1
|
Lock MC, Ripley DM, Smith KLM, Mueller CA, Shiels HA, Crossley DA, Galli GLJ. Developmental plasticity of the cardiovascular system in oviparous vertebrates: effects of chronic hypoxia and interactive stressors in the context of climate change. J Exp Biol 2024; 227:jeb245530. [PMID: 39109475 PMCID: PMC11418206 DOI: 10.1242/jeb.245530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Animals at early life stages are generally more sensitive to environmental stress than adults. This is especially true of oviparous vertebrates that develop in variable environments with little or no parental care. These organisms regularly experience environmental fluctuations as part of their natural development, but climate change is increasing the frequency and intensity of these events. The developmental plasticity of oviparous vertebrates will therefore play a critical role in determining their future fitness and survival. In this Review, we discuss and compare the phenotypic consequences of chronic developmental hypoxia on the cardiovascular system of oviparous vertebrates. In particular, we focus on species-specific responses, critical windows, thresholds for responses and the interactive effects of other stressors, such as temperature and hypercapnia. Although important progress has been made, our Review identifies knowledge gaps that need to be addressed if we are to fully understand the impact of climate change on the developmental plasticity of the oviparous vertebrate cardiovascular system.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Daniel M. Ripley
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Kerri L. M. Smith
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Casey A. Mueller
- Department of Biological Sciences, California State University, San Marcos, CA 92096, USA
| | - Holly A. Shiels
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| | - Dane A. Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX 76201, USA
| | - Gina L. J. Galli
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
2
|
Waller MJ, Humphries NE, Womersley FC, Loveridge A, Jeffries AL, Watanabe Y, Payne N, Semmens J, Queiroz N, Southall EJ, Sims DW. The vulnerability of sharks, skates, and rays to ocean deoxygenation: Physiological mechanisms, behavioral responses, and ecological impacts. JOURNAL OF FISH BIOLOGY 2024; 105:482-511. [PMID: 38852616 DOI: 10.1111/jfb.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 06/11/2024]
Abstract
Levels of dissolved oxygen in open ocean and coastal waters are decreasing (ocean deoxygenation), with poorly understood effects on marine megafauna. All of the more than 1000 species of elasmobranchs (sharks, skates, and rays) are obligate water breathers, with a variety of life-history strategies and oxygen requirements. This review demonstrates that although many elasmobranchs typically avoid hypoxic water, they also appear capable of withstanding mild to moderate hypoxia with changes in activity, ventilatory responses, alterations to circulatory and hematological parameters, and morphological alterations to gill structures. However, such strategies may be insufficient to withstand severe, progressive, or prolonged hypoxia or anoxia where anaerobic metabolic pathways may be used for limited periods. As water temperatures increase with climate warming, ectothermic elasmobranchs will exhibit elevated metabolic rates and are likely to be less able to tolerate the effects of even mild hypoxia associated with deoxygenation. As a result, sustained hypoxic conditions in warmer coastal or surface-pelagic waters are likely to lead to shifts in elasmobranch distributions. Mass mortalities of elasmobranchs linked directly to deoxygenation have only rarely been observed but are likely underreported. One key concern is how reductions in habitat volume as a result of expanding hypoxia resulting from deoxygenation will influence interactions between elasmobranchs and industrial fisheries. Catch per unit of effort of threatened pelagic sharks by longline fisheries, for instance, has been shown to be higher above oxygen minimum zones compared to adjacent, normoxic regions, and attributed to vertical habitat compression of sharks overlapping with increased fishing effort. How a compound stressor such as marine heatwaves alters vulnerability to deoxygenation remains an open question. With over a third of elasmobranch species listed as endangered, a priority for conservation and management now lies in understanding and mitigating ocean deoxygenation effects in addition to population declines already occurring from overfishing.
