies also in the activation of the tubule-glomerular feedback. CONCLUSIONS This mechanism, resulting in modulation of arterioles' tone and renin secretion, contributes to the favorable outcomes, suggesting a wider use of SGLT2i in internal medicine, nephrology and cardiology.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS INRCA, Ancona, Italy; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.
| | - Federico Giulietti
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS INRCA, Ancona, Italy; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS INRCA, Ancona, Italy; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Spannella
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, IRCCS INRCA, Ancona, Italy; Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
18
|
Górriz JL, Navarro-González JF, Ortiz A, Vergara A, Nuñez J, Jacobs-Cachá C, Martínez-Castelao A, Soler MJ. Sodium-glucose cotransporter 2 inhibition: towards an indication to treat diabetic kidney disease. Nephrol Dial Transplant 2020; 35:i13-i23. [PMID: 32003834 PMCID: PMC6993197 DOI: 10.1093/ndt/gfz237] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Indexed: 12/19/2022] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have clearly demonstrated their beneficial effect in diabetic kidney disease (DKD) on top of the standard of care [blood glucose control, renin–angiotensin system blockade, smoking cessation and blood pressure (BP) control], even in patients with overt DKD. However, the indication of this drug class is still blood glucose lowering in type 2 diabetic patients with estimated glomerular filtration rate >45 mL/min/1.73 m2. Based on the new evidence, several scientific societies have emphasized the preferential prescription of SGLT2i for patients at risk of heart failure or kidney disease, but still within the limits set by health authorities. A rapid positioning of both the European Medicines Agency and the US Food and Drug Administration will allow patients with overt DKD to benefit from SGLT2i. Clinical experience suggests that SGLT2i safety management may in part mirror renin–angiotensin blockade safety management in patients with overt DKD. This review focuses on the rationale for an indication of SGTL2i in DKD. We further propose clinical steps for maximizing the safety of SGLT2i in DKD patients on other antidiabetic, BP or diuretic medication.
Collapse
Affiliation(s)
- Jose Luis Górriz
- Hospital Clínico Universitario de Valencia, Universitat de València, INCLIVA, GEENDIAB, Valencia, Spain.,REDINREN, Madrid, Spain
| | - Juan F Navarro-González
- REDINREN, Madrid, Spain.,Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain.,Instituto de Tecnologías Biomédicas, Universidad de La Laguna, GEENDIAB, Santa Cruz de Tenerife, Spain
| | - Alberto Ortiz
- REDINREN, Madrid, Spain.,IIS-Fundación Jimenez Diaz UAM and School of Medicine, UAM, GEENDIAB, Madrid, Spain
| | - Ander Vergara
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| | - Julio Nuñez
- Department of Cardiology, Hospital Clínico Universitario de Valencia, Universitat de Valencia, INCLIVA, Valencia, Spain.,CIBER Cardiovascular
| | - Conxita Jacobs-Cachá
- Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| | | | - Maria Jose Soler
- REDINREN, Madrid, Spain.,Department of Nephrology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.,Nephrology Research Group, Vall d'Hebron Research Institute (VHIR), GEENDIAB, Barcelona, Spain
| |
Collapse
|
19
|
Zelniker TA, Braunwald E. Mechanisms of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75:422-434. [PMID: 32000955 DOI: 10.1016/j.jacc.2019.11.031] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 12/15/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new drug class approved for treatment of diabetes, have been shown to possess a favorable metabolic profile and to significantly reduce atherosclerotic events, hospitalization for heart failure, cardiovascular and total mortality, and progression of chronic kidney disease. Although initially considered to be only glucose-lowering agents, the effects of SGLT2i have expanded far beyond that, and their use is now being studied in the treatment of heart failure and chronic kidney disease, even in patients without diabetes. It is therefore critical for cardiologists, diabetologists, nephrologists, and primary care physicians to be familiar with this drug class. This first part of this 2-part review provides an overview of the current understanding of the mechanisms of the cardio-metabolic-renal benefits of SGLT2i. The second part summarizes the recent clinical trials of SGLT2i.
