1
|
Zamora‐Camacho FJ, Aragón P. Increased Temperature and Exposure to Ammonium Alter the Life Cycle of an Anuran Species. Ecol Evol 2024; 14:e70685. [PMID: 39629171 PMCID: PMC11612019 DOI: 10.1002/ece3.70685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
Amphibian populations are undergoing a major recession worldwide, likely triggered by global change components such as the global warming and pollutants, among which agrochemicals, in general, and fertilizers, in particular, play a central role given their relevance in agriculture. Potential synergies among these stressors could maximize their individual effects. In this work, we investigated the consequences of a controlled chronic exposure to increased temperature and a sublethal dose of ammonium during the larval stage of Pelophylax perezi frogs on the growth, development, and locomotor performance of tadpoles and the metamorphs they gave rise to. To that end, tadpoles were reared either in heated or nonheated tanks, with or without ammonium added. The parents of these tadpoles came from either a pine grove or an agrosystem. Survival was reduced in agrosystem tadpoles reared with ammonium. Increased temperature potentiated tadpole growth while giving way to smaller metamorphs. Faster growth could be a consequence of increased metabolism, whereas the smaller size could follow an accelerated development and metamorphosis, which reduced the growth period. Also, swimming speed was greater in tadpoles reared in heated tanks, while jumping distance was greater in metamorphs reared in nonheated tanks. The effects of temperature were more marked in agrosystem than in pine grove individuals, which could mirror reduced adaptability. Thus, the ability to withstand the effects of these stressors was lower in agrosystem tadpoles.
Collapse
Affiliation(s)
- Francisco Javier Zamora‐Camacho
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
- Department of Biology of Organisms and SystemsUniversity of OviedoOviedoSpain
| | - Pedro Aragón
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC)MadridSpain
| |
Collapse
|
2
|
Riddell EA, Burger IJ, Muñoz MM, Weaver SJ, Womack MC. Amphibians Exhibit Extremely High Hydric Costs of Respiration. Integr Comp Biol 2024; 64:366-376. [PMID: 38802122 DOI: 10.1093/icb/icae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/10/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024] Open
Abstract
Terrestrial environments pose many challenges to organisms, but perhaps one of the greatest is the need to breathe while maintaining water balance. Breathing air requires thin, moist respiratory surfaces, and thus the conditions necessary for gas exchange are also responsible for high rates of water loss that lead to desiccation. Across the diversity of terrestrial life, water loss acts as a universal cost of gas exchange and thus imposes limits on respiration. Amphibians are known for being vulnerable to rapid desiccation, in part because they rely on thin, permeable skin for cutaneous respiration. Yet, we have a limited understanding of the relationship between water loss and gas exchange within and among amphibian species. In this study, we evaluated the hydric costs of respiration in amphibians using the transpiration ratio, which is defined as the ratio of water loss (mol H2O d-1) to gas uptake (mol O2 d-1). A high ratio suggests greater hydric costs relative to the amount of gas uptake. We compared the transpiration ratio of amphibians with that of other terrestrial organisms to determine whether amphibians had greater hydric costs of gas uptake relative to plants, insects, birds, and mammals. We also evaluated the effects of temperature, humidity, and body mass on the transpiration ratio both within and among amphibian species. We found that hydric costs of respiration in amphibians were two to four orders of magnitude higher than the hydric costs of plants, insects, birds, and mammals. We also discovered that larger amphibians had lower hydric costs than smaller amphibians, at both the species- and individual-level. Amphibians also reduced the hydric costs of respiration at warm temperatures, potentially reflecting adaptive strategies to avoid dehydration while also meeting the demands of higher metabolic rates. Our results suggest that cutaneous respiration is an inefficient mode of respiration that produces the highest hydric costs of respiration yet to be measured in terrestrial plants and animals. Yet, amphibians largely avoid these costs by selecting aquatic or moist environments, which may facilitate more independent evolution of water loss and gas exchange.
