1
|
Bei Y, Wang H, Liu Y, Su Z, Li X, Zhu Y, Zhang Z, Yin M, Chen C, Li L, Wei M, Meng X, Liang X, Huang Z, Cao RY, Wang L, Li G, Cretoiu D, Xiao J. Exercise-Induced miR-210 Promotes Cardiomyocyte Proliferation and Survival and Mediates Exercise-Induced Cardiac Protection against Ischemia/Reperfusion Injury. RESEARCH (WASHINGTON, D.C.) 2024; 7:0327. [PMID: 38410280 PMCID: PMC10895486 DOI: 10.34133/research.0327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/01/2024] [Indexed: 02/28/2024]
Abstract
Exercise can stimulate physiological cardiac growth and provide cardioprotection effect in ischemia/reperfusion (I/R) injury. MiR-210 is regulated in the adaptation process induced by exercise; however, its impact on exercise-induced physiological cardiac growth and its contribution to exercise-driven cardioprotection remain unclear. We investigated the role and mechanism of miR-210 in exercise-induced physiological cardiac growth and explored whether miR-210 contributes to exercise-induced protection in alleviating I/R injury. Here, we first observed that regular swimming exercise can markedly increase miR-210 levels in the heart and blood samples of rats and mice. Circulating miR-210 levels were also elevated after a programmed cardiac rehabilitation in patients that were diagnosed of coronary heart diseases. In 8-week swimming model in wild-type (WT) and miR-210 knockout (KO) rats, we demonstrated that miR-210 was not integral for exercise-induced cardiac hypertrophy but it did influence cardiomyocyte proliferative activity. In neonatal rat cardiomyocytes, miR-210 promoted cell proliferation and suppressed apoptosis while not altering cell size. Additionally, miR-210 promoted cardiomyocyte proliferation and survival in human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and AC16 cell line, indicating its functional roles in human cardiomyocytes. We further identified miR-210 target genes, cyclin-dependent kinase 10 (CDK10) and ephrin-A3 (EFNA3), that regulate cardiomyocyte proliferation and apoptosis. Finally, miR-210 KO and WT rats were subjected to swimming exercise followed by I/R injury. We demonstrated that miR-210 crucially contributed to exercise-driven cardioprotection against I/R injury. In summary, this study elucidates the role of miR-210, an exercise-responsive miRNA, in promoting the proliferative activity of cardiomyocytes during physiological cardiac growth. Furthermore, miR-210 plays an essential role in mediating the protective effects of exercise against cardiac I/R injury. Our findings suggest exercise as a potent nonpharmaceutical intervention for inducing miR-210, which can alleviate I/R injury and promote cardioprotection.
Collapse
Affiliation(s)
- Yihua Bei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Hongyun Wang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Yang Liu
- Department of Cardiology, Shanghai Tongji Hospital,
Tongji University School of Medicine, Shanghai 200065, China
| | - Zhuhua Su
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Xinpeng Li
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
- School of Environmental and Chemical Engineering,
Shanghai University, Shanghai 200444, China
| | - Yujiao Zhu
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Ziyi Zhang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| | - Mingming Yin
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Chen Chen
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Lin Li
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Meng Wei
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Xiangmin Meng
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
| | - Xuchun Liang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Zhenzhen Huang
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
| | - Richard Yang Cao
- Cardiac Rehabilitation Program, Shanghai Xuhui Central Hospital/Zhongshan-Xuhui Hospital,
Fudan University/Shanghai Clinical Research Center, Shanghai 200031, China
| | - Lei Wang
- Department of Rehabilitation Medicine,
Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Guoping Li
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dragos Cretoiu
- Department of Medical Genetics,
Carol Davila University of Medicine and Pharmacy, Bucharest 020031, Romania
- Materno-Fetal Assistance Excellence Unit, Alessandrescu-Rusescu National Institute for Mother and Child Health, Bucharest 011062, Romania
| | - Junjie Xiao
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong) and School of Life Science, Shanghai University, Nantong 226011, China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education),
Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, Shanghai Engineering Research Center of Organ Repair, School of Medicine,
Shanghai University, Shanghai 200444, China
| |
Collapse
|
2
|
Pearce DP, Nemcek MT, Witzenburg CM. Don't go breakin' my heart: cardioprotective alterations to the mechanical and structural properties of reperfused myocardium during post-infarction inflammation. Biophys Rev 2023; 15:329-353. [PMID: 37396449 PMCID: PMC10310682 DOI: 10.1007/s12551-023-01068-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/21/2023] [Indexed: 07/04/2023] Open
Abstract