Collapse
Affiliation(s)
- Thomas A Zelniker
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts. https://twitter.com/ZelnikerThomas
| | - Eugene Braunwald
- TIMI Study Group, Cardiovascular Division, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
20
|
Martínez-Castelao A, Soler MJ, Górriz Teruel JL, Navarro-González JF, Fernandez-Fernandez B, de Alvaro Moreno F, Ortiz A. Optimizing the timing of nephrology referral for patients with diabetic kidney disease. Clin Kidney J 2020; 14:5-8. [PMID: 33564400 PMCID: PMC7857795 DOI: 10.1093/ckj/sfaa125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Age-standardized rates of diabetes mellitus (DM)-related complications, such as acute myocardial infarction, stroke or amputations, have decreased in recent years, but this was not associated with a clear reduction of the incidence of advanced chronic kidney disease (CKD) requiring renal replacement therapy. The early detection of diabetic kidney disease (DKD) is a key to reduce complications, morbidity and mortality. Consensus documents and clinical practice guidelines recommend referral of DM patients to nephrology when the estimated glomerular filtration rate falls below 30 mL/min/1.73 m2 or when albuminuria exceeds 300 mg/g urinary creatinine. Conceptually, it strikes as odd that patients with CKD are referred to the specialist caring for the prevention and treatment of CKD only when >70% of the functioning kidney mass has been lost. The increasing global health burden of CKD, driven in large part by DKD, the suboptimal impact of routine care on DKD outcomes as compared with other DM complications, the realization that successful therapy of CKD requires early diagnosis and intervention, the advances in earlier diagnosis of kidney injury and the recent availability of antidiabetic drugs with a renal mechanism of action and lack of hypoglycaemia risk, which additionally are cardio- and nephroprotective, all point towards a paradigm shift in the care for DM patients in which they should be referred earlier to nephrology as part of a coordinated and integrated care approach.
Collapse
Affiliation(s)
- Alberto Martínez-Castelao
- Nephrology department, Bellvitge University Hospital, Barcelona, Spain
- GEENDIAB (Grupo Español de Estudio de la Nefropatía Diabética), Sociedad Española Nefrología (SEN), Santander, Spain
- REDinREN, Instituto Salud Carlos III, Madrid, Spain
- Correspondence to: Alberto Martínez-Castelao; E-mail:
| | - María José Soler
- GEENDIAB (Grupo Español de Estudio de la Nefropatía Diabética), Sociedad Española Nefrología (SEN), Santander, Spain
- REDinREN, Instituto Salud Carlos III, Madrid, Spain
- Nephrology department, Hospital Universitari Vall d’Hebrón, Barcelona, Spain
| | - José Luis Górriz Teruel
- GEENDIAB (Grupo Español de Estudio de la Nefropatía Diabética), Sociedad Española Nefrología (SEN), Santander, Spain
- REDinREN, Instituto Salud Carlos III, Madrid, Spain
- Nephrology department, Hospital Clínico Valencia, INCLIVA, Valencia, Spain
| | - Juan F Navarro-González
- GEENDIAB (Grupo Español de Estudio de la Nefropatía Diabética), Sociedad Española Nefrología (SEN), Santander, Spain
- REDinREN, Instituto Salud Carlos III, Madrid, Spain
- Nephrology department, Unidad Investigación Hospital Nuestra Señora de Candelaria, Tenerife, Spain
| | - Beatriz Fernandez-Fernandez
- REDinREN, Instituto Salud Carlos III, Madrid, Spain
- Nephrology department, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| | - Fernando de Alvaro Moreno
- GEENDIAB (Grupo Español de Estudio de la Nefropatía Diabética), Sociedad Española Nefrología (SEN), Santander, Spain
- Nephrology department, Hospitales Madrid, Madrid, Spain
| | - Alberto Ortiz
- GEENDIAB (Grupo Español de Estudio de la Nefropatía Diabética), Sociedad Española Nefrología (SEN), Santander, Spain
- REDinREN, Instituto Salud Carlos III, Madrid, Spain
- Nephrology department, IIS-Fundación Jiménez Díaz UAM, Madrid, Spain
| |
Collapse
|
21
|
Fernandez-Fernandez B, D’Marco L, Górriz JL, Jacobs-Cachá C, Kanbay M, Luis-Lima S, Porrini E, Sarafidis P, Soler MJ, Ortiz A. Exploring Sodium Glucose Co-Transporter-2 (SGLT2) Inhibitors for Organ Protection in COVID-19. J Clin Med 2020; 9:E2030. [PMID: 32605278 PMCID: PMC7409231 DOI: 10.3390/jcm9072030] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 01/08/2023] Open
Abstract
Hospital admissions and mortality from the Coronavirus disease 2019 (COVID-19) pandemic are spreading throughout the world, and second and third waves are thought to be likely. Risk factors for severe COVID-19 include diabetes, chronic kidney disease and cardiovascular disease. Currently, there is no vaccine and no approved therapy. Therapeutic approaches are aimed at preventing viral replication and spread, limiting the impact of the inflammatory overdrive (cytokine storm), preventing thromboembolic complications and replacing or supporting organ function. However, despite organ support, mortality is currently 65% for those receiving advanced respiratory support and 78% for those requiring renal replacement therapies. Thus, efforts should be made to provide adjuvant organ protection therapy. This may imply novel therapies in clinical development (e.g., the Fas ligand trap asunercept), but uptake of repurposed drugs already in clinical use may be faster. In this regard, sodium glucose co-transporter-2 (SGLT2) inhibitors were recently shown to protect the heart and kidney both within and outside of a diabetic milieu context. Further, preclinical data support a beneficial effect for the lung. We now discuss the potential benefits and risks of SGLT2 inhibitors in COVID-19 and an ongoing clinical trial testing the impact of dapagliflozin on outcomes in COVID-19 patients with respiratory failure.