Collapse
Affiliation(s)
- Eric A Riddell
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Isabella J Burger
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA
| | - Savannah J Weaver
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Molly C Womack
- Department of Biology, Utah State University, Logan, UT 84322, USA
| |
Collapse
|
3
|
Coppari L, Di Gregorio M, Corti C, Merilli S, Mulargia M, Cogoni R, Manenti R, Ficetola GF, Lunghi E. Four years monitoring of the endangered European plethodontid salamanders. Sci Data 2024; 11:706. [PMID: 38937493 PMCID: PMC11211419 DOI: 10.1038/s41597-024-03555-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024] Open
Abstract
The ongoing biodiversity crisis is strongly threatening amphibians, mostly because of their peculiar physiology, their sensitivity to climate change and the spread of diseases. Effective monitoring involving assessments of pressure effects across time and estimation of population trends play a key role in mitigating amphibian decline. To improve implementation of standardized protocols and conservation efforts, we present here a dataset related to one of the amphibian genera whose onservation status is considered the most declining according to the IUCN. We report information on 66 populations of the endangered European cave salamanders, genus Speleomantes, that was collected through a standardized monitoring along a four-year period (2021-2024). Demographics data of the populations and fitness-related data of single individuals are reported. Furthermore, we include 3,836 high quality images of individuals that can allow to perform studies aiming to assess the phenotypic variability within the genus, and to perform long-term capture-mark-recaptured studies.
Collapse
Affiliation(s)
- Luca Coppari
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Claudia Corti
- Natural History Museum of the University of Firenze, Museo "La Specola", Firenze, Italy
- Speleo Club Firenze, Firenze, Italy
| | | | | | - Roberto Cogoni
- Unione Speleologica Cagliaritana, Quartu Sant'Elena, Cagliari, Italy
| | - Raoul Manenti
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
- Laboratoire d'Écologie Alpine (LECA), University of Grenoble Alpes, CNRS, Grenoble, France
| | - Enrico Lunghi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.
- Natural Oasis, Prato, Italy.
- Unione Speleologica Calenzano, Calenzano (Florence), Italy.
| |
Collapse
|
4
|
Awkerman JA, Glinski DA, Henderson WM, Van Meter R, Purucker ST. Framework for multi-stressor physiological response evaluation in amphibian risk assessment and conservation. Front Ecol Evol 2024; 12:1-16. [PMID: 39679000 PMCID: PMC11636185 DOI: 10.3389/fevo.2024.1336747] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024] Open
Abstract
Controlled laboratory experiments are often performed on amphibians to establish causality between stressor presence and an adverse outcome. However, in the field, identification of lab-generated biomarkers from single stressors and the interactions of multiple impacts are difficult to discern in an ecological context. The ubiquity of some pesticides and anthropogenic contaminants results in potentially cryptic sublethal effects or synergistic effects among multiple stressors. Although biochemical pathways regulating physiological responses to toxic stressors are often well-conserved among vertebrates, different exposure regimes and life stage vulnerabilities can yield variable ecological risk among species. Here we examine stress-related biomarkers, highlight endpoints commonly linked to apical effects, and discuss differences in ontogeny and ecology that could limit interpretation of biomarkers across species. Further we identify promising field-based physiological measures indicative of potential impacts to health and development of amphibians that could be useful to anuran conservation. We outline the physiological responses to common stressors in the context of altered functional pathways, presenting useful stage-specific endpoints for anuran species, and discussing multi-stressor vulnerability in the larger framework of amphibian life history and ecology. This overview identifies points of physiological, ecological, and demographic vulnerability to provide context in evaluating the multiple stressors impacting amphibian populations worldwide for strategic conservation planning.
