1
|
Smith TE, Holmes AM, Emmans CJ, Coleman R, Hosie CA. Validating the underpinnings of water corticosterone measurement for aquatic amphibians. F1000Res 2025; 14:53. [PMID: 40018729 PMCID: PMC11865716 DOI: 10.12688/f1000research.157055.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 03/01/2025] Open
Abstract
Background Good animal welfare is important ethically but also to ensure animals provide valid scientific models. Despite thousands of amphibians in research laboratories there is minimal quantitative evidence pertaining to their management and welfare. This study validated methods to non-invasively measure corticosterone, the amphibian 'stress' hormone, from tank water to provide a robust and reliable welfare assessment tool. Methods We report experiments (A) that evaluate parameters linked to the performance of our biochemical extraction methods for waterborne corticosterone and, importantly, associated sampling procedures. We evaluate appropriate sampling water type, sampling vessel, filtration methods, potential degradation of waterborne corticosterone over time and the impact of sampling procedures on animal corticosterone levels. We wanted to determine sampling parameters that yielded the least background corticosterone and had minimum negative impact on the animals. The second series of experiments (B) evaluated parameters linked to the biology of Xenopus, including the influence of circadian rhythm, sex and snout-vent length on waterborne corticosterone levels, since fundamental knowledge of a species' biology is essential for designing robust experiments and in the interpretation of the results. Results We propose collecting corticosterone samples in deionised water in either plastic or glass containers. The filtering process does not impact the amount of corticosterone measured in the water sample. Levels of corticosterone collected in the water change over a 48-hr period so we advocate standardising time from hormone collection to storage at - 20 °C. Repeated transfer of frogs to sampling containers does not increase corticosterone, suggesting our methods are not cumulatively stressful. Corticosterone levels were not impacted by circadian phase, sex or snout-vent length. Conclusion We have developed and validated robust methods to quantify waterborne corticosterone. We hope they provide a template for researchers wishing to develop methods to measure waterborne corticosterone in aquatic amphibians.
Collapse
Affiliation(s)
- Tessa E Smith
- Amphibian Behaviour and Endocrinology Group, School of Natural Sciences, University of Chester, Department of Biological Sciences, Chester, England, CH1 4BJ, UK
| | - Andrew M Holmes
- Amphibian Behaviour and Endocrinology Group, School of Natural Sciences, University of Chester, Department of Biological Sciences, Chester, England, CH1 4BJ, UK
| | - Christopher J Emmans
- Amphibian Behaviour and Endocrinology Group, School of Natural Sciences, University of Chester, Department of Biological Sciences, Chester, England, CH1 4BJ, UK
| | - Robert Coleman
- Amphibian Behaviour and Endocrinology Group, School of Natural Sciences, University of Chester, Department of Biological Sciences, Chester, England, CH1 4BJ, UK
| | - Charlotte A Hosie
- Amphibian Behaviour and Endocrinology Group, School of Natural Sciences, University of Chester, Department of Biological Sciences, Chester, England, CH1 4BJ, UK
| |
Collapse
|
2
|
Park JK, Do Y. Developmental temperature modulates microplastics impact on amphibian life history without affecting ontogenetic microplastic transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135325. [PMID: 39098196 DOI: 10.1016/j.jhazmat.2024.135325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
This study examines how temperature influences the response of Japanese tree frogs (Dryophytes japonicus) to microplastic (MP) pollution, assessing whether temperature can regulate the harmful effects of MPs on their life history and the dispersal of MPs across habitats. This analysis aims to understand the ecological and physiological ramifications of MP pollution. Our results demonstrated an ontogenetic transfer of MP particles across amphibian metamorphosis, possibly allowing and facilitating the translocation of MPs across ecosystems. Temperature did not significantly affect the translocation of aquatic MPs to land. However, high temperatures significantly reduced mortality and hindlimb deformities caused by MPs, thereby mitigating their harmful impact on amphibian life histories. Importantly, our study found that MPs cause hindlimb deformities during amphibian metamorphosis, potentially linked to oxidative stress. Additionally, MP exposure and ingestion induced a plastic response in the morphology of the digestive tract and changes in the fecal microbiome, which were evident at high temperatures but not at low temperatures. The effects of MPs persisted even after the frogs transitioned to the terrestrial stage, suggesting that MPs may have complex, long-term impacts on amphibian population sustainability. Our results enhance the understanding of the intricate environmental challenges posed by MPs and underscore the significant role of temperature in ectotherms regarding ontogenetic impacts and pollutant interactions.
Collapse
Affiliation(s)
- Jun-Kyu Park
- Department of Biological Sciences, Kongju National University, Gongju 32588, the Republic of Korea.
| | - Yuno Do
- Department of Biological Sciences, Kongju National University, Gongju 32588, the Republic of Korea.
| |
Collapse
|
3
|
Eterovick PC, Schmidt R, Sabino-Pinto J, Yang C, Künzel S, Ruthsatz K. The microbiome at the interface between environmental stress and animal health: an example from the most threatened vertebrate group. Proc Biol Sci 2024; 291:20240917. [PMID: 39291456 PMCID: PMC11409201 DOI: 10.1098/rspb.2024.0917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/05/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024] Open
Abstract
Nitrate pollution and global warming are ubiquitous stressors likely to interact and affect the health and survival of wildlife, particularly aquatic ectotherms. Animal health is largely influenced by its microbiome (commensal/symbiotic microorganisms), which responds to such stressors. We used a crossed experimental design including three nitrate levels and five temperature regimes to investigate their interactive and individual effects on an aquatic ectotherm, the European common frog. We associated health biomarkers in larvae with changes in gut bacteria diversity and composition. Larvae experienced higher stress levels and lower body condition under high temperatures and nitrate exposure. Developmental rate increased with temperature but decreased with nitrate pollution. Alterations in bacteria composition but not diversity are likely to correlate with the observed outcomes in larvae health. Leucine degradation decreased at higher temperatures corroborating accelerated development, nitrate degradation increased with nitrate level corroborating reduced body condition and an increase in lysine biosynthesis may have helped larvae deal with the combined effects of both stressors. These results reinforce the importance of associating traditional health biomarkers with underlying microbiome changes. Therefore, we urge studies to investigate the effects of environmental stressors on microbiome composition and consequences for host health in a world threatened by biodiversity loss.
