1
|
Ma W, Yao H, Zhang L, Zhang Y, Wang Y, Wang W, Liu Y, Zhao X, Tong P, Su Z. Transcriptomics-Based Study of Immune Genes Associated with Subclinical Mastitis in Bactrian Camels. Vet Sci 2025; 12:121. [PMID: 40005880 PMCID: PMC11861070 DOI: 10.3390/vetsci12020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
The significant increase in demand for camel milk has led to a rapid increase in the number of Bactrian camels. However, the widespread occurrence of mastitis significantly impacts the development of the Bactrian camel milk industry and poses a public health risk. Despite this, there is a lack of research on the transcriptional response, immune response pathways, and changes in core genes of Bactrian camels with subclinical mastitis. This study aimed to reveal the changes in immune-related response pathways and gene transcription levels in Bactrian camels with subclinical mastitis by analyzing the blood transcriptional response after the occurrence of subclinical mastitis in natural conditions. This study focused on 7-year-old Bactrian camels and collected 2 mL of blood from the camels that tested positive with a 4-peak California Mastitis Test (CMT) and those that tested negative with a 3-peak CMT. RNA sequencing (RNA-Seq) technology was used to analyze gene expression in the blood samples. Gene expression was verified using quantitative reverse transcription polymerase chain reaction (RT-qPCR). Overall, 1722 differentially expressed genes were sequenced in the blood samples of CMT-positive and CMT-negative Bactrian camels, including 1061 upregulated and 661 downregulated genes. After conducting gene ontology functional enrichment, 453 differentially expressed genes were identified. We also discovered pathways such as immune response, the G-protein-coupled receptor signaling pathway, and internal signal transmission. Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment detected 668 differentially expressed genes annotated onto 309 metabolic pathways, with significantly enriched immune pathways including cytokine-cytokine receptor interaction, complex and coalescence cascades, natural killer cell-mediated cytotoxicity, and T helper type 17 cell differentiation, among others. Through a STRING protein interaction database and cytoscape analysis, it was found that core differentially expressed genes related to immunity included IL10, CCL5, IL1B, OSM, TNFRSF1B, IL7, and CCR3, among others. The RT-qPCR results for six randomly selected core differentially expressed genes showed that the RT-qPCR expression pattern was consistent with the RNA Seq results. The immune-related genes in Bactrian camels affected by subclinical mastitis are primarily concentrated in the immune response and the cytokine-cytokine receptor interaction pathway. Given the importance of these pathways and the connections among related genes, the immune genes within these pathways may play a crucial role in the pathogenesis of subclinical mastitis in Bactrian camels. This study provides a valuable reference for investigating the immune regulatory mechanisms of subclinical mastitis in Bactrian camels.
Collapse
Affiliation(s)
- Wanpeng Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumgi 830052, China; (W.M.); (L.Z.); (Y.Z.); (Y.W.); (W.W.); (Y.L.); (X.Z.); (P.T.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivorous Animals, Urumgi 830052, China
| | - Huaibin Yao
- Xinjiang Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Lin Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumgi 830052, China; (W.M.); (L.Z.); (Y.Z.); (Y.W.); (W.W.); (Y.L.); (X.Z.); (P.T.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivorous Animals, Urumgi 830052, China
| | - Yi Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumgi 830052, China; (W.M.); (L.Z.); (Y.Z.); (Y.W.); (W.W.); (Y.L.); (X.Z.); (P.T.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivorous Animals, Urumgi 830052, China
| | - Yan Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumgi 830052, China; (W.M.); (L.Z.); (Y.Z.); (Y.W.); (W.W.); (Y.L.); (X.Z.); (P.T.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivorous Animals, Urumgi 830052, China
| | - Wei Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumgi 830052, China; (W.M.); (L.Z.); (Y.Z.); (Y.W.); (W.W.); (Y.L.); (X.Z.); (P.T.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivorous Animals, Urumgi 830052, China
| | - Yifan Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumgi 830052, China; (W.M.); (L.Z.); (Y.Z.); (Y.W.); (W.W.); (Y.L.); (X.Z.); (P.T.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivorous Animals, Urumgi 830052, China
| | - Xueting Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumgi 830052, China; (W.M.); (L.Z.); (Y.Z.); (Y.W.); (W.W.); (Y.L.); (X.Z.); (P.T.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivorous Animals, Urumgi 830052, China
| | - Panpan Tong
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumgi 830052, China; (W.M.); (L.Z.); (Y.Z.); (Y.W.); (W.W.); (Y.L.); (X.Z.); (P.T.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivorous Animals, Urumgi 830052, China
| | - Zhanqiang Su
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumgi 830052, China; (W.M.); (L.Z.); (Y.Z.); (Y.W.); (W.W.); (Y.L.); (X.Z.); (P.T.)
