1
|
Karanasos A, Korosoglou G. Editorial: Optimizing cardiovascular imaging for unusual clinical scenarios: a case-based approach. Front Cardiovasc Med 2025; 12:1615228. [PMID: 40438234 PMCID: PMC12116608 DOI: 10.3389/fcvm.2025.1615228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Accepted: 04/25/2025] [Indexed: 06/01/2025] Open
Affiliation(s)
| | - Grigorios Korosoglou
- Department of Cardiology, Vascular Medicine and Pneumology, GRN Hospital Weinheim, Weinheim, Germany
- Cardiac Imaging Center Weinheim, Hector Foundation, Weinheim, Germany
| |
Collapse
|
2
|
Zhang X, Che Y, Li C, Cao X, Wang X, Zhang Y, Li G, Zhu J, Luo M, Shu C. Prediction of iliac limb occlusion after endovascular aneurysm repair for abdominal aortic aneurysm by anatomical and near-wall hemodynamic characteristics combining numerical simulation and in vitro experiment. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 268:108845. [PMID: 40373464 DOI: 10.1016/j.cmpb.2025.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/04/2025] [Accepted: 05/10/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND AND OBJECTIVE Iliac limb occlusion (ILO) is a serious complication of endovascular aneurysm repair (EVAR) for abdominal aortic aneurysm (AAA), and most require timely reintervention. The study aims to explore pathogenesis, risk factors and prediction models of ILO combining anatomical and near-wall hemodynamic characteristics. METHODS 75 AAA patients with EVAR (occlusion 25; patency 50) were included. Pre-EVAR and early post-EVAR anatomical (proximal neck angulation, radius, curvature, torsion and tortuosity) and near-wall hemodynamic parameters (time-averaged wall shear stress [TAWSS], oscillatory shear index [OSI] and relative residence time [RRT]) were quantified based on numerical simulation validated through in vitro experiment. The causation of ILO was investigated statistically in three perspectives: differences between patent and occluded patients, effect of EVAR and asymmetries between occluded and patent iliac arteries (IAs). A new parameter, the difference ratio of EVAR (DRE) or IAs (DRI), was proposed to evaluate the degree of changes caused by EVAR and asymmetries between bilateral IAs. RESULTS The occluded patients had higher TAWSS (p = 0.004) and larger torsion of common IA (p = 0.033) at pre-EVAR than patent patients. At early post-EVAR, OSI and RRT of future occluded IA were significantly higher than patent IA. The difference ratio of pre-EVAR and early post-EVAR RRT (DRE of RRT) on occluded IA was also higher than that on patent IA (p = 0.025). A prediction model for ILO (area under curve = 0.924) was developed combining anatomical and near-wall hemodynamic variables, where DRI of pre-EVAR OSI had the highest odds ratio [OR] of 5.45 (1.77‒16.74, p = 0.003), and pre-EVAR radius of external IA had the lowest OR of 0.06 (0.01‒0.45, p = 0.007). CONCLUSIONS High TAWSS and large torsion at pre-EVAR, and excessive increase in RRT by EVAR (DRE) might induce ILO. Higher asymmetry of pre-EVAR OSI between bilateral IAs (DRI) and smaller radius of pre-EVAR external IA were significantly associated with increased ILO risk. The above findings can provide some theoretical guidance to predict and reduce the risk of ILO.
Collapse
Affiliation(s)
- Xuelan Zhang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China; Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Yue Che
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Chunxiao Li
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiran Cao
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoxiao Wang
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Yidan Zhang
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Gaoyang Li
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Jing Zhu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Mingyao Luo
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Department of Vascular Surgery, Central-China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China; Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China.
| | - Chang Shu
- State Key Laboratory of Cardiovascular Disease, Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China; Department of Vascular Surgery, Central-China Subcenter of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Cardiovascular Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou 450046, China; Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, 650102, China; Department of Vascular Surgery, The Second Xiangya Hospital of Central South University, Changsha 410000, China.