Collapse
Affiliation(s)
- Jill A. Awkerman
- Center for Ecosystem Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Gulf Breeze, FL, United States
| | - Donna A. Glinski
- Center for Ecosystem Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Athens, GA, United States
| | - W. Matthew Henderson
- Center for Ecosystem Measurement and Modeling, Office of Research and Development, US Environmental Protection Agency, Athens, GA, United States
| | - Robin Van Meter
- Environmental Science and Studies, Washington College, Chestertown, MD, United States
| | - S. Thomas Purucker
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Durham, NC, United States
| |
Collapse
|
5
|
Moran PA, Bosse M, Mariën J, Halfwerk W. Genomic footprints of (pre) colonialism: Population declines in urban and forest túngara frogs coincident with historical human activity. Mol Ecol 2024; 33:e17258. [PMID: 38153193 DOI: 10.1111/mec.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Urbanisation is rapidly altering ecosystems, leading to profound biodiversity loss. To mitigate these effects, we need a better understanding of how urbanisation impacts dispersal and reproduction. Two contrasting population demographic models have been proposed that predict that urbanisation either promotes (facilitation model) or constrains (fragmentation model) gene flow and genetic diversity. Which of these models prevails likely depends on the strength of selection on specific phenotypic traits that influence dispersal, survival, or reproduction. Here, we a priori examined the genomic impact of urbanisation on the Neotropical túngara frog (Engystomops pustulosus), a species known to adapt its reproductive traits to urban selective pressures. Using whole-genome resequencing for multiple urban and forest populations we examined genomic diversity, population connectivity and demographic history. Contrary to both the fragmentation and facilitation models, urban populations did not exhibit substantial changes in genomic diversity or differentiation compared with forest populations, and genomic variation was best explained by geographic distance rather than environmental factors. Adopting an a posteriori approach, we additionally found both urban and forest populations to have undergone population declines. The timing of these declines appears to coincide with extensive human activity around the Panama Canal during the last few centuries rather than recent urbanisation. Our study highlights the long-lasting legacy of past anthropogenic disturbances in the genome and the importance of considering the historical context in urban evolution studies as anthropogenic effects may be extensive and impact nonurban areas on both recent and older timescales.
Collapse
Affiliation(s)
- Peter A Moran
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mirte Bosse
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Janine Mariën
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wouter Halfwerk
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Dallas JW, Kazarina A, Lee STM, Warne RW. Cross-species gut microbiota transplantation predictably affects host heat tolerance. J Exp Biol 2024; 227:jeb246735. [PMID: 38073469 PMCID: PMC10906491 DOI: 10.1242/jeb.246735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/29/2023] [Indexed: 01/11/2024]
Abstract
The gut microbiome is known to influence and have regulatory effects in diverse physiological functions of host animals, but only recently has the relationship between host thermal biology and gut microbiota been explored. Here, we examined how early-life manipulations of the gut microbiota in larval amphibians influenced their critical thermal maximum (CTmax) at different acclimation temperatures. We stripped the resident microbiome from egg masses of wild-caught wood frogs (Lithobates sylvaticus) via an antibiotic wash, and then inoculated the eggs with pond water (control), no inoculation, or the intestinal microbiota of another species that has a wider thermal tolerance - green frogs (Lithobates clamitans). We predicted that this cross-species transplant would increase the CTmax of the recipient wood frog larvae relative to the other treatments. In line with this prediction, green frog microbiome-recipient larvae had the highest CTmax while those with no inoculum had the lowest CTmax. Both the microbiome treatment and acclimation temperature significantly influenced the larval gut microbiota communities and α-diversity indices. Green frog microbiome-inoculated larvae were enriched in Rikenellaceae relative to the other treatments, which produce short-chain fatty acids and could contribute to greater energy availability and enhanced heat tolerance. Larvae that received no inoculation had a higher relative abundance of potentially pathogenic Aeromonas spp., which negatively affects host health and performance. Our results are the first to show that cross-species gut microbiota transplants alter heat tolerance in a predictable manner. This finding has repercussions for the conservation of species that are threatened by climate change and demonstrates a need to further explore the mechanisms by which the gut microbiota modulate host thermal tolerance.