- Xinjiang Key Laboratory of New Drug Research and Development for Herbivorous Animals, Urumgi 830052, China
| |
Collapse
|
2
|
Beter M, Pulkkinen HH, Örd T, Sormunen A, Kilpeläinen L, Dunford JE, Kaikkonen MU, Aavik E, Laham-Karam N, Oppermann U, Laakkonen JP, Ylä-Herttuala S. Epigenetic drug screening identifies enzyme inhibitors A-196 and TMP-269 as novel regulators of sprouting angiogenesis. Sci Rep 2025; 15:1628. [PMID: 39794417 PMCID: PMC11724134 DOI: 10.1038/s41598-024-84603-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Epigenetic therapy has gained interest in treating cardiovascular diseases, but preclinical studies often encounter challenges with cell-type-specific effects or batch-to-batch variation, which have limited identification of novel drug candidates targeting angiogenesis. To address these limitations and improve the reproducibility of epigenetic drug screening, we redesigned a 3D in vitro fibrin bead assay to utilize immortalized human aortic endothelial cells (TeloHAECs) and screened a focused compound library with 105 agents. Compared to the established model using primary human umbilical vein endothelial cells, TeloHAECs needed a higher-density fibrin gel for optimal sprouting, successfully forming sprouts under both normoxic and hypoxic cell culture conditions. We identified two epigenetic enzyme inhibitors as novel regulators of sprouting angiogenesis: A196, a selective SUV4-20H1/H2 inhibitor, demonstrated pro-angiogenic effects through increased H4K20me1 levels and upregulation of cell cycle associated genes, including MCM2 and CDK4. In contrast TMP-269, a selective class IIa HDAC inhibitor, exhibited anti-angiogenic effects by downregulating angiogenesis-related proteins and upregulating pro-inflammatory signaling. These findings highlight the suitability of the modified TeloHAEC fibrin bead assay for drug screening purposes and reveal both pro-angiogenic and anti-angiogenic drug candidates with therapeutic potential.