| |
Collapse
|
3
|
Kechichian A, Mizukami T, Malhotra G, Spratt JC, Ikeda K, Corradetti S, Munhoz D, Sakai K, Sonck J, Wyffels E, Bouisset F, Mahendiran T, De Bruyne B, Collet C, Wilgenhof A. Pullback pressure gradient: A paradigm shift in physiology-guided revascularization. CARDIOVASCULAR REVASCULARIZATION MEDICINE 2025:S1553-8389(25)00214-3. [PMID: 40312199 DOI: 10.1016/j.carrev.2025.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Optimizing decision-making remains essential in the management of stable coronary artery disease (CAD). Recent studies of the pullback pressure gradient (PPG), a novel tool for evaluating CAD patterns, have demonstrated that the effectiveness of percutaneous coronary intervention (PCI) is strongly influenced by the baseline CAD pattern (focal vs diffuse). The capacity of PPG to predict the success of PCI provides a means to better inform decision-making, revascularization strategies and, potentially, improve clinical outcomes.
Collapse
Affiliation(s)
- Anthony Kechichian
- Cardiovascular Center Aalst, AZORG, Aalst, Belgium; Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Takuya Mizukami
- Cardiovascular Center Aalst, AZORG, Aalst, Belgium; Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan
| | - Ganeev Malhotra
- Cardiology, St George's University Hospitals NHS Foundation Trust, London, UK
| | - James C Spratt
- Cardiology, St George's University Hospitals NHS Foundation Trust, London, UK; St George's, University of London, London, UK
| | - Kazumasa Ikeda
- Cardiovascular Center Aalst, AZORG, Aalst, Belgium; Department of Cardiology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Sara Corradetti
- Cardiovascular Center Aalst, AZORG, Aalst, Belgium; Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Koshiro Sakai
- Cardiovascular Center Aalst, AZORG, Aalst, Belgium; Department of Medicine, Division of Cardiology, Showa University School of Medicine, Tokyo, Japan; Department of Cardiology, St Francis Hospital and Heart Center, Roslyn, NY, USA
| | - Jeroen Sonck
- Cardiovascular Center Aalst, AZORG, Aalst, Belgium
| | - Eric Wyffels
- Cardiovascular Center Aalst, AZORG, Aalst, Belgium
| | - Frédéric Bouisset
- Cardiovascular Center Aalst, AZORG, Aalst, Belgium; Department of Cardiology, Toulouse University Hospital, Toulouse, France
| | - Thabo Mahendiran
- Cardiovascular Center Aalst, AZORG, Aalst, Belgium; Lausanne University Hospital, Lausanne, Switzerland
| | | | | | - Adriaan Wilgenhof
- Cardiovascular Center Aalst, AZORG, Aalst, Belgium; Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Singh J, Ruhoff AM, Ashok D, Wise SG, Waterhouse A. Engineering advanced in vitro models of endothelial dysfunction. Trends Biotechnol 2025:S0167-7799(25)00089-7. [PMID: 40187930 DOI: 10.1016/j.tibtech.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/30/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025]
Abstract
Endothelial dysfunction is an important initiator of cardiovascular disease, the leading cause of death globally, and often manifests in arterial regions with disturbed blood flow. Experimental model advances have crucially helped unravel physiological mechanisms. While in vivo models provide a dynamic environment, they often fail to mimic human physiology precisely and face significant ethical barriers. Advanced in vitro models, including organs-on-chips and bioreactors, combine human cells and blood flow to accurately replicate endothelial dysfunction. Newer models have enhanced scalability and accuracy, with organs-on-chips commonly outperforming standard preclinical methods. Importantly, recent endothelial dysfunction discoveries leverage dynamic models to identify and evaluate clinically promising therapeutics. Here, we examine these developments and explore opportunities to develop next-generation in vitro models of endothelial dysfunction.