Myocardial infarctions (MIs) kickstart an intense inflammatory response resulting in extracellular matrix (ECM) degradation, wall thinning, and chamber dilation that leaves the heart susceptible to rupture. Reperfusion therapy is one of the most effective strategies for limiting adverse effects of MIs, but is a challenge to administer in a timely manner. Late reperfusion therapy (LRT; 3 + hours post-MI) does not limit infarct size, but does reduce incidences of post-MI rupture and improves long-term patient outcomes. Foundational studies employing LRT in the mid-twentieth century revealed beneficial reductions in infarct expansion, aneurysm formation, and left ventricle dysfunction. The mechanism by which LRT acts, however, is undefined. Structural analyses, relying largely on one-dimensional estimates of ECM composition, have found few differences in collagen content between LRT and permanently occluded animal models when using homogeneous samples from infarct cores. Uniaxial testing, on the other hand, revealed slight reductions in stiffness early in inflammation, followed soon after by an enhanced resistance to failure for cases of LRT. The use of one-dimensional estimates of ECM organization and gross mechanical function have resulted in a poor understanding of the infarct's spatially variable mechanical and structural anisotropy. To resolve these gaps in literature, future work employing full-field mechanical, structural, and cellular analyses is needed to better define the spatiotemporal post-MI alterations occurring during the inflammatory phase of healing and how they are impacted following reperfusion therapy. In turn, these studies may reveal how LRT affects the likelihood of rupture and inspire novel approaches to guide scar formation.
Collapse
Affiliation(s)
- Daniel P. Pearce
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Mark T. Nemcek
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Colleen M. Witzenburg
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706 USA
| |
Collapse
|
3
|
Sabatino L. Nrf2-Mediated Antioxidant Defense and Thyroid Hormone Signaling: A Focus on Cardioprotective Effects. Antioxidants (Basel) 2023; 12:1177. [PMID: 37371907 DOI: 10.3390/antiox12061177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/24/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
Thyroid hormones (TH) perform a plethora of actions in numerous tissues and induce an overall increase in metabolism, with an augmentation in energy demand and oxygen expenditure. Oxidants are required for normal thyroid-cell proliferation, as well as for the synthesis of the main hormones secreted by the thyroid gland, triiodothyronine (T3) and thyroxine (T4). However, an uncontrolled excess of oxidants can cause oxidative stress, a major trigger in the pathogenesis of a broad spectrum of diseases, including inflammation and cancer. In particular, oxidative stress is implicated in both hypo- and hyper-thyroid diseases. Furthermore, it is important for the TH system to rely on efficient antioxidant defense, to maintain balance, despite sustained tissue exposure to oxidants. One of the main endogenous antioxidant responses is the pathway centered on the nuclear factor erythroid 2-related factor (Nrf2). The aim of the present review is to explore the multiple links between Nrf2-related pathways and various TH-associated conditions. The main aspect of TH signaling is described and the role of Nrf2 in oxidant-antioxidant homeostasis in the TH system is evaluated. Next, the antioxidant function of Nrf2 associated with oxidative stress induced by TH pathological excess is discussed and, subsequently, particular attention is given to the cardioprotective role of TH, which also acts through the mediation of Nrf2. In conclusion, the interaction between Nrf2 and most common natural antioxidant agents in altered states of TH is briefly evaluated.
Collapse
Affiliation(s)
- Laura Sabatino
- Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
4
|
Ali F, Shen A, Islam W, Saleem MZ, Muthu R, Xie Q, Wu M, Cheng Y, Chu J, Lin W, Peng J. Role of MicroRNAs and their corresponding ACE2/Apelin signaling pathways in hypertension. Microb Pathog 2021; 162:105361. [PMID: 34919993 DOI: 10.1016/j.micpath.2021.105361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 11/28/2022]
Abstract
Hypertension is controlled via the alteration of microRNAs (miRNAs), their therapeutic targets angiotensin II type I receptor (AT1R) and cross talk of signaling pathways. The stimulation of the Ang II/AT1R pathway by deregulation of miRNAs, has also been linked to cardiac remodeling as well as the pathophysiology of high blood pressure. As miRNAs have been associated to ACE2/Apelin and Mitogen-activated protein kinases (MAPK) signaling, it has revealed an utmost protective impact over hypertension and cardiovascular system. The ACE2-coupled intermodulation between RAAS, Apelin system, MAPK signaling pathways, and miRNAs reveal the practicalities of high blood pressure. The research of miRNAs may ultimately lead to the expansion of an innovative treatment strategy for hypertension, which indicates the need to explore them further at the molecular level. Therefore, here we have focused on the mechanistic importance of miRNAs in hypertension, ACE2/Apelin signaling as well as their biological functions, with a focus on interplay and crosstalk between ACE2/Apelin signaling, miRNAs, and hypertension, and the progress in miRNA-based diagnostic techniques with the goal of facilitating the development of new hypertension-controlling therapeutics.