Collapse
Affiliation(s)
- M Beter
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - H H Pulkkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - T Örd
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - A Sormunen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - L Kilpeläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - J E Dunford
- Botnar Research Centre, Oxford NIHR BRU, University of Oxford, Oxford, UK
| | - M U Kaikkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - E Aavik
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - N Laham-Karam
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - U Oppermann
- Botnar Research Centre, Oxford NIHR BRU, University of Oxford, Oxford, UK
- Oxford Centre for Translational Myeloma Research, University of Oxford, Oxford, OX3 7LD, UK
| | - J P Laakkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - S Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
- Science Service Center, Kuopio University Hospital, Kuopio, Finland
- Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
3
|
Cao S, Zeng Y, Pang K, Chen M, Guo R, Wu N, Fang C, Deng H, Zhang X, Xie X, Ouyang W, Yang H. Unraveling the causal impact of smoking and its DNA methylation signatures on cardiovascular disease: Mendelian randomization and colocalization analysis. Clin Epigenetics 2025; 17:1. [PMID: 39748436 PMCID: PMC11694376 DOI: 10.1186/s13148-024-01808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND To explore the mechanisms linking smoking to cardiovascular diseases (CVDs) from an epigenetic perspective. METHODS Mendelian Randomization (MR) analysis was performed to assess the causal effects of smoking behavior and DNA methylation levels at smoking-related CpG sites on nine CVDs, including aortic aneurysm, atrial fibrillation, coronary atherosclerosis, coronary heart disease, heart failure, intracerebral hemorrhage, ischemic stroke, myocardial infarction, subarachnoid hemorrhage. Colocalization analysis was used to further identify key smoking-related CpG sites from the MR causal estimates. Reactome enrichment analysis was used to elucidate the potential mechanisms. RESULTS MR analysis indicates that smoking behaviors are significantly associated with an increased risk of nine CVDs (OR > 1, P < 0.05). Through MR and colocalization analysis, five key smoking-related CpG sites were ultimately determined. DNA methylation alteration at cg25313468 (located in the TSS1500 region of REST) is simultaneously associated with the risk of atrial fibrillation, coronary atherosclerosis, coronary heart disease, and myocardial infarction. Additionally, cg21647257 (located in the TSS200 region of CLIP3) is associated with the risk of atrial fibrillation; cg06197751 (located in SGEF gene body) and cg07520810 (located in ARID5B gene body) are associated with the risk of coronary atherosclerosis; cg16822035 (located in MCF2L gene body) is associated with the risk of myocardial infarction. Enrichment analysis suggests that phosphatase and tensin homologue (PTEN) may be involved in the downstream mechanisms of cg25313468 (REST). CONCLUSION This study uncovers the relationship between smoking, DNA methylation, and CVDs, providing new insights into the pathogenic effect of smoking on CVDs from an epigenetic perspective.
Collapse
Affiliation(s)
- Si Cao
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Youjie Zeng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ke Pang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Minghua Chen
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Ren Guo
- Department of Pharmacy, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Chao Fang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, Hunan, China
| | - Huiyin Deng
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoyi Zhang
- Department of Medicine, Jacobi Medical Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Xiaohui Xie
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wen Ouyang
- Department of Anesthesiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
| | - Heng Yang
- Department of Neurology, Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan, China.
| |
Collapse
|
4
|
Zhu M, Deng X, Zhang N, Zhang P, Lai C, Cai S, Huang J, Chen X, Liu Y, Zeng W, Ke M. Dexamethasone induces trabecular meshwork cell myofibroblast transdifferentiation through ARHGEF26. FASEB J 2024; 38:e23848. [PMID: 39092889 DOI: 10.1096/fj.202400400rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/30/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Glucocorticoid use may cause elevated intraocular pressure, leading to the development of glucocorticoid-induced glaucoma (GIG). However, the mechanism of GIG development remains incompletely understood. In this study, we subjected primary human trabecular meshwork cells (TMCs) and mice to dexamethasone treatment to mimic glucocorticoid exposure. The myofibroblast transdifferentiation of TMCs was observed in cellular and mouse models, as well as in human trabecular mesh specimens. This was demonstrated by the cytoskeletal reorganization, alterations in cell morphology, heightened transdifferentiation markers, increased extracellular matrix deposition, and cellular dysfunction. Knockdown of Rho guanine nucleotide exchange factor 26 (ARHGEF26) expression ameliorated dexamethasone-induced changes in cell morphology and upregulation of myofibroblast markers, reversed dysfunction and extracellular matrix deposition in TMCs, and prevented the development of dexamethasone-induced intraocular hypertension. And, this process may be related to the TGF-β pathway. In conclusion, glucocorticoids induced the myofibroblast transdifferentiation in TMCs, which played a crucial role in the pathogenesis of GIG. Inhibition of ARHGEF26 expression protected TMCs by reversing myofibroblast transdifferentiation. This study demonstrated the potential of reversing the myofibroblast transdifferentiation of TMCs as a new target for treating GIG.