Collapse
Affiliation(s)
- Matt J Waller
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | | | | | | | - Amy L Jeffries
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| | - Yuuki Watanabe
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Kanagawa, Japan
| | - Nicholas Payne
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Jayson Semmens
- Institue for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia
| | - Nuno Queiroz
- CIBIO/InBIO, Universidade do Porto, Vairão, Portugal
- BIOPOLIS, Program in Genomics, Biodiversity and Land Planning, CIBIO, Vairão, Portugal
| | | | - David W Sims
- Marine Biological Association, The Laboratory, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
| |
Collapse
|
3
|
Harford AR, Devaux JBL, Hickey AJR. Dynamic defence? Intertidal triplefin species show better maintenance of mitochondrial membrane potential than subtidal species at low oxygen pressures. J Exp Biol 2023; 226:jeb245926. [PMID: 37498237 DOI: 10.1242/jeb.245926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/14/2023] [Indexed: 07/28/2023]
Abstract
Oxygen is essential for most eukaryotic lifeforms, as it supports mitochondrial oxidative phosphorylation to supply ∼90% of cellular adenosine triphosphate (ATP). Fluctuations in O2 present a major stressor, with hypoxia leading to a cascade of detrimental physiological changes that alter cell operations and ultimately induce death. Nonetheless, some species episodically tolerate near-anoxic environments, and have evolved mechanisms to sustain function even during extended hypoxic periods. While mitochondria are pivotal in central metabolism, their role in hypoxia tolerance remains ill defined. Given the vulnerability of the brain to hypoxia, mitochondrial function was tested in brain homogenates of three closely related triplefin species with varying degrees of hypoxia tolerance (Bellapiscis medius, Forsterygion lapillum and Forsterygion varium). High-resolution respirometry coupled with fluorometric measurements of mitochondrial membrane potential (mtMP) permitted assessment of differences in mitochondrial function and integrity in response to intermittent hypoxia and anoxia. Traditional steady-state measures of respiratory flux and mtMP showed no differences among species. However, in the transition into anoxia, the tolerant species B. medius and F. lapillum maintained mtMP at O2 pressures 7- and 4.4-fold lower, respectively, than that of the hypoxia-sensitive F. varium and exhibited slower rates of membrane depolarisation. The results indicate that dynamic oxic-hypoxic mitochondria transitions underlie hypoxia tolerance in these intertidal fish.
Collapse
Affiliation(s)
- Alice R Harford
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Jules B L Devaux
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Anthony J R Hickey
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Prinzing TS, Bigman JS, Skelton ZR, Dulvy NK, Wegner NC. The allometric scaling of oxygen supply and demand in the California horn shark, Heterodontus francisci. J Exp Biol 2023; 226:jeb246054. [PMID: 37493039 DOI: 10.1242/jeb.246054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/12/2023] [Indexed: 07/27/2023]
Abstract
The gill surface area of aquatic ectotherms is thought to be closely linked to the ontogenetic scaling of metabolic rate, a relationship that is often used to explain and predict ecological patterns across species. However, there are surprisingly few within-species tests of whether metabolic rate and gill area scale similarly. We examined the relationship between oxygen supply (gill area) and demand (metabolic rate) by making paired estimates of gill area with resting and maximum metabolic rates across ontogeny in the relatively inactive California horn shark, Heterodontus francisci. We found that the allometric slope of resting metabolic rate was 0.966±0.058 (±95% CI), whereas that of maximum metabolic rate was somewhat steeper (1.073±0.040). We also discovered that the scaling of gill area shifted with ontogeny: the allometric slope of gill area was shallower in individuals <0.203 kg in body mass (0.564±0.261), but increased to 1.012±0.113 later in life. This appears to reflect changes in demand for gill-oxygen uptake during egg case development and immediately post hatch, whereas for most of ontogeny, gill area scales in between that of resting and maximum metabolic rate. These relationships differ from predictions of the gill oxygen limitation theory, which argues that the allometric scaling of gill area constrains metabolic processes. Thus, for the California horn shark, metabolic rate does not appear limited by theoretical surface-area-to-volume ratio constraints of gill area. These results highlight the importance of data from paired and size-matched individuals when comparing physiological scaling relationships.