Collapse
Affiliation(s)
- Paula Cabral Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| | - Robin Schmidt
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| | - Joana Sabino-Pinto
- GELIFES—Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747, AG Groningen, The Netherlands
| | - Chen Yang
- Department of Biostatistics, Southern Medical University, 510515, Guangzhou, People’s Republic of China
| | - Sven Künzel
- Max-Planck-Institut für Evolutionsbiologie, 24306, Plön, Germany
| | - Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106, Braunschweig, Germany
| |
Collapse
|
4
|
Kijanović A, Vukov T, Mirč M, Mitrović A, Prokić MD, Petrović TG, Radovanović TB, Gavrilović BR, Despotović SG, Gavrić JP, Tomašević Kolarov N. The role of phenotypic plasticity and corticosterone in coping with pond drying conditions in yellow-bellied toad (Bombina variegata, Linnaeus 1758) tadpoles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:753-765. [PMID: 38651613 DOI: 10.1002/jez.2819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/29/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Amphibian larvae inhabiting temporary ponds often exhibit the capacity to accelerate development and undergo metamorphosis in challenging conditions like desiccation. However, not all species exhibit this ability, the yellow-bellied toad (Bombina variegata) is one such example. The underlying mechanisms behind the inability to accelerate development under desiccation remain largely unexplored. The hypothalamic-pituitary-interrenal (HPI) axis and corticosterone (CORT), which act synergistically with thyroid hormone, are thought to facilitate metamorphosis in response to desiccation stress. In this study, we aimed to investigate whether modification in the HPI axis, particularly CORT levels, contributes to the absence of adaptive plasticity in B. variegata under desiccation stress. The study design included four treatments: high water level, high water level with exogenous CORT, low water level, and low water level with metyrapone (a CORT synthesis inhibitor). The main objective was to evaluate the effects of these treatments on whole-body corticosterone levels, life history, morphological traits, and oxidative stress parameters during the prometamorphic and metamorphic climax developmental stages. While low water level had no effect on total corticosterone levels, larval period, body condition index, and metamorphic body shape, it negatively affected metamorph size, mass, and growth rate. Our findings suggest that constant exposure to desiccation stress over generations may have led to modifications in the HPI axis activity in B. variegata, resulting in adaptation to changes in water level, evident through the absence of stress response. Consequently, CORT may not be a relevant stress indicator in desiccation conditions for this species.
Collapse
Affiliation(s)
- Ana Kijanović
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tanja Vukov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Marko Mirč
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Mitrović
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nataša Tomašević Kolarov
- Department of Evolutionary Biology, Institute for Biological Research "Siniša Stanković"-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
5
|
Schmidt R, Zummach C, Sinai N, Sabino‐Pinto J, Künzel S, Dausmann KH, Ruthsatz K. Physiological responses to a changing winter climate in an early spring-breeding amphibian. Ecol Evol 2024; 14:e70042. [PMID: 39050662 PMCID: PMC11267634 DOI: 10.1002/ece3.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Climate change is swiftly altering environmental winter conditions, leading to significant ecological impacts such as phenological shifts in many species. As a result, animals might face physiological mismatches due to longer or earlier activity periods and are at risk of being exposed to late spring freezes. Our study points for the first time to the complex physiological challenges that amphibians face as a result of changing thermal conditions due to winter climate change. We investigated the physiological responses to a period of warmer winter days and sudden spring freeze in the common toad (Bufo bufo) by acclimating them to 4°C or 8°C for 48 h or exposing them to 4°C or -2°C for 6 h, respectively. We assessed the daily energy demands, determined body condition and cold tolerance, explored the molecular responses to freezing through hepatic tissue transcriptome analysis, and measured blood glucose levels. Toads acclimated to higher temperatures showed a higher daily energy expenditure and a reduced cold tolerance suggesting faster depletion of energy stores and the loss of winter acclimation during warmer winters. Blood sugar levels were higher in frozen toads indicating the mobilization of cryoprotective glucose with freezing which was further supported by changed patterns in proteins related to glucose metabolism. Overall, our results emphasize that increased thermal variability incurs physiological costs that may reduce energy reserves and thus affect amphibian health and survival. This might pose a serious threat to breeding adults and may have subsequent effects at the population level.
Collapse
Affiliation(s)
- Robin Schmidt
- Zoological InstituteTechnische Universität BraunschweigBraunschweigGermany
| | - Cecile Zummach
- Institute of Cell and System BiologyUniversität HamburgHamburgGermany
| | - Noa Sinai
- Institute of Cell and System BiologyUniversität HamburgHamburgGermany
| | - Joana Sabino‐Pinto
- Faculty of Science and Engineering, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenthe Netherlands
| | - Sven Künzel
- Max Planck Institute for Evolutionary BiologyPloenGermany
| | | | - Katharina Ruthsatz
- Zoological InstituteTechnische Universität BraunschweigBraunschweigGermany
| |
Collapse
|