Collapse
Affiliation(s)
- Min Zhu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xizhi Deng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Nan Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pengyu Zhang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Cheng Lai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shuncheng Cai
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingqiu Huang
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaomin Chen
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yang Liu
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen Zeng
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Ke
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Dumitru CS, Raica M. A Splice Form of VEGF, a Potential Anti-Angiogenetic Form of Head and Neck Squamous Cell Cancer Inhibition. Int J Mol Sci 2024; 25:8855. [PMID: 39201541 PMCID: PMC11354464 DOI: 10.3390/ijms25168855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Angiogenesis, primarily mediated by vascular endothelial growth factor (VEGF), is a fundamental step in the progression and metastasis of head and neck squamous cell carcinoma (HNSCC). Traditional anti-angiogenic therapies that target the VEGF pathway have shown promise but are often associated with significant side effects and variable efficacy due to the complexity of the angiogenic signaling pathway. This review highlights the potential of a specific VEGF splice form, VEGF165b, as an innovative therapeutic target for HNSCC. VEGF165b, unlike standard VEGF, is a natural inhibitor that binds to VEGF receptors without triggering pro-angiogenic signaling. Its distinct molecular structure and behavior suggest ways to modulate angiogenesis. This concept is particularly relevant when studying HNSCC, as introducing VEGF165b's anti-angiogenic properties offers a novel approach to understanding and potentially influencing the disease's dynamics. The review synthesizes experimental evidence suggesting the efficacy of VEGF165b in inhibiting tumor-induced angiogenesis and provides insight into a novel therapeutic strategy that could better manage HNSCC by selectively targeting aberrant vascular growth. This approach not only provides a potential pathway for more targeted and effective treatment options but also opens the door to a new paradigm in anti-angiogenic therapy with the possibility of reduced systemic toxicity. Our investigation is reshaping the future of HNSCC treatment by setting the stage for future research on VEGF splice variants as a tool for personalized medicine.
Collapse
Affiliation(s)
- Cristina Stefania Dumitru
- Department of Microscopic Morphology/Histology, Angiogenesis Research Center, “Victor Babes” University of Medicine and Pharmacy, 300041 Timisoara, Romania;
| | | |
Collapse
|
6
|
Schäfer S, Gogiraju R, Rösch M, Kerstan Y, Beck L, Garbisch J, Saliba AE, Gisterå A, Hermanns HM, Boon L, Kastenmüller W, Schäfer K, Cochain C, Zernecke A. CD8 + T Cells Drive Plaque Smooth Muscle Cell Dedifferentiation in Experimental Atherosclerosis. Arterioscler Thromb Vasc Biol 2024; 44:1852-1872. [PMID: 38868941 DOI: 10.1161/atvbaha.123.320084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/15/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Atherosclerosis is driven by the infiltration of the arterial intima by diverse immune cells and smooth muscle cells (SMCs). CD8+ T cells promote lesion growth during atherosclerotic lesion development, but their role in advanced atherosclerosis is less clear. Here, we studied the role of CD8+ T cells and their effects on SMCs in established atherosclerosis. METHODS CD8+ T cells were depleted in (SMC reporter) low-density lipoprotein receptor-deficient (Ldlr-/-) mice with established atherosclerotic lesions. Atherosclerotic lesion formation was examined, and single-cell RNA sequencing of aortic SMCs and their progeny was performed. Additionally, coculture experiments with primary aortic SMCs and CD8+ T cells were conducted. RESULTS Although we could not detect differences in atherosclerotic lesion size, an increased plaque SMC content was noted in mice after CD8+ T-cell depletion. Single-cell RNA sequencing of aortic lineage-traced SMCs revealed contractile SMCs and a modulated SMC cluster, expressing macrophage- and osteoblast-related genes. CD8+ T-cell depletion was associated with an increased contractile but decreased macrophage and osteoblast-like gene signature in this modulated aortic SMC cluster. Conversely, exposure of isolated aortic