Collapse
Affiliation(s)
- Jasneil Singh
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Alexander M Ruhoff
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Deepu Ashok
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia; School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Steven G Wise
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Anna Waterhouse
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia; The Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia; The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
5
|
Qin YS, Yi J, Chen YJ, Zhang W, Tang SF. Recent Advances in Micro/Nanomotor for the Therapy and Diagnosis of Atherosclerosis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11443-11468. [PMID: 39648908 DOI: 10.1021/acsami.4c15165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Atherosclerotic cardiovascular disease poses a significant global public health threat with a high incidence that can result in severe mortality and disability. The lack of targeted effects from traditional therapeutic drugs on atherosclerosis may cause damage to other organs and tissues, necessitating the need for a more focused approach to address this dilemma. Micro/nanomotors are self-propelled micro/nanoscale devices capable of converting external energy into autonomous movement, which offers advantages in enhancing penetration depth and retention while increasing contact area with abnormal sites, such as atherosclerotic plaque, inflammation, and thrombosis, within blood vessel walls. Recent studies have demonstrated the crucial role micro/nanomotors play in treating atherosclerotic cardiovascular disease. Hence, this review highlights the recent progress of micro/nanomotor technology in atherosclerotic cardiovascular disease, including the effective promotion of micro/nanomotors in the circulatory system, overcoming hemorheological barriers, targeting the atherosclerotic plaque microenvironment, and targeting intracellular drug delivery, to facilitate atherosclerotic plaque localization and therapy. Furthermore, we also describe the potential application of micro/nanomotors in the imaging of vulnerable plaque. Finally, we discuss key challenges and prospects for treating atherosclerotic cardiovascular disease while emphasizing the importance of designing individualized management strategies specific to its causes and microenvironmental factors.
Collapse
Affiliation(s)
- Yu-Sheng Qin
- Department of Laboratory Medicine, Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People's Hospital), Liuzhou People's Hospital, Liuzhou 545006, China
| | - Juan Yi
- Department of Laboratory Medicine, Liuzhou Traditional Chinese Medical Hospital, The Third Affiliated Hospital of Guangxi University of Chinese Medicine, Liuzhou 545006, China
| | - Yan-Jun Chen
- Department of Pathology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Wei Zhang
- Department of Radiology, Liuzhou People's Hospital, Liuzhou 545006, China
| | - Shi-Fu Tang
- Department of Laboratory Medicine, Liuzhou Key Laboratory of Precision Medicine for Viral Diseases, Guangxi Health Commission Key Laboratory of Clinical Biotechnology (Liuzhou People's Hospital), Liuzhou People's Hospital, Liuzhou 545006, China
| |
Collapse
|
6
|
Li Y, Nagoshi R, Kozuki A, Kijima Y, Han Y, Shite J. Three-dimensional optical coherence tomography for guidance of percutaneous coronary intervention for coronary bifurcation disease: a review of current clinical applications. Cardiovasc Diagn Ther 2024; 14:949-957. [PMID: 39513132 PMCID: PMC11538841 DOI: 10.21037/cdt-24-163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/19/2024] [Indexed: 11/15/2024]
Abstract
Percutaneous coronary intervention (PCI) for coronary bifurcation disease remains one of the most challenging situations in interventional cardiology in terms of procedural success rates and long-term cardiac events. Optical coherence tomography (OCT), with a higher signal-to-noise ratio and the ability to distinguish plaque components, can display the true condition of bifurcation lesions without overlapping or shortening and achieve detailed visualization of vascular structures, which is superior to those of other imaging modalities. Three-dimensional (3D) reconstruction of OCT images (3D-OCT) helps to gain a more informed understanding of the geometry and morphology of bifurcation lesions and provide additive information on plaque distribution. Following stent implantation, 3D-OCT can also guide the re-crossing of guide wires through stent struts jailing the side branch (SB) ostium and more clearly display the jailing strut configuration, as well as the ideal position of the guidewire recrossing point and stent struct link connection, to confirm the optimal guidewire position and understand interactions between stents and vessel walls, which may improve clinical results after PCI. The present review provides an up-to-date overview of the clinical use of 3D-OCT for accurate assessment of bifurcation anatomy, guiding the optimal guidewire rewiring into SB during bifurcation stenting, and evaluation of post-PCI results, offering novel information about atherosclerotic disease or stenting process.