Collapse
Affiliation(s)
- Farman Ali
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Aling Shen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Ragunath Muthu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Qiurong Xie
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Meizhu Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Ying Cheng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jiangfeng Chu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Wei Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Chen Keji Academic Thought Inheritance Studio, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China; Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, 350122, China.
| |
Collapse
|
5
|
Wang H, Maimaitiaili R, Yao J, Xie Y, Qiang S, Hu F, Li X, Shi C, Jia P, Yang H, Wei M, Zhao J, Zhou Z, Xie J, Jiang J, Cai H, Sluijter JPG, Xu Y, Zhang Y, Xiao J. Percutaneous Intracoronary Delivery of Plasma Extracellular Vesicles Protects the Myocardium Against Ischemia-Reperfusion Injury in Canis. Hypertension 2021; 78:1541-1554. [PMID: 34488435 DOI: 10.1161/hypertensionaha.121.17574] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hongyun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| | - Rusitanmujiang Maimaitiaili
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianhua Yao
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuling Xie
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Sujing Qiang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fan Hu
- Department of Nuclear Medicine (F.H., H.C.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiang Li
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chao Shi
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Peng Jia
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haotian Yang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng Wei
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Juan Zhao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Zheng Zhou
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jinxin Xie
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
| | - Jizong Jiang
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| | - Haidong Cai
- Department of Nuclear Medicine (F.H., H.C.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Joost P G Sluijter
- Department of Cardiology, Laboratory of Experimental Cardiology, University Medical Center Utrecht, the Netherlands (J.P.G.S.)
- UMC Utrecht Regenerative Medicine Center, University Medical Center, Utrecht University, the Netherlands (J.P.G.S.)
| | - Yawei Xu
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Zhang
- Department of Cardiology (R.M., J.Y., S.Q., X.L., P.J., H.Y., Z.Z., Y.X., Y.Z.), Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University, The Sixth People's Hospital of Nantong (H.W., Y.X., C.S., M.W., J.Z., J.X., J.X.), Shanghai University, China
- Shanghai Engineering Research Center of Organ Repair, School of Life Science (H.W., J.J., J.X.), Shanghai University, China
| |
Collapse
|
6
|
Bu S, Singh KK. Epigenetic Regulation of Autophagy in Cardiovascular Pathobiology. Int J Mol Sci 2021; 22:ijms22126544. [PMID: 34207151 PMCID: PMC8235464 DOI: 10.3390/ijms22126544] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the number one cause of debilitation and mortality worldwide, with a need for cost-effective therapeutics. Autophagy is a highly conserved catabolic recycling pathway triggered by various intra- or extracellular stimuli to play an essential role in development and pathologies, including CVDs. Accordingly, there is great interest in identifying mechanisms that govern autophagic regulation. Autophagic regulation is very complex and multifactorial that includes epigenetic pathways, such as histone modifications to regulate autophagy-related gene expression, decapping-associated mRNA degradation, microRNAs, and long non-coding RNAs; pathways are also known to play roles in CVDs. Molecular understanding of epigenetic-based pathways involved in autophagy and CVDs not only will enhance the understanding of CVDs, but may also provide novel therapeutic targets and biomarkers for CVDs.