Collapse
Affiliation(s)
- Tanya S Prinzing
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Jennifer S Bigman
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98115, USA
| | - Zachary R Skelton
- Ocean Associates Inc., under contract to Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas K Dulvy
- Earth to Ocean Research Group, Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6
| | - Nicholas C Wegner
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093, USA
- Fisheries Resources Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
Varela J, Martins S, Court M, Santos CP, Paula JR, Ferreira IJ, Diniz M, Repolho T, Rosa R. Impacts of Deoxygenation and Hypoxia on Shark Embryos Anti-Predator Behavior and Oxidative Stress. BIOLOGY 2023; 12:biology12040577. [PMID: 37106777 PMCID: PMC10136306 DOI: 10.3390/biology12040577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
Climate change is leading to the loss of oxygen content in the oceans and endangering the survival of many marine species. Due to sea surface temperature warming and changing circulation, the ocean has become more stratified and is consequently losing its oxygen content. Oviparous elasmobranchs are particularly vulnerable as they lay their eggs in coastal and shallow areas, where they experience significant oscillations in oxygen levels. Here, we investigated the effects of deoxygenation (93% air saturation) and hypoxia (26% air saturation) during a short-term period (six days) on the anti-predator avoidance behavior and physiology (oxidative stress) of small-spotted catshark (Scyliorhinus canicula) embryos. Their survival rate decreased to 88% and 56% under deoxygenation and hypoxia, respectively. The tail beat rates were significantly enhanced in the embryos under hypoxia compared to those exposed to deoxygenation and control conditions, and the freeze response duration showed a significant opposite trend. Yet, at the physiological level, through the analyses of key biomarkers (SOD, CAT, GPx, and GST activities as well as HSP70, Ubiquitin, and MDA levels), we found no evidence of increased oxidative stress and cell damage under hypoxia. Thus, the present findings show that the projected end-of-the-century deoxygenation levels elicit neglectable biological effects on shark embryos. On the other hand, hypoxia causes a high embryo mortality rate. Additionally, hypoxia makes embryos more vulnerable to predators, because the increased tail beat frequency will enhance the release of chemical and physical cues that can be detected by predators. The shortening of the shark freeze response under hypoxia also makes the embryos more prone to predation.
Collapse
Affiliation(s)
- Jaquelino Varela
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Sphyrna Association, Sal Rei 5110, Boa Vista Island, Cape Verde
| | - Sandra Martins
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Comparative Molecular and Integrative Biology, Centro de Ciências do Mar, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Melanie Court
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| | - Catarina Pereira Santos
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Sphyrna Association, Sal Rei 5110, Boa Vista Island, Cape Verde
- Environmental Economics Knowledge Center, Nova School of Business and Economics, New University of Lisbon, 2775-405 Carcavelos, Portugal
| | - José Ricardo Paula
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| | - Inês João Ferreira
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- LAQV-Associated Laboratory for Green Chemistry-REQUIMTE, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- UCIBIO-Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
| | - Tiago Repolho
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| | - Rui Rosa
- MARE-Marine and Environmetal Sciences Centre/ARNET-Aquatic Research Network, Laboratório Marítimo da Guia, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
- Sphyrna Association, Sal Rei 5110, Boa Vista Island, Cape Verde
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 2750-374 Cascais, Portugal
| |
Collapse
|
6
|
Ripley DM, De Giorgio S, Gaffney K, Thomas L, Shiels HA. Ocean warming impairs the predator avoidance behaviour of elasmobranch embryos. CONSERVATION PHYSIOLOGY 2021; 9:coab045. [PMID: 34150212 PMCID: PMC8210470 DOI: 10.1093/conphys/coab045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/11/2021] [Accepted: 05/25/2021] [Indexed: 05/13/2023]
Abstract
Embryogenesis is a vulnerable stage in elasmobranch development due in part to high predation mortality. Embryonic elasmobranchs respond to potential predators by displaying a freezing behaviour, characterized by the cessation of pharyngeal respiration followed immediately by coiling of the tail around the body. We hypothesized that the duration of this freeze response is limited by the embryo's requirement for oxygen. Here, Scyliorhinus canicula embryos were incubated at either 15°C or 20°C during embryogenesis and tested for the duration of, and metabolic consequence of, the freeze response at their respective incubation temperature. Freeze response duration was negatively impacted by routine metabolic rate; embryos at 20°C had 7-fold shorter freeze duration than those at 15°C, potentially increasing their susceptibility to predation. These data demonstrate the capacity for climate change stressors to affect animal behaviour and suggest that this may occur by eliciting changes in the organism's metabolism. We suggest altered predator avoidance behaviour is a new factor to consider when assessing the impact of climate change on the conservation and management of oviparous elasmobranch species.
