1
|
Chen L, Wang P, Huang G, Cheng W, Liu K, Yu Q. Quantitative dynamics of intracellular NMN by genetically encoded biosensor. Biosens Bioelectron 2025; 267:116842. [PMID: 39418868 DOI: 10.1016/j.bios.2024.116842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
Nicotinamide mononucleotide (NMN) is the direct precursor and a major booster of NAD+ with increasing applications in NAD+- and aging-related pathologies. However, measuring live cell NMN dynamics was not possible, leaving key questions in NMN uptake and intracellular regulation unanswered. Here we developed genetically encoded bioluminescent and fluorescent sensors to quantify subcellular NMN in live cells by engineering specific NMN-responsive protein scaffolds fused to luciferase and fluorescent proteins. The sensor dissected the multimechanistic uptake of exogenous NMN and nicotinamide riboside (NR) in live cells and further measured the NMN levels across different subcellular compartments, as well as the perturbed NMN/NAD+ ratios by external supplements. Moreover, we measured the NMN regulation by NAD(H) hydrolase Nudts and peroxisomal carrier Pxmp2 and identified Slc25a45 as a potential mitochondrial NMN regulator for its unique fingerprint on the local NMN/NAD+ ratio. Collectively, the genetically encoded sensors provide a useful tool for visualizing NMN metabolism.
Collapse
Affiliation(s)
- Liuqing Chen
- Sino-European Center of Biomedicine and Health, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Pei Wang
- Sino-European Center of Biomedicine and Health, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Guan Huang
- Sino-European Center of Biomedicine and Health, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Wenxiang Cheng
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Kaijing Liu
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China; State Key Laboratory of Oncology in South China, Sun Yat-sen University, 510060, Guangzhou, China.
| | - Qiuliyang Yu
- Sino-European Center of Biomedicine and Health, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China.
| |
Collapse
|
2
|
Montano M, Correa-de-Araujo R. Maladaptive Immune Activation in Age-Related Decline of Muscle Function. J Gerontol A Biol Sci Med Sci 2023; 78:19-24. [PMID: 37325961 PMCID: PMC10272988 DOI: 10.1093/gerona/glad036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 06/17/2023] Open
Abstract
Age-related changes in immune competency and inflammation play a role in the decline of physical function. In this review of the conference on Function-Promoting Therapies held in March 2022, we discuss the biology of aging and geroscience with an emphasis on decline in physical function and the role of age-related changes in immune competence and inflammation. More recent studies in skeletal muscle and aging highlighting a crosstalk between skeletal muscle, neuromuscular feedback, and immune cell subsets are also discussed. The value of strategies targeting specific pathways that affect skeletal muscle and more systems-wide approaches that provide benefits in muscle homeostasis with aging are underscored. Goals in clinical trial design and the need for incorporating differences in life history when interpreting results from these intervention strategies are important. Where applicable, references are made to papers presented at the conference. We conclude by underscoring the need to incorporate age-related immune competency and inflammation when interpreting results from interventions that target specific pathways predicted to promote skeletal muscle function and tissue homeostasis.
Collapse
Affiliation(s)
- Monty Montano
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Rosaly Correa-de-Araujo
- Division of Geriatrics and Clinical Gerontology, National Institute on Aging, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Abdellatif M, Bugger H, Kroemer G, Sedej S. NAD + and Vascular Dysfunction: From Mechanisms to Therapeutic Opportunities. J Lipid Atheroscler 2022; 11:111-132. [PMID: 35656147 PMCID: PMC9133775 DOI: 10.12997/jla.2022.11.2.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 11/09/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential and pleiotropic coenzyme involved not only in cellular energy metabolism, but also in cell signaling, epigenetic regulation, and post-translational protein modifications. Vascular disease risk factors are associated with aberrant NAD+ metabolism. Conversely, the therapeutic increase of NAD+ levels through the administration of NAD+ precursors or inhibitors of NAD+-consuming enzymes reduces chronic low-grade inflammation, reactivates autophagy and mitochondrial biogenesis, and enhances oxidative metabolism in vascular cells of humans and rodents with vascular pathologies. As such, NAD+ has emerged as a potential target for combatting age-related cardiovascular and cerebrovascular disorders. This review discusses NAD+-regulated mechanisms critical for vascular health and summarizes new advances in NAD+ research directly related to vascular aging and disease, including hypertension, atherosclerosis, coronary artery disease, and aortic aneurysms. Finally, we enumerate challenges and opportunities for NAD+ repletion therapy while anticipating the future of this exciting research field, which will have a major impact on vascular medicine.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
| | - Heiko Bugger
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe Labellisée par la Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| |
Collapse
|
4
|
Abstract
Nicotinamide adenine dinucleotide (NAD+) is a central metabolite involved in energy and redox homeostasis as well as in DNA repair and protein deacetylation reactions. Pharmacological or genetic inhibition of NAD+-degrading enzymes, external supplementation of NAD+ precursors, and transgenic overexpression of NAD+-generating enzymes have wide positive effects on metabolic health and age-associated diseases. NAD+ pools tend to decline with normal aging, obesity, and hypertension, which are all major risk factors for cardiovascular disease, and NAD+ replenishment extends healthspan, avoids metabolic syndrome, and reduces blood pressure in preclinical models. In addition, experimental elevation of NAD+ improves atherosclerosis, ischemic, diabetic, arrhythmogenic, hypertrophic, or dilated cardiomyopathies, as well as different modalities of heart failure. Here, we critically discuss cardiomyocyte-specific circuitries of NAD+ metabolism, comparatively evaluate distinct NAD+ precursors for their preclinical efficacy, and raise outstanding questions on the optimal design of clinical trials in which NAD+ replenishment or supraphysiological NAD+ elevations are assessed for the prevention or treatment of major cardiac diseases. We surmise that patients with hitherto intractable cardiac diseases such as heart failure with preserved ejection fraction may profit from the administration of NAD+ precursors. The development of such NAD+-centered treatments will rely on technological and conceptual progress on the fine regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Austria (M.A., S.S.).,Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France (M.A., G.K.).,Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Institut national de la santé et de la recherche médicale (INSERM) U1138, Institut Universitaire de France (M.A., G.K.)
