1
|
Alonso Á, Llandres-Díez MC, Cruces-Estepa P. Contrasting behavioural responses to concurrent stressors in an aquatic snail: the importance of stress type and combination. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:248-257. [PMID: 39565533 DOI: 10.1007/s10646-024-02835-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 11/21/2024]
Abstract
Behaviour is a fundamental parameter for understanding the animal fitness, serving as an indicator of exposure to stressors. In ecosystems, animals often face multiple stressors simultaneously. Their behavioural responses may vary when exposed to individual stressors, whilst synergistic, additive, or antagonistic effects can result from the interaction of multiple stressors. Therefore, it is imperative to conduct studies that take into account the common occurrence of multi-stress scenarios in aquatic ecosystems. We tested the effects of three sources of stress (acidity (A), toxicity with acetone (T) and conspecific chemical cues (S)) on the behaviour of the aquatic snail Potamopyrgus antipodarum (Tateidae, Mollusca). We evaluated the impact of each stressor, as well as in combinations of two or three stressors simultaneously. The highest time to initiate movement was shown by the animals of the low water pH (A) followed by those exposed to the combination of low water pH and acetone exposure (AT). The differences between the time to initiate movement of each treatment with control revealed a marked decrease in the differences for the snails from the conspecific chemical cues (S) and ST treatments, which mean a higher time to initiate movements. It is concluded that behaviour varied depending on the source and combination of stress. While an acid environment and conspecific signals had contrasting effects when applied separately, their simultaneous exposure resulted in no significant impact. This highlights the importance of considering the combined effects of multiple stressors when extrapolating laboratory results to real-world scenarios, where organisms are often exposed to more than one stressor at a time.
Collapse
Affiliation(s)
- Álvaro Alonso
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego s/n, 28801, Alcalá de Henares, Madrid, Spain.
| | - M C Llandres-Díez
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego s/n, 28801, Alcalá de Henares, Madrid, Spain
| | - P Cruces-Estepa
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Ciencias de la Vida, Unidad de Ecología, Biological Invasions Research Group, Universidad de Alcalá, Plaza de San Diego s/n, 28801, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
2
|
Madesh S, Gopi S, Sau A, Rajagopal R, Namasivayam SKR, Arockiaraj J. Chemical contaminants and environmental stressors induced teratogenic effect in aquatic ecosystem - A comprehensive review. Toxicol Rep 2024; 13:101819. [PMID: 39649382 PMCID: PMC11625353 DOI: 10.1016/j.toxrep.2024.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/08/2024] [Accepted: 11/16/2024] [Indexed: 12/10/2024] Open
Abstract
Aquatic environments, including marine and freshwater ecosystems, are vital for ecological balance and biodiversity. The rising global demand for aquaculture products necessitates increased production, with intensified aquaculture practices posing significant environmental risks. This review explores the pathways through which chemical pollutants, heavy metals, pharmaceuticals, and environmental stressors induce teratogenic effects in aquatic species. The review highlights the impact of pesticide include triazine herbicides, organophosphate and organochlorine insecticides, and carbamates on aquatic life, emphasizing their interference with endocrine systems and developmental processes. Heavy metals like mercury, lead, cadmium, arsenic, and chromium are noted for their persistence and bioaccumulative properties, disrupting cellular and hormonal functions. Pharmaceuticals, including NSAIDs, antibiotics, and chemotherapeutic agents, exert teratogenic effects by disrupting physiological and developmental pathways. Environmental stressors includes temperature fluctuations, salinity variations, pH changes, and oxygen level imbalances exacerbate the teratogenic impact of pollutants. This review highlights the importance of comprehensive environmental management and understanding these complex interactions is essential for formulating efficient strategies to safeguard the effective measures to protect aquatic ecosystems and the biodiversity.
Collapse
Affiliation(s)
- S. Madesh
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Sanjai Gopi
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Avra Sau
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - S. Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu 602105, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| |
Collapse
|
3
|
Pathak CR, Luitel H, Utaaker KS, Khanal P. One-health approach on the future application of snails: a focus on snail-transmitted parasitic diseases. Parasitol Res 2023; 123:28. [PMID: 38082123 PMCID: PMC10713800 DOI: 10.1007/s00436-023-08021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023]
Abstract
Snails are fascinating molluscs with unique morphological and physiological adaptive features to cope with various environments. They have traditionally been utilized as food and feed sources in many regions of the world. The future exploitation of alternative nutrient sources, like snails, is likely to increase further. Snails, however, also serve as an intermediate host for several zoonotic parasites. A category of parasitic infections, known as snail-transmitted parasitic diseases (STPDs), is harmful to humans and animals and is mainly driven by various trematodes, cestodes, and nematodes. The environment plays a crucial role in transmitting these parasites, as suitable habitats and conditions can facilitate their growth and proliferation in snails. In light of diverse environmental settings and biologically categorized snail species, this review evaluates the dynamics of significant STPDs of zoological importance. Additionally, possible diagnostic approaches for the prevention of STPDs are highlighted. One-health measures must be considered when employing snails as an alternative food or feed source to ensure the safety of snail-based products and prevent any adverse effects on humans, animals, and the environment.
Collapse
Affiliation(s)
- Chet Raj Pathak
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, Nepal.
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, 7713, Steinkjer, Norway.
| | - Himal Luitel
- Center for Biotechnology, Agriculture and Forestry University, Rampur, Nepal
| | - Kjersti Selstad Utaaker
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, 7713, Steinkjer, Norway
| | - Prabhat Khanal
- Animal Science, Production and Welfare Division, Faculty of Biosciences and Aquaculture, Nord University, Skolegata 22, 7713, Steinkjer, Norway.
| |
Collapse
|