Collapse
Affiliation(s)
- Daniel M Ripley
- Corresponding authors: Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Research Facility, The University of Manchester, 46 Grafton Street, Manchester, UK. ;
| | - Sara De Giorgio
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Research Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Kirstin Gaffney
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Research Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Lowri Thomas
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Research Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Holly A Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Research Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
- Corresponding authors: Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, Core Research Facility, The University of Manchester, 46 Grafton Street, Manchester, UK. ;
| |
Collapse
|
7
|
Whitehouse LM, Faught E, Vijayan MM, Manzon RG. Hypoxia affects the ontogeny of the hypothalamus-pituitary-interrenal axis functioning in the lake whitefish (Coregonus clupeaformis). Gen Comp Endocrinol 2020; 295:113524. [PMID: 32526331 DOI: 10.1016/j.ygcen.2020.113524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/20/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023]
Abstract
Early life stages are sensitive to environmental insults and changes during critical developmental periods; this can often result in altered adult behaviour and physiology. Examining the development of the hypothalamus-pituitary-interrenal (HPI) axis and its responsiveness, or lack thereof, during development are important for understanding the short- and long-term impacts of stressors on embryonic and larval fish. We examined the ontogeny of the HPI axis in embryonic (21, 38, 63, 83 and 103 days post-fertilisation (dpf)) and larval (1, 2, 3 and 4 weeks post-hatch (wph)) lake whitefish (Coregonus clupeaformis) by quantifying changes in mRNA levels of several genes associated with HPI axis functioning and whole animal cortisol levels throughout development and in response to a severe or mild hypoxic stress. Cortisol, and crh, crhbp1, pomc and star transcripts were detected from the earliest embryonic age studied. Cortisol levels in control embryos decreased between 21 and 63 dpf, suggesting the utilisation of maternal cortisol deposits. However, by 83 dpf (70% developed) endogenous de novo synthesis had generated a 4.5-fold increase in whole embryo cortisol. Importantly, we provide novel data showing that the HPI axis can be activated even earlier. Whole body cortisol increased in eyed lake whitefish embryos (38 dpf; ~32% developed) in response to hypoxia stress. Coincident with this hypoxia-induced increase in cortisol in 38 dpf embryos were corresponding increases in crh, crhbp1, pomc and star transcript levels. Beyond 38 dpf, the HPI axis in lake whitefish embryos was hyporesponsive to hypoxia stress at all embryonic ages examined (63, 83 and 103 dpf; 54, 72 and 85% developed, respectively). Post-hatch, larvae responded to hypoxia with an increase in cortisol levels and HPI axis genes at 1 wph, but this response was lost and larvae appeared hyporesponsive at subsequent ages (2, 3 and 4 wph). Collectively our work demonstrates that during fish embryogenesis and the larval stage there are windows where the HPI axis is responsive and windows where it is truly hyporesponsive; both could be beneficial in ensuring undisrupted development particularly in the face of increasing environmental changes.