Collapse
Affiliation(s)
- Jason W. Dallas
- Southern Illinois University,School of Biological Sciences, 1125 Lincoln Dr., Carbondale, IL 62901-6501, USA
| | - Anna Kazarina
- Kansas State University, Division of Biology, 1717 Claflin Rd, Manhattan, KS 66506, USA
| | - Sonny T. M. Lee
- Kansas State University, Division of Biology, 1717 Claflin Rd, Manhattan, KS 66506, USA
| | - Robin W. Warne
- Southern Illinois University,School of Biological Sciences, 1125 Lincoln Dr., Carbondale, IL 62901-6501, USA
| |
Collapse
|
7
|
Coba-Males MA, Medrano-Vizcaíno P, Enríquez S, Brito-Zapata D, Martin-Solano S, Ocaña-Mayorga S, Carrillo-Bilbao GA, Narváez W, Salas JA, Arrivillaga-Henríquez J, González-Suárez M, Poveda A. From roads to biobanks: Roadkill animals as a valuable source of genetic data. PLoS One 2023; 18:e0290836. [PMID: 38060478 PMCID: PMC10703236 DOI: 10.1371/journal.pone.0290836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/15/2023] [Indexed: 12/18/2023] Open
Abstract
To protect biodiversity we must understand its structure and composition including the bacteria and microparasites associated with wildlife, which may pose risks to human health. However, acquiring this knowledge often presents challenges, particularly in areas of high biodiversity where there are many undescribed and poorly studied species and funding resources can be limited. A solution to fill this knowledge gap is sampling roadkill (animals that die on roads as a result of collisions with circulating vehicles). These specimens can help characterize local wildlife and their associated parasites with fewer ethical and logistical challenges compared to traditional specimen collection. Here we test this approach by analyzing 817 tissue samples obtained from 590 roadkill vertebrate specimens (Amphibia, Reptilia, Aves and Mammalia) collected in roads within the Tropical Andes of Ecuador. First, we tested if the quantity and quality of recovered DNA varied across roadkill specimens collected at different times since death, exploring if decomposition affected the potential to identify vertebrate species and associated microorganisms. Second, we compared DNA stability across taxa and tissues to identify potential limitations and offer recommendations for future work. Finally, we illustrate how these samples can aid in taxonomic identification and parasite detection. Our study shows that sampling roadkill can help study biodiversity. DNA was recovered and amplified (allowing species identification and parasite detection) from roadkill even 120 hours after death, although risk of degradation increased overtime. DNA was extracted from all vertebrate classes but in smaller quantities and with lower quality from amphibians. We recommend sampling liver if possible as it produced the highest amounts of DNA (muscle produced the lowest). Additional testing of this approach in areas with different environmental and traffic conditions is needed, but our results show that sampling roadkill specimens can help detect and potentially monitor biodiversity and could be a valuable approach to create biobanks and preserve genetic data.