Collapse
Affiliation(s)
| | - Krishna K. Singh
- Correspondence: ; Tel.: +1-519-661-2111 (ext. 80542) (Office) or (ext. 85683) (Lab)
| |
Collapse
|
7
|
Temporal dynamics of immune response following prolonged myocardial ischemia/reperfusion with and without cyclosporine A. Acta Pharmacol Sin 2019; 40:1168-1183. [PMID: 30858476 PMCID: PMC6786364 DOI: 10.1038/s41401-018-0197-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/21/2018] [Indexed: 12/19/2022]
Abstract
Understanding the dynamics of the immune response following late myocardial reperfusion is critical for the development of immunomodulatory therapy for myocardial infarction (MI). Cyclosporine A (CSA) possesses multiple therapeutic applications for MI, but its effects on the inflammation caused by acute MI are not clear. This study aimed to determine the dynamics of the immune response following myocardial ischemia/reperfusion (I/R) and the effects of CSA in a mouse model of prolonged myocardial ischemia designated to represent the human condition of late reperfusion. Adult C57BL/6 mice were subjected to 90 min of closed-chest myocardial I/R, which induced severe myocardial injury and excessive inflammation in the heart. Multicomponent analysis of the immune response caused by prolonged I/R revealed that the peak of cytokines/chemokines in the systemic circulation was synchronized with the maximal influx of neutrophils and T-cells in the heart 1 day after MI. The peak of cytokine/chemokine secretion in the infarcted heart coincided with the maximal macrophage and natural killer cell infiltration on day 3 after MI. The cellular composition of the mediastinal lymph nodes changed similarly to that of the infarcted hearts. CSA (10 mg/kg/day) given after prolonged I/R impaired heart function, enlarged the resulting scar, and reduced heart vascularization. It did not change the content of immune cells in hearts exposed to prolonged I/R, but the levels of MCP-1 and MIP-1α (hearts) and IL-12 (hearts and serum) were significantly reduced in the CSA-treated group in comparison to the untreated group, indicating alterations in immune cell function. Our findings provide new knowledge necessary for the development of immunomodulatory therapy targeting the immune response after prolonged myocardial ischemia/reperfusion.
Collapse
|
8
|
Veiga ECA, Antônio EL, Santos AA, Lemes B, Bocalini DS, Picollo C, Levy RF, Martins FL, Girardi ACC, Serra AJ, Tucci PJF. Delayed Reperfusion-Coronary Artery Reperfusion Close to Complete Myocardial Necrosis Benefits Remote Myocardium and Is Enhanced by Exercise. Front Physiol 2019; 10:157. [PMID: 30899225 PMCID: PMC6416202 DOI: 10.3389/fphys.2019.00157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 02/08/2019] [Indexed: 11/13/2022] Open
Abstract
The present study aimed to analyze the effects of reperfusion of a distant coronary artery on cardiac function, the ultrastructure, and the molecular environment of the remote myocardium immediately after the completion of myocardial regional necrosis: delayed reperfusion (DR). Additionally, the effects of prior exercise on the outcomes of DR were investigated. Female rats with permanent occlusion or delayed reperfusion were randomly assigned to an exercise (swimming, 1 h/day, 5 days/week for 8 weeks) or sedentary protocol. Thus, the study included the following four groups: sedentary permanent occlusion, exercise permanent occlusion, sedentary delayed reperfusion, and exercise delayed reperfusion. The descending coronary artery was occluded for 1 h. Reperfusion was confirmed by contrast echocardiography, and the rats were observed for 4 weeks. Permanent occlusion and DR caused similar myocardial infarction sizes among the four groups. Interestingly, exercise significantly decreased the mortality rate. Delayed reperfusion resulted in significant benefits, including enhanced hemodynamics and papillary muscle contraction, as well as reduced apoptosis and collagen content. Protein calcium kinetics did not change. Meanwhile, developed tension and the Frank–Starling mechanism were enhanced, suggesting that calcium sensitivity was intensified in myofilaments. Remarkable remote myocardial benefits occurred after distant DR, and prior exercise intensified cardiac recovery. Our findings provide valuable information about DR. Our data might explain the better clinical outcomes in recent studies showing that late reperfusion could improve heart failure in patients with myocardial infarction. In conclusion, DR has remote myocardial benefits, including inotropism enhancement, pulmonary congestion reduction, and collagen and apoptosis attenuation, which are enhanced by prior exercise.