Collapse
Affiliation(s)
- Lindy M Whitehouse
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Erin Faught
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
8
|
Di Santo V. Ocean acidification and warming affect skeletal mineralization in a marine fish. Proc Biol Sci 2020; 286:20182187. [PMID: 30963862 DOI: 10.1098/rspb.2018.2187] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ocean acidification and warming are known to alter, and in many cases decrease, calcification rates of shell and reef building marine invertebrates. However, to date, there are no datasets on the combined effect of ocean pH and temperature on skeletal mineralization of marine vertebrates, such as fishes. Here, the embryos of an oviparous marine fish, the little skate ( Leucoraja erinacea), were developmentally acclimatized to current and increased temperature and CO2 conditions as expected by the year 2100 (15 and 20°C, approx. 400 and 1100 µatm, respectively), in a fully crossed experimental design. Using micro-computed tomography, hydroxyapatite density was estimated in the mineralized portion of the cartilage in jaws, crura, vertebrae, denticles and pectoral fins of juvenile skates. Mineralization increased as a consequence of high CO2 in the cartilage of crura and jaws, while temperature decreased mineralization in the pectoral fins. Mineralization affects stiffness and strength of skeletal elements linearly, with implications for feeding and locomotion performance and efficiency. This study is, to my knowledge, the first to quantify a significant change in mineralization in the skeleton of a fish and shows that changes in temperature and pH of the oceans have complex effects on fish skeletal morphology.
Collapse
Affiliation(s)
- Valentina Di Santo
- Museum of Comparative Zoology, Harvard University , 26 Oxford Street, Cambridge, MA , USA
| |
Collapse
|
9
|
O'Connell KA, Santo VD, Maldonado J, Molina E, Fujita MK. A Tale of Two Skates: Comparative Phylogeography of North American Skate Species with Implications for Conservation. COPEIA 2019. [DOI: 10.1643/cg-18-114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Kyle A. O'Connell
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas 76019; (KAO) ; (JM) ; and (MKF) . Send reprint request
| | - Valentina Di Santo
- Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts 02138
| | - Jose Maldonado
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas 76019; (KAO) ; (JM) ; and (MKF) . Send reprint request
| | - Erika Molina
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas 76019; (KAO) ; (JM) ; and (MKF) . Send reprint request
| | - Matthew K. Fujita
- Department of Biology and Amphibian and Reptile Diversity Research Center, The University of Texas at Arlington, Arlington, Texas 76019; (KAO) ; (JM) ; and (MKF) . Send reprint request
| |
Collapse
|
10
|
Whitehouse LM, Manzon RG. Hypoxia alters the expression of hif-1a mRNA and downstream HIF-1 response genes in embryonic and larval lake whitefish (Coregonus clupeaformis). Comp Biochem Physiol A Mol Integr Physiol 2019; 230:81-90. [PMID: 30659950 DOI: 10.1016/j.cbpa.2019.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/27/2018] [Accepted: 01/06/2019] [Indexed: 12/12/2022]
Abstract
Lake whitefish (Coregonus clupeaformis) embryos and larvae were exposed to hypoxia at different developmental ages to determine when the cellular response to hypoxia could be initiated. mRNA levels of hypoxia-inducible factor 1α (hif-1α), hsp70, and several HIF-1 target genes were quantified in embryos at 21, 38, 63, 83- and 103-days post fertilisation (dpf) and in larvae at 1, 2, 3- and 4-weeks post hatch (wph) following a 6-hour hypoxia exposure. hsp70 mRNA levels were increased in response to hypoxia at all embryonic ages. By comparison, the first observed change in hif-1α mRNA in response to hypoxia was at 38 dpf, where it was down-regulated from high basal levels, with this response persisting through to 83 dpf. Interestingly, this decrease in hif-1α mRNA coincided with increases in the mRNA levels of the HIF-1 target genes: vegfa (vascular endothelial growth factor A), igfbp1 (insulin-like growth factor binding protein 1), ldha (lactate dehydrogenase a), gapdh (glyceraldehyde-3-phosphate dehydrogenase) and epo (erythropoietin) at select ages. Collectively, this suggests a possible HIF-1-mediated response to hypoxia despite a decrease in hif-1α mRNA. Coinciding with a decrease in basal levels, increases in hif-1α were measured in response to hypoxia at 103 dpf and in larval fish at 1, 2 and 3 wph but there were no consistent increases in HIF-1 target genes at these ages. Overall, our findings indicate that lake whitefish can mount a response to hypoxia early in embryogenesis which may mitigate some of the damaging effects of exposure to low oxygen levels at these critical life history stages.