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Austria (M.A., S.S.).,Institute of Physiology, Faculty of Medicine, University of Maribor, Slovenia (S.S.)
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France (M.A., G.K.).,Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Institut national de la santé et de la recherche médicale (INSERM) U1138, Institut Universitaire de France (M.A., G.K.).,Pôle de Biologie, Hôpital Européen Georges Pompidou, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris 7015, France (G.K.)
| |
Collapse
|
5
|
Voglhuber J, Ljubojevic-Holzer S, Abdellatif M, Sedej S. Targeting Cardiovascular Risk Factors Through Dietary Adaptations and Caloric Restriction Mimetics. Front Nutr 2021; 8:758058. [PMID: 34660673 PMCID: PMC8514725 DOI: 10.3389/fnut.2021.758058] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
The average human life expectancy continues to rise globally and so does the prevalence and absolute burden of cardiovascular disease. Dietary restriction promotes longevity and improves various cardiovascular risk factors, including hypertension, obesity, diabetes mellitus, and metabolic syndrome. However, low adherence to caloric restriction renders this stringent dietary intervention challenging to adopt as a standard practice for cardiovascular disease prevention. Hence, alternative eating patterns and strategies that recapitulate the salutary benefits of caloric restriction are under intense investigation. Here, we first provide an overview of alternative interventions, including intermittent fasting, alternate-day fasting and the Mediterranean diet, along with their cardiometabolic effects in animal models and humans. We then present emerging pharmacological alternatives, including spermidine, NAD+ precursors, resveratrol, and metformin, as promising caloric restriction mimetics, and briefly touch on the mechanisms underpinning their cardiometabolic and health-promoting effects. We conclude that implementation of feasible dietary approaches holds the promise to attenuate the burden of cardiovascular disease and facilitate healthy aging in humans.
Collapse
Affiliation(s)
- Julia Voglhuber
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Senka Ljubojevic-Holzer
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria
- Centre de Recherche des Cordeliers, Equipe labellisée par La Ligue Contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Institute Universitaire de France, Paris, France
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
6
|
Blanco-Vaca F, Rotllan N, Canyelles M, Mauricio D, Escolà-Gil JC, Julve J. NAD+-Increasing Strategies to Improve Cardiometabolic Health? Front Endocrinol (Lausanne) 2021; 12:815565. [PMID: 35173682 PMCID: PMC8842632 DOI: 10.3389/fendo.2021.815565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/08/2021] [Indexed: 01/03/2023] Open
Abstract
Depleted nicotinamide adenine dinucleotide (NAD+) is a common hallmark of metabolic disorders. Therefore, NAD+-increasing strategies have evolved as a potential therapeutic venue to combat cardiometabolic diseases. Several forms of vitamin B3, i.e., nicotinamide and nicotinamide mononucleotide, and especially nicotinamide riboside, have attracted most interest as potentially safe and efficacious candidates for NAD+ restoration. Herein, we dissected the characteristics of the latest clinical trials testing the therapeutic potential of different vitamin B3 molecules to improve cardiometabolic health, with a special focus on randomized, placebo-controlled clinical trials performed in the context of obesity or other pathologies, mainly linked to cardiovascular system and skeletal muscle functionality. The favorable outcomes via NAD+-increasing strategies found in the different studies were quite heterogeneous. NAD+-increasing interventions improved capacity to exercise, decreased blood pressure, increased the anti-inflammatory profile and insulin-stimulated glucose disposal, and reduced the fat-free mass. Except for the decreased blood pressure, the significant results did not include many hard clinical end points, such as decreases in weight, BMI, fasting glucose, or HbA1c percentage. However, the analyzed trials were short-term interventions. Overall, the accumulated clinical data can be interpreted as moderately promising. Additional and long-term studies will be needed to directly compare the doses and duration of treatments among different vitamin B3 regimes, as well as to define the type of patients, if any, that could benefit from these treatments. In this context, a major point of advancement in delineating future clinical trials would be to identify subjects with a recognized NAD+ deficiency using novel, appropriate biomarkers. Also, confirmation of gender-specific effect of NAD+-increasing treatments would be needed.
Collapse
Affiliation(s)
- Francisco Blanco-Vaca
- Servei de Bioquímica, Hospital de la Santa Creu i Sant Pau i Institut d’Investigació Biomèdica Sant Pau, Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
| | - Noemi Rotllan
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau i Institut d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Marina Canyelles
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau i Institut d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Didac Mauricio
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau i Institut d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Servei de Endocrinologia i Nutrició, Hospital de la Santa Creu i Sant Pau i Institut d’Investigació Biomèdica Sant Pau, Barcelona, Spain
| | - Joan Carles Escolà-Gil
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau i Institut d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Josep Julve
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
- Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau i Institut d’Investigació Biomèdica de l’Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- *Correspondence: Josep Julve,
| |
Collapse
|