Collapse
Affiliation(s)
- Manuel Alejandro Coba-Males
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito, Ecuador
| | - Pablo Medrano-Vizcaíno
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, United Kingdom
- Universidad Regional Amazónica IKIAM, Grupo de Investigación Población y Ambiente, Tena, Ecuador
- Red Ecuatoriana para el Monitoreo de Fauna Atropellada-REMFA, Quito, Ecuador
| | - Sandra Enríquez
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito, Ecuador
| | - David Brito-Zapata
- Red Ecuatoriana para el Monitoreo de Fauna Atropellada-REMFA, Quito, Ecuador
- Instituto iBIOTROP, Museo de Zoología & Laboratorio de Zoología Terrestre, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Sarah Martin-Solano
- Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí, Ecuador
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Gabriel Alberto Carrillo-Bilbao
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito, Ecuador
| | - Wilmer Narváez
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito, Ecuador
| | - Jaime Antonio Salas
- Facultad de Ciencias Naturales, Carrera de Biología, Universidad de Guayaquil, Guayaquil, Ecuador
| | - Jazzmín Arrivillaga-Henríquez
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito, Ecuador
| | - Manuela González-Suárez
- Ecology and Evolutionary Biology, School of Biological Sciences, University of Reading, Reading, United Kingdom
| | - Ana Poveda
- Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública (GIBCIZ), Instituto de Investigación en Zoonosis (CIZ), Facultad de Ciencias Químicas (FCQ), Universidad Central del Ecuador, Quito, Ecuador
| |
Collapse
|
8
|
Heard GW, Bolitho LJ, Newell D, Hines HB, Norman P, Willacy RJ, Scheele BC. Drought, fire, and rainforest endemics: A case study of two threatened frogs impacted by Australia's "Black Summer". Ecol Evol 2023; 13:e10069. [PMID: 37214614 PMCID: PMC10197140 DOI: 10.1002/ece3.10069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/31/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
Deepening droughts and unprecedented wildfires are at the leading edge of climate change. Such events pose an emerging threat to species maladapted to these perturbations, with the potential for steeper declines than may be inferred from the gradual erosion of their climatic niche. This study focused on two species of amphibians-Philoria kundagungan and Philoria richmondensis (Limnodynastidae)-from the Gondwanan rainforests of eastern Australia that were extensively affected by the "Black Summer" megafires of 2019/2020 and the severe drought associated with them. We sought to assess the impact of these perturbations by quantifying the extent of habitat affected by fire, assessing patterns of occurrence and abundance of calling males post-fire, and comparing post-fire occurrence and abundance with that observed pre-fire. Some 30% of potentially suitable habitat for P. kundagungan was fire affected, and 12% for P. richmondensis. Field surveys revealed persistence in some burnt rainforest; however, both species were detected at a higher proportion of unburnt sites. There was a clear negative effect of fire on the probability of site occupancy, abundance and the probability of persistence for P. kundagungan. For P. richmondensis, effects of fire were less evident due to the limited penetration of fire into core habitat; however, occupancy rates and abundance of calling males were depressed during the severe drought that prevailed just prior to the fires, with the reappearance of calling males linked to the degree of rehydration of breeding habitat post-fire. Our results highlight the possibility that severe negative impacts of climate change for montane rainforest endemics may be felt much sooner than commonly anticipated under a scenario of gradual (decadal-scale) changes in mean climatic conditions. Instead, the increased rate of severe stochastic events places these narrow range species at a heightened risk of extinction in the near-term.
Collapse
Affiliation(s)
- Geoffrey W. Heard
- Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Terrestrial Ecosystem Research NetworkUniversity of QueenslandBrisbaneQueenslandAustralia
- Centre for Biodiversity and Conservation ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
| | - Liam J. Bolitho
- Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - David Newell
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Harry B. Hines
- Department of Environment and ScienceQueensland Parks and Wildlife Service and PartnershipsBellbowrieQueenslandAustralia
- Queensland MuseumSouth BrisbaneQueenslandAustralia
| | - Patrick Norman
- Climate Action BeaconGriffith UniversityGold CoastQueenslandAustralia
| | - Rosalie J. Willacy
- Centre for Biodiversity and Conservation ScienceUniversity of QueenslandBrisbaneQueenslandAustralia
- Faculty of Science and EngineeringSouthern Cross UniversityLismoreNew South WalesAustralia
| | - Ben C. Scheele
- Fenner School of Environment and SocietyAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
9
|
Montori A, Amat F. Surviving on the edge: present and future effects of climate warming on the common frog ( Rana temporaria) population in the Montseny massif (NE Iberia). PeerJ 2023; 11:e14527. [PMID: 36655044 PMCID: PMC9841900 DOI: 10.7717/peerj.14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/15/2022] [Indexed: 01/15/2023] Open
Abstract
The Montseny massif shelters the southernmost western populations of common frogs (Rana temporaria) that live in a Mediterranean climate, one which poses a challenge for the species' persistence in a scenario of rising temperatures. We evaluated the effect of climate change at three levels. First, we analysed if there has been an advancement in the onset of spawning period due to the increase in temperatures. Second, we analysed the impact of climatic variables on the onset of the spawning period and, third, how the distribution of this species could vary according to the predictions with regard to rising temperatures for the end of this century. From 2009 to 2021, we found there had been an increase in temperatures of 0.439 °C/decade, more than the 0.1 °C indicated by estimates for the second half of the previous century. We found an advancement in the onset of the reproduction process of 26 days/decade for the period 2009-2022, a change that has been even more marked during the last eight years, when data were annually recorded. Minimum temperatures and the absence of frost days in the week prior to the onset of the spawning period determine the start of reproduction. Predictions on habitat availability for spawning provided by climatic niche analysis for the period 2021-2100 show a potential contraction of the species range in the Montseny and, remarkably, much isolation from the neighbouring populations.