Collapse
Affiliation(s)
- Lindy M Whitehouse
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| |
Collapse
|
11
|
McKenzie DJ, Axelsson M, Chabot D, Claireaux G, Cooke SJ, Corner RA, De Boeck G, Domenici P, Guerreiro PM, Hamer B, Jørgensen C, Killen SS, Lefevre S, Marras S, Michaelidis B, Nilsson GE, Peck MA, Perez-Ruzafa A, Rijnsdorp AD, Shiels HA, Steffensen JF, Svendsen JC, Svendsen MBS, Teal LR, van der Meer J, Wang T, Wilson JM, Wilson RW, Metcalfe JD. Conservation physiology of marine fishes: state of the art and prospects for policy. CONSERVATION PHYSIOLOGY 2016; 4:cow046. [PMID: 27766156 PMCID: PMC5070530 DOI: 10.1093/conphys/cow046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/17/2016] [Accepted: 09/13/2016] [Indexed: 05/24/2023]
Abstract
The state of the art of research on the environmental physiology of marine fishes is reviewed from the perspective of how it can contribute to conservation of biodiversity and fishery resources. A major constraint to application of physiological knowledge for conservation of marine fishes is the limited knowledge base; international collaboration is needed to study the environmental physiology of a wider range of species. Multifactorial field and laboratory studies on biomarkers hold promise to relate ecophysiology directly to habitat quality and population status. The 'Fry paradigm' could have broad applications for conservation physiology research if it provides a universal mechanism to link physiological function with ecological performance and population dynamics of fishes, through effects of abiotic conditions on aerobic metabolic scope. The available data indicate, however, that the paradigm is not universal, so further research is required on a wide diversity of species. Fish physiologists should interact closely with researchers developing ecological models, in order to investigate how integrating physiological information improves confidence in projecting effects of global change; for example, with mechanistic models that define habitat suitability based upon potential for aerobic scope or outputs of a dynamic energy budget. One major challenge to upscaling from physiology of individuals to the level of species and communities is incorporating intraspecific variation, which could be a crucial component of species' resilience to global change. Understanding what fishes do in the wild is also a challenge, but techniques of biotelemetry and biologging are providing novel information towards effective conservation. Overall, fish physiologists must strive to render research outputs more applicable to management and decision-making. There are various potential avenues for information flow, in the shorter term directly through biomarker studies and in the longer term by collaborating with modellers and fishery biologists.
Collapse
Affiliation(s)
- David J. McKenzie
- Centre for Marine Biodiversity Exploitation and Conservation, UMR MARBEC (CNRS, IRD, IFREMER, UM), Place E. Bataillon cc 093, 34095 Montpellier, France
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Medicinaregatan 18, 413 90 Gothenburg, Sweden
| | - Denis Chabot
- Fisheries and Oceans Canada, Institut Maurice-Lamontagne, Mont-Joli, QC, CanadaG5H 3Z4
| | - Guy Claireaux
- Université de Bretagne Occidentale, UMR LEMAR, Unité PFOM-ARN, Centre Ifremer de Bretagne, ZI Pointe du Diable. CS 10070, 29280 Plouzané, France
| | - Steven J. Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON, CanadaK1S 5B6
| | | | - Gudrun De Boeck
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Paolo Domenici
- CNR–IAMC, Istituto per l'Ambiente Marino Costiero, 09072 Torregrande, Oristano, Italy
| | - Pedro M. Guerreiro
- CCMAR – Centre for Marine Sciences, Universidade do Algarve, 8005-139 Faro, Portugal
| | - Bojan Hamer
- Center for Marine Research, Ruder Boskovic Institute, Giordano Paliaga 5, 52210 Rovinj, Croatia
| | - Christian Jørgensen
- Department of Biology and Hjort Centre for Marine Ecosystem Dynamics, University of Bergen, 5020 Bergen, Norway
| | - Shaun S. Killen