Collapse
Affiliation(s)
- Yang Li
- Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
- Department of Cardiology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Ryoji Nagoshi
- Department of Cardiology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Amane Kozuki
- Department of Cardiology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Yoichi Kijima
- Department of Cardiology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Yaling Han
- Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Junya Shite
- Department of Cardiology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| |
Collapse
|
7
|
Zhang M, Gharleghi R, Shen C, Beier S. A new understanding of coronary curvature and haemodynamic impact on the course of plaque onset and progression. ROYAL SOCIETY OPEN SCIENCE 2024; 11:241267. [PMID: 39309260 PMCID: PMC11416812 DOI: 10.1098/rsos.241267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/01/2024] [Indexed: 09/25/2024]
Abstract
The strong link between atherosclerosis and luminal biomechanical stresses is well established. Yet, this understanding has not translated into preventative coronary diagnostic imaging, particularly due to the under-explored role of coronary anatomy and haemodynamics in plaque onset, which we aim to address with this work. The left coronary trees of 20 non-stenosed (%diameter stenosis [%DS] = 0), 12 moderately (0 < %DS < 70) and 7 severely (%DS ≥ 70) stenosed cases were dissected into bifurcating and non-bifurcating segments for whole-tree and segment-specific comparisons, correlating nine three-dimensional coronary anatomical features, topological shear variation index (TSVI) and luminal areas subject to low time-average endothelial shear stress (%LowTAESS), high oscillatory shear index (%HighOSI) and high relative residence time (%HighRRT). We found that TSVI is the only metric consistently differing between non-stenosed and stenosed cases across the whole tree, bifurcating and non-bifurcating segments (p < 0.002, AUC = 0.876), whereas average curvature and %HighOSI differed only for the whole trees (p < 0.024) and non-bifurcating segments (p < 0.027), with AUC > 0.711. Coronary trees with moderate or severe stenoses differed only in %LowTAESS (p = 0.009) and %HighRRT (p = 0.012). This suggests TSVI, curvature and %HighOSI are potential factors driving plaque onset, with greater predictive performance than the previously recognized %LowTAESS and %HighRRT, which appears to play a role in plaque progression.
Collapse
Affiliation(s)
- Mingzi Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales2052, Australia
| | - Ramtin Gharleghi
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales2052, Australia
| | - Chi Shen
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales2052, Australia
| | - Susann Beier
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales2052, Australia
| |
Collapse
|
8
|
Bacigalupi E, Pizzicannella J, Rigatelli G, Scorpiglione L, Foglietta M, Rende G, Mantini C, Fiore FM, Pelliccia F, Zimarino M. Biomechanical factors and atherosclerosis localization: insights and clinical applications. Front Cardiovasc Med 2024; 11:1392702. [PMID: 39119184 PMCID: PMC11306036 DOI: 10.3389/fcvm.2024.1392702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024] Open
Abstract
Although the entire vascular bed is constantly exposed to the same risk factors, atherosclerosis manifests a distinct intra-individual pattern in localization and progression within the arterial vascular bed. Despite shared risk factors, the development of atherosclerotic plaques is influenced by physical principles, anatomic variations, metabolic functions, and genetic pathways. Biomechanical factors, particularly wall shear stress (WSS), play a crucial role in atherosclerosis and both low and high WSS are associated with plaque progression and heightened vulnerability. Low and oscillatory WSS contribute to plaque growth and arterial remodeling, while high WSS promotes vulnerable changes in obstructive coronary plaques. Axial plaque stress and plaque structural stress are proposed as biomechanical indicators of plaque vulnerability, representing hemodynamic stress on stenotic lesions and localized stress within growing plaques, respectively. Advancements in imaging and computational fluid dynamics techniques enable a comprehensive analysis of morphological and hemodynamic properties of atherosclerotic lesions and their role in plaque localization, evolution, and vulnerability. Understanding the impact of mechanical forces on blood vessels holds the potential for developing shear-regulated drugs, improving diagnostics, and informing clinical decision-making in coronary atherosclerosis management. Additionally, Computation Fluid Dynamic (CFD) finds clinical applications in comprehending stent-vessel dynamics, complexities of coronary bifurcations, and guiding assessments of coronary lesion severity. This review underscores the clinical significance of an integrated approach, concentrating on systemic, hemodynamic, and biomechanical factors in atherosclerosis and plaque vulnerability among patients with coronary artery disease.