Collapse
Affiliation(s)
- Albert Montori
- Herpetology, Centre de Recerca i Estudis Ambientals de Calafell (CREAC/GRENP), Calafell, Catalonia, Spain
| | - Fèlix Amat
- Herpetological Section (BiBIO), Natural History Museum of Granollers, Granollers, Catalonia, Spain
| |
Collapse
|
10
|
Demare G, Spieler M, Grabow K, Rödel MO. Savanna vegetation increase triggers freshwater community shifts. GLOBAL CHANGE BIOLOGY 2022; 28:7023-7037. [PMID: 36172863 DOI: 10.1111/gcb.16423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/29/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Tropical savannas are globally extensive and ecologically invaluable ecosystems. As most ecosystems however, they are subject to serious anthropogenic stress. Defaunation, and especially the loss of large mammals, is pervasive in tropical savannas and known to trigger wide-ranging ecological effects, from vegetation changes to the loss of ecosystem function. Despite what is currently known about the terrestrial consequences of defaunation, and the potential cross-ecosystem influence of large mammals, virtually no research has investigated associated effects on small adjacent water bodies. This research gap persists because (1) tropical savannas have been historically neglected, (2) the ecological value of small water bodies (e.g. ponds) is only recently being recognized, and (3) empirical baseline data are often lacking. In this paper, we compared a rare pre-change dataset with newly collected data on 213 freshwater assemblages, to investigate community structure and composition before and after a major defaunation event. Our research focused on a diverse species assemblage of amphibian larvae (i.e. tadpoles) in temporary savanna ponds. We found that pond vegetation cover increased from 16.0% to 45.6% post-defaunation, that is, a near three-fold increase. Such habitat changes seemed to have benefitted those species that use vegetation during reproduction (e.g. the leaf-folding Afrixalus spp.), while others have declined. Interestingly, we found a strong correlation between tadpole community shifts and other freshwater organisms, which indicates that habitat changes have affected a wide variety of aquatic organisms. Given that organisms inhabiting temporary aquatic habitats often have complex life histories with terrestrial adult life stages, we propose that the terrestrial effects of defaunation have indirectly led to distinct aquatic communities, in addition to direct habitat effects. These results shed new light on the potential role of large-bodied mammals in shaping adjacent ecosystems, and raise important questions concerning the functioning of temporary aquatic systems in the Anthropocene.
Collapse
Affiliation(s)
- Guillaume Demare
- Museum für Naturkunde-Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany
| | - Marko Spieler
- Museumsschule Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | | | - Mark-Oliver Rödel
- Museum für Naturkunde-Leibniz Institute for Research on Evolution and Biodiversity, Berlin, Germany
| |
Collapse
|
11
|
Hoffmann EP, Mitchell NJ. Breeding phenology of a terrestrial‐breeding frog is associated with soil water potential: Implications for conservation in a changing climate. AUSTRAL ECOL 2021. [DOI: 10.1111/aec.13122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emily P. Hoffmann
- School of School of Biological Sciences The University of Western Australia Crawley Western Australia 6009 Australia
| | - Nicola J. Mitchell
- School of School of Biological Sciences The University of Western Australia Crawley Western Australia 6009 Australia
| |
Collapse
|