Collapse
Affiliation(s)
- Beatriz Fernandez-Fernandez
- IIS-Fundación Jiménez Diaz, Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (B.F.-F.); (S.L.-L.)
- Red de Investigación Renal (REDINREN), Instituto Carlos III-FEDER, 28040 Madrid, Spain; (C.J.-C.); (E.P.); (M.J.S.)
| | - Luis D’Marco
- Department of Nephrology, Hospital Clínico Universitario, INCLIVA, 46010 Valencia, Spain; (L.D.); (J.L.G.)
| | - Jose Luis Górriz
- Department of Nephrology, Hospital Clínico Universitario, INCLIVA, 46010 Valencia, Spain; (L.D.); (J.L.G.)
- Medicine Department, Universidad de Valencia, 46010 Valencia, Spain
| | - Conxita Jacobs-Cachá
- Red de Investigación Renal (REDINREN), Instituto Carlos III-FEDER, 28040 Madrid, Spain; (C.J.-C.); (E.P.); (M.J.S.)
- Nephrology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Nephrology Research Group, Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, 43010 Istanbul, Turkey;
| | - Sergio Luis-Lima
- IIS-Fundación Jiménez Diaz, Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (B.F.-F.); (S.L.-L.)
- Red de Investigación Renal (REDINREN), Instituto Carlos III-FEDER, 28040 Madrid, Spain; (C.J.-C.); (E.P.); (M.J.S.)
| | - Esteban Porrini
- Red de Investigación Renal (REDINREN), Instituto Carlos III-FEDER, 28040 Madrid, Spain; (C.J.-C.); (E.P.); (M.J.S.)
- Department of Medicine, Hospital Universitario de Canarias, 38320 Tenerife, Spain
- Instituto de Tecnologías Biomédicas, University of La Laguna, 38320 Tenerife, Spain
| | - Pantelis Sarafidis
- Department of Nephrology, Hippokration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - María José Soler
- Red de Investigación Renal (REDINREN), Instituto Carlos III-FEDER, 28040 Madrid, Spain; (C.J.-C.); (E.P.); (M.J.S.)
- Nephrology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Nephrology Research Group, Vall d’Hebron Research Institute, 08035 Barcelona, Spain
| | - Alberto Ortiz
- IIS-Fundación Jiménez Diaz, Department of Medicine, School of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (B.F.-F.); (S.L.-L.)
- Red de Investigación Renal (REDINREN), Instituto Carlos III-FEDER, 28040 Madrid, Spain; (C.J.-C.); (E.P.); (M.J.S.)
| |
Collapse
|
22
|
Giralt-López A, Molina-Van den Bosch M, Vergara A, García-Carro C, Seron D, Jacobs-Cachá C, Soler MJ. Revisiting Experimental Models of Diabetic Nephropathy. Int J Mol Sci 2020; 21:ijms21103587. [PMID: 32438732 PMCID: PMC7278948 DOI: 10.3390/ijms21103587] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetes prevalence is constantly increasing and, nowadays, it affects more than 350 million people worldwide. Therefore, the prevalence of diabetic nephropathy (DN) has also increased, becoming the main cause of end-stage renal disease (ESRD) in the developed world. DN is characterized by albuminuria, a decline in glomerular filtration rate (GFR), hypertension, mesangial matrix expansion, glomerular basement membrane thickening, and tubulointerstitial fibrosis. The therapeutic advances in the last years have been able to modify and delay the natural course of diabetic kidney disease (DKD). Nevertheless, there is still an urgent need to characterize the pathways that are involved in DN, identify risk biomarkers and prevent kidney failure in diabetic patients. Rodent models provide valuable information regarding how DN is set and its progression through time. Despite the utility of these models, kidney disease progression depends on the diabetes induction method and susceptibility to diabetes of each experimental strain. The classical DN murine models (Streptozotocin-induced, Akita, or obese type 2 models) do not develop all of the typical DN features. For this reason, many models have been crossed to a susceptible genetic background. Knockout and transgenic strains have also been created to generate more robust models. In this review, we will focus on the description of the new DN rodent models and, additionally, we will provide an overview of the available methods for renal phenotyping.