Collapse
Affiliation(s)
- Elena Bacigalupi
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. d’ Annunzio” Chieti-Pescara, Pescara, Italy
| | | | - Luca Scorpiglione
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Melissa Foglietta
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Cardiology Department, SS. Annunziata Hospital, Chieti, Italy
| | - Greta Rende
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Cesare Mantini
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Franco M. Fiore
- Division of Vascular Surgery, SS. Annunziata Hospital, Chieti, Italy
| | | | - Marco Zimarino
- Department of Neuroscience, Imaging and Clinical Sciences, “G. D'Annunzio” University of Chieti-Pescara, Chieti, Italy
- Cardiology Department, SS. Annunziata Hospital, Chieti, Italy
| |
Collapse
|
9
|
Vuong TNAM, Bartolf‐Kopp M, Andelovic K, Jungst T, Farbehi N, Wise SG, Hayward C, Stevens MC, Rnjak‐Kovacina J. Integrating Computational and Biological Hemodynamic Approaches to Improve Modeling of Atherosclerotic Arteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307627. [PMID: 38704690 PMCID: PMC11234431 DOI: 10.1002/advs.202307627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/12/2024] [Indexed: 05/07/2024]
Abstract
Atherosclerosis is the primary cause of cardiovascular disease, resulting in mortality, elevated healthcare costs, diminished productivity, and reduced quality of life for individuals and their communities. This is exacerbated by the limited understanding of its underlying causes and limitations in current therapeutic interventions, highlighting the need for sophisticated models of atherosclerosis. This review critically evaluates the computational and biological models of atherosclerosis, focusing on the study of hemodynamics in atherosclerotic coronary arteries. Computational models account for the geometrical complexities and hemodynamics of the blood vessels and stenoses, but they fail to capture the complex biological processes involved in atherosclerosis. Different in vitro and in vivo biological models can capture aspects of the biological complexity of healthy and stenosed vessels, but rarely mimic the human anatomy and physiological hemodynamics, and require significantly more time, cost, and resources. Therefore, emerging strategies are examined that integrate computational and biological models, and the potential of advances in imaging, biofabrication, and machine learning is explored in developing more effective models of atherosclerosis.
Collapse
Affiliation(s)
| | - Michael Bartolf‐Kopp
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Kristina Andelovic
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and DentistryInstitute of Functional Materials and Biofabrication (IFB)KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI)University of WürzburgPleicherwall 297070WürzburgGermany
- Department of Orthopedics, Regenerative Medicine Center UtrechtUniversity Medical Center UtrechtUtrecht3584Netherlands
| | - Nona Farbehi
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Garvan Weizmann Center for Cellular GenomicsGarvan Institute of Medical ResearchSydneyNSW2010Australia
| | - Steven G. Wise
- School of Medical SciencesUniversity of SydneySydneyNSW2006Australia
| | - Christopher Hayward
- St Vincent's HospitalSydneyVictor Chang Cardiac Research InstituteSydney2010Australia
| | | | - Jelena Rnjak‐Kovacina
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydney2052Australia
- Tyree Institute of Health EngineeringUniversity of New South WalesSydneyNSW2052Australia
- Australian Centre for NanoMedicine (ACN)University of New South WalesSydneyNSW2052Australia
| |
Collapse
|
10
|
De Nisco G, Hartman EM, Torta E, Daemen J, Chiastra C, Gallo D, Morbiducci U, Wentzel JJ. Predicting Lipid-Rich Plaque Progression in Coronary Arteries Using Multimodal Imaging and Wall Shear Stress Signatures. Arterioscler Thromb Vasc Biol 2024; 44:976-986. [PMID: 38328935 PMCID: PMC10965126 DOI: 10.1161/atvbaha.123.320337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Plaque composition and wall shear stress (WSS) magnitude act as well-established players in coronary plaque progression. However, WSS magnitude per se does not completely capture the mechanical stimulus to which the endothelium is subjected, since endothelial cells experience changes in the WSS spatiotemporal configuration on the luminal surface. This study explores WSS profile and lipid content signatures of plaque progression to identify novel biomarkers