- Institute of Biodiversity,Animal Health and Comparative Medicine, College of Medical,Veterinary and Life Sciences, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sjannie Lefevre
- Department of Biosciences, University of Oslo, PO Box 1066,NO-0316 Oslo,Norway
| | - Stefano Marras
- CNR–IAMC, Istituto per l'Ambiente Marino Costiero, 09072 Torregrande, Oristano, Italy
| | - Basile Michaelidis
- Laboratory of Animal Physiology, Department of Zoology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Göran E. Nilsson
- Department of Biosciences, University of Oslo, PO Box 1066,NO-0316 Oslo,Norway
| | - Myron A. Peck
- Institute for Hydrobiology and Fisheries Science, University of Hamburg, Olbersweg 24, Hamburg 22767, Germany
| | - Angel Perez-Ruzafa
- Department of Ecology and Hydrology, Faculty of Biology, Espinardo, Regional Campus of International Excellence ‘Campus Mare Nostrum’, University of Murcia, Murcia, Spain
| | - Adriaan D. Rijnsdorp
- IMARES, Institute for Marine Resources and Ecosystem Studies, PO Box 68, 1970 AB IJmuiden, The Netherlands
| | - Holly A. Shiels
- Core Technology Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - John F. Steffensen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Jon C. Svendsen
- Section for Ecosystem-based Marine Management, National Institute of Aquatic Resources (DTU-Aqua), Technical University of Denmark, Jægersborg Allé 1, DK-2920 Charlottenlund, Denmark
| | - Morten B. S. Svendsen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000 Helsingør, Denmark
| | - Lorna R. Teal
- IMARES, Institute for Marine Resources and Ecosystem Studies, PO Box 68, 1970 AB IJmuiden, The Netherlands
| | - Jaap van der Meer
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jonathan M. Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4050-123 Porto, Portugal
| | - Rod W. Wilson
- Biosciences, College of Life & Environmental Sciences, University of Exeter, ExeterEX4 4QD, UK
| | - Julian D. Metcalfe
- Centre for Environment,Fisheries and Aquaculture Science (Cefas), Lowestoft Laboratory, Suffolk NR33 0HT, UK
| |
Collapse
|
12
|
Di Santo V. Intraspecific variation in physiological performance of a benthic elasmobranch challenged by ocean acidification and warming. ACTA ACUST UNITED AC 2016; 219:1725-33. [PMID: 27026716 DOI: 10.1242/jeb.139204] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/16/2016] [Indexed: 11/20/2022]
Abstract
Elucidating the combined effects of increasing temperature and ocean acidification on performance of fishes is central to our understanding of how species will respond to global climate change. Measuring the metabolic costs associated with intense and short activities, such as those required to escape predators, is key to quantifying changes in performance and estimating the potential effects of environmental stressors on survival. In this study, juvenile little skate Leucoraja erinacea from two neighboring locations (Gulf of Maine, or northern location, and Georges Bank, or southern location) were developmentally acclimatized and reared at current and projected temperatures (15, 18 or 20°C) and acidification conditions (pH 8.1 or 7.7), and their escape performance was tested by employing a chasing protocol. The results from this study suggest countergradient variation in growth between skates from the two locations, while the optimum for escape performance was at a lower temperature in individuals from the northern latitudes, which could be related to adaptation to the local thermal environment. Aerobic performance and scope declined in skates from the northern latitudes under simulated ocean warming and acidification conditions. Overall, the southern skates showed lower sensitivity to these climatic stressors. This study demonstrates that even mobile organisms from neighboring locations can exhibit substantial differences in energetic costs of exercise and that skates from the northern part of the geographic range may be more sensitive to the directional increase in temperature and acidification expected by the end of the century.
Collapse
Affiliation(s)
- Valentina Di Santo
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|