Collapse
Affiliation(s)
- Anna Giralt-López
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
| | - Mireia Molina-Van den Bosch
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
| | - Ander Vergara
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Nephrology Department, Vall d’Hebrón Hospital, 08035 Barcelona, Spain
| | - Clara García-Carro
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Nephrology Department, Vall d’Hebrón Hospital, 08035 Barcelona, Spain
| | - Daniel Seron
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Nephrology Department, Vall d’Hebrón Hospital, 08035 Barcelona, Spain
| | - Conxita Jacobs-Cachá
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Correspondence: (C.J.-C.); (M.J.S.)
| | - Maria José Soler
- Nephrology Research Group, Vall d’Hebrón Institut de Recerca, 08035 Barcelona, Spain; (A.G.-L.); (M.M.-V.d.B.); (A.V.); (C.G.-C.); (D.S.)
- Nephrology Department, Vall d’Hebrón Hospital, 08035 Barcelona, Spain
- Correspondence: (C.J.-C.); (M.J.S.)
| |
Collapse
|
23
|
Matrix Metalloproteinases in Diabetic Kidney Disease. J Clin Med 2020; 9:jcm9020472. [PMID: 32046355 PMCID: PMC7073625 DOI: 10.3390/jcm9020472] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/11/2022] Open
Abstract
Around the world diabetic kidney disease (DKD) is the main cause of chronic kidney disease (CKD), which is characterized by mesangial expansion, glomerulosclerosis, tubular atrophy, and interstitial fibrosis. The hallmark of the pathogenesis of DKD is an increased extracellular matrix (ECM) accumulation causing thickening of the glomerular and tubular basement membranes, mesangial expansion, sclerosis, and tubulointerstitial fibrosis. The matrix metalloproteases (MMPs) family are composed of zinc-dependent enzymes involved in the degradation and hydrolysis of ECM components. Several MMPs are expressed in the kidney; nephron compartments, vasculature and connective tissue. Given their important role in DKD, several studies have been performed in patients with DKD proposing that the measurement of their activity in serum or in urine may become in the future markers of early DKD. Studies from diabetic nephropathy experimental models suggest that a balance between MMPs levels and their inhibitors is needed to maintain renal homeostasis. This review focuses in the importance of the MMPs within the kidney and their modifications at the circulation, kidney and urine in patients with DKD. We also cover the most important studies performed in experimental models of diabetes in terms of MMPs levels, renal expression and its down-regulation effect.
Collapse
|
24
|
Martin WP, White J, López-Hernández FJ, Docherty NG, le Roux CW. Metabolic Surgery to Treat Obesity in Diabetic Kidney Disease, Chronic Kidney Disease, and End-Stage Kidney Disease; What Are the Unanswered Questions? Front Endocrinol (Lausanne) 2020; 11:289. [PMID: 33013677 PMCID: PMC7462008 DOI: 10.3389/fendo.2020.00289] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Obesity is a major factor in contemporary clinical practice in nephrology. Obesity accelerates the progression of both diabetic and non-diabetic chronic kidney disease and, in renal transplantation, both recipient and donor obesity increase the risk of allograft complications. Obesity is thus a major driver of renal disease progression and a barrier to deceased and living donor kidney transplantation. Large observational studies have highlighted that metabolic surgery reduces the incidence of albuminuria, slows chronic kidney disease progression, and reduces the incidence of end-stage kidney disease over extended follow-up in people with and without type 2 diabetes. The surgical treatment of obesity and its metabolic sequelae has therefore the potential to improve management of diabetic and non-diabetic chronic kidney disease and aid in the slowing of renal decline toward end-stage kidney disease. In the context of patients with end-stage kidney disease, although complications of metabolic surgery are higher, absolute event rates are low and it remains a safe intervention in this population. Pre-transplant metabolic surgery increases access to kidney transplantation in people with obesity and end-stage kidney disease. Metabolic surgery also improves management of metabolic complications post-kidney transplantation, including new-onset diabetes. Procedure selection may be critical to mitigate the risks of oxalate nephropathy and disruption to immunosuppressant pharmacokinetics. Metabolic surgery may also have a role in the treatment of donor obesity, which could increase the living kidney donor pool with potential downstream impact on kidney paired exchange programmes. The present paper provides a comprehensive coverage of the literature concerning renal outcomes in clinical studies of metabolic surgery and integrates findings from relevant mechanistic pre-clinical studies. In so doing the key unanswered questions for the field are brought to the fore for discussion.
Collapse
Affiliation(s)
- William P. Martin
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- *Correspondence: William P. Martin
| | - James White
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Francisco J. López-Hernández
- Instituto de Estudios de Ciencias de la Salud de Castilla y León-Instituto de Investigación Biomédica de Salamanca (IECSCYL-IBSAL), Hospital Virgen Vega, Salamanca, Spain
| | - Neil G. Docherty
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Carel W. le Roux
- Diabetes Complications Research Centre, School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Division of Investigative Science, Imperial College London, London, United Kingdom
| |
Collapse
|