SMCs to activated CD8+ T cells decreased the expression of genes indicative of a contractile SMC phenotype and induced a macrophage and osteoblast-like cell state. Notably, CD8+ T cells triggered calcium deposits in SMCs under osteogenic conditions. Mechanistically, we identified transcription factors highly expressed in modulated SMCs, including Runx1, to be induced by CD8+ T cells in cultured SMCs in an IFNγ (interferon-γ)-dependent manner. CONCLUSIONS We here uncovered CD8+ T cells to control the SMC phenotype in atherosclerosis. CD8+ T cells promote SMC dedifferentiation and drive SMCs to adopt features of macrophage-like and osteoblast-like, procalcifying cell phenotypes. Given the critical role of SMCs in atherosclerotic plaque stability, CD8+ T cells could thus be explored as therapeutic target cells during lesion progression.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/immunology
- Cell Dedifferentiation
- Plaque, Atherosclerotic
- Mice
- Disease Models, Animal
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Cells, Cultured
- Male
- Receptors, LDL/genetics
- Receptors, LDL/deficiency
- Phenotype
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- Aorta/pathology
- Aorta/immunology
- Aorta/metabolism
- Coculture Techniques
- Aortic Diseases/pathology
- Aortic Diseases/genetics
- Aortic Diseases/immunology
- Aortic Diseases/metabolism
Collapse
Affiliation(s)
- Sarah Schäfer
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| | - Rajinikanth Gogiraju
- Department of Cardiology, Cardiology I, University Medicine Mainz, Germany (R.G., K.S.)
| | - Melanie Rösch
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| | - Yvonne Kerstan
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| | - Lina Beck
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| | - Janine Garbisch
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Institute of Molecular Infection Biology Faculty of Medicine, University of Würzburg, Germany (A.-E.S.)
| | - Anton Gisterå
- Center for Molecular Medicine, Department of Medicine, Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden (A.G.)
| | - Heike M Hermanns
- Medical Clinic II, Division of Hepatology (H.M.H.), University Hospital of Würzburg, Germany
| | | | | | - Katrin Schäfer
- Department of Cardiology, Cardiology I, University Medicine Mainz, Germany (R.G., K.S.)
| | - Clément Cochain
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine (S.S., M.R., Y.K., L. Beck, J.G., C.C., A.Z.), University Hospital of Würzburg, Germany
| |
Collapse
|
7
|
Pepin ME, Gupta RM. The Role of Endothelial Cells in Atherosclerosis: Insights from Genetic Association Studies. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:499-509. [PMID: 37827214 PMCID: PMC10988759 DOI: 10.1016/j.ajpath.2023.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Endothelial cells (ECs) mediate several biological functions that are relevant to atherosclerosis and coronary artery disease (CAD), regulating an array of vital processes including vascular tone, wound healing, reactive oxygen species, shear stress response, and inflammation. Although which of these functions is linked causally with CAD development and/or progression is not yet known, genome-wide association studies have implicated more than 400 loci associated with CAD risk, among which several have shown EC-relevant functions. Given the arduous process of mechanistically interrogating single loci to CAD, high-throughput variant characterization methods, including pooled Clustered Regularly Interspaced Short Palindromic Repeats screens, offer exciting potential to rapidly accelerate the discovery of bona fide EC-relevant genetic loci. These discoveries in turn will broaden the therapeutic avenues for CAD beyond lipid lowering and behavioral risk modification to include EC-centric modalities of risk prevention and treatment.
Collapse
Affiliation(s)
- Mark E Pepin
- Cardiovascular Disease Initiative, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, Massachusetts
| | - Rajat M Gupta
- Cardiovascular Disease Initiative, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
8
|
Vion AC, Loirand G. ARHGEF26: a new player in VEGFR2 trafficking. Cardiovasc Res 2022; 118:2735-2736. [DOI: 10.1093/cvr/cvac149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Anne Clémence Vion
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax , F-44000 Nantes , France
| | - Gervaise Loirand
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax , F-44000 Nantes , France
| |
Collapse
|