of coronary atherosclerosis. METHODS Thirty-seven patients with acute coronary syndrome underwent coronary computed tomography angiography, near-infrared spectroscopy intravascular ultrasound, and optical coherence tomography of at least 1 nonculprit vessel at baseline and 1-year follow-up. Baseline coronary artery geometries were reconstructed from intravascular ultrasound and coronary computed tomography angiography and combined with flow information to perform computational fluid dynamics simulations to assess the time-averaged WSS magnitude (TAWSS) and the variability in the contraction/expansion action exerted by WSS on the endothelium, quantifiable in terms of topological shear variation index (TSVI). Plaque progression was measured as intravascular ultrasound-derived percentage plaque atheroma volume change at 1-year follow-up. Plaque composition information was extracted from near-infrared spectroscopy and optical coherence tomography. RESULTS Exposure to high TSVI and low TAWSS was associated with higher plaque progression (4.00±0.69% and 3.60±0.62%, respectively). Plaque composition acted synergistically with TSVI or TAWSS, resulting in the highest plaque progression (≥5.90%) at locations where lipid-rich plaque is exposed to high TSVI or low TAWSS. CONCLUSIONS Luminal exposure to high TSVI, solely or combined with a lipid-rich plaque phenotype, is associated with enhanced plaque progression at 1-year follow-up. Where plaque progression occurred, low TAWSS was also observed. These findings suggest TSVI, in addition to low TAWSS, as a potential biomechanical predictor for plaque progression, showing promise for clinical translation to improve patient prognosis.
Collapse
Affiliation(s)
- Giuseppe De Nisco
- PolitoMed Laboratory, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (G.D.N., E.T., C.C., D.G., U.M.)
| | - Eline M.J. Hartman
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (E.M.J.H., J.D., J.J.W.)
| | - Elena Torta
- PolitoMed Laboratory, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (G.D.N., E.T., C.C., D.G., U.M.)
| | - Joost Daemen
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (E.M.J.H., J.D., J.J.W.)
| | - Claudio Chiastra
- PolitoMed Laboratory, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (G.D.N., E.T., C.C., D.G., U.M.)
| | - Diego Gallo
- PolitoMed Laboratory, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (G.D.N., E.T., C.C., D.G., U.M.)
| | - Umberto Morbiducci
- PolitoMed Laboratory, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy (G.D.N., E.T., C.C., D.G., U.M.)
| | - Jolanda J. Wentzel
- Department of Cardiology, Biomedical Engineering, Erasmus MC, Rotterdam, the Netherlands (E.M.J.H., J.D., J.J.W.)
| |
Collapse
|
11
|
Yang S, Koo BK. Coronary Physiology-Based Approaches for Plaque Vulnerability: Implications for Risk Prediction and Treatment Strategies. Korean Circ J 2023; 53:581-593. [PMID: 37653694 PMCID: PMC10475684 DOI: 10.4070/kcj.2023.0117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/19/2023] [Indexed: 09/02/2023] Open
Abstract
In the catheterization laboratory, the measurement of physiological indexes can help identify functionally significant lesions and has become one of the standard methods to guide treatment decision-making. Plaque vulnerability refers to a coronary plaque susceptible to rupture, enabling risk prediction before coronary events, and it can be detected by defining a certain type of plaque morphology on coronary imaging modalities. Although coronary physiology and plaque vulnerability have been considered different attributes of coronary artery disease, the underlying pathophysiological basis and clinical data indicate a strong correlation between coronary hemodynamic properties and vulnerable plaque. In prediction of coronary events, emerging data have suggested independent and additional implications of a physiology-based approach to a plaque-based approach. This review covers the fundamental interplay between coronary physiology and plaque morphology during disease progression with clinical data supporting this relationship and examines the clinical relevance of physiological indexes in prediction of clinical outcomes and therapeutic decision-making along with plaque vulnerability.
Collapse
Affiliation(s)
- Seokhun Yang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul National University of College Medicine, Seoul, Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul National University of College Medicine, Seoul, Korea.
| |
Collapse
|