Collapse
Affiliation(s)
- Eduardo C A Veiga
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ednei L Antônio
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Alexandra A Santos
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Brunno Lemes
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Danilo S Bocalini
- Center of physical education and sports, Federal University of Espírito Santo, Vitória, Brazil
| | - Camila Picollo
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Rosely F Levy
- Department of Physiology, Federal University of Paraíba, Paraíba, Brazil
| | - Flavia L Martins
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Adriana Castello Costa Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Andrey J Serra
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Paulo J F Tucci
- Laboratory of Physiology and Cardiac Pathophysiology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Shukla SK, Rafiq K. Proteasome biology and therapeutics in cardiac diseases. Transl Res 2019; 205:64-76. [PMID: 30342797 PMCID: PMC6372329 DOI: 10.1016/j.trsl.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/30/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
The ubiquitin proteasome system (UPS) is the major pathway for intracellular protein degradation in most organs, including the heart. UPS controls many fundamental biological processes such as cell cycle, cell division, immune responses, antigen presentation, apoptosis, and cell signaling. The UPS not only degrades substrates but also regulates activity of gene transcription at the post-transcription level. Emerging evidence suggests that impairment of UPS function is sufficient to cause a number of cardiac diseases, including heart failure, cardiomyopathies, hypertrophy, atrophy, ischemia-reperfusion, and atherosclerosis. Alterations in the expression of UPS components, changes in proteasomal peptidase activities and increased ubiquitinated and oxidized proteins have also been detected in diabetic cardiomyopathy (DCM). However, the pathophysiological role of the UPS in DCM has not been examined. Recently, in vitro and in vivo studies have proven highly valuable in assessing effects of various stressors on the UPS and, in some cases, suggesting a causal link between defective protein clearance and disease phenotypes in different cardiac diseases, including DCM. Translation of these findings to human disease can be greatly strengthened by corroboration of discoveries from experimental model systems using human heart tissue from well-defined patient populations. This review will summarize the general role of the UPS in different cardiac diseases, with major focus on DCM, and on recent advances in therapeutic development.
Collapse
Affiliation(s)
- Sanket Kumar Shukla
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Khadija Rafiq
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
10
|
Zhou SS, Jin JP, Wang JQ, Zhang ZG, Freedman JH, Zheng Y, Cai L. miRNAS in cardiovascular diseases: potential biomarkers, therapeutic targets and challenges. Acta Pharmacol Sin 2018; 39:1073-1084. [PMID: 29877320 PMCID: PMC6289363 DOI: 10.1038/aps.2018.30] [Citation(s) in RCA: 451] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/07/2018] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of morbidity and mortality in the world. Although considerable progress has been made in the diagnosis, treatment and prognosis of CVD, there is still a critical need for novel diagnostic biomarkers and new therapeutic interventions to decrease the incidence of this disease. Recently, there is increasing evidence that circulating miRNAs (miRNAs), i.e. endogenous, stable, single-stranded, short, non-coding RNAs, can be used as diagnostic biomarkers for CVD. Furthermore, miRNAs represent potential novel therapeutic targets for several cardiovascular disorders. In this review we provides an overview of the effects of several CVD; including heart failure, acute myocardial infarction, arrhythmias and pulmonary hypertension; on levels of circulating miRNAs. In addition, the use of miRNA as therapeutic targets is also discussed, as well as challenges and recommendations in their use in the diagnosis of CVD.
Collapse
Affiliation(s)
- Shan-Shan Zhou
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, 130021, China
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, 40202, USA
| | - Jing-Peng Jin
- Endoscopy Center China-Japan Union Hospital of Jilin University, 126 Xiantai Street, 130033, Changchun, China
| | - Ji-Qun Wang
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, 130021, China
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, 40202, USA
| | - Zhi-Guo Zhang
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, 130021, China
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, 40202, USA
| | - Jonathan H Freedman
- Department of Pharmacology and Toxicology, the University of Louisville, 40202, Louisville, USA.
| | - Yang Zheng
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun, 130021, China.
| | - Lu Cai
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, 40202, USA
- Department of Pharmacology and Toxicology, the University of Louisville, 40202, Louisville, USA
| |
Collapse
|
11
|
Anti-apoptosis in nonmyocytes and pro-autophagy in cardiomyocytes: two strategies against postinfarction heart failure through regulation of cell death/degeneration. Heart Fail Rev 2018; 23:759-772. [DOI: 10.1007/s10741-018-9708-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Du X. Post-infarct cardiac injury, protection and repair: roles of non-cardiomyocyte multicellular and acellular components. SCIENCE CHINA-LIFE SCIENCES 2018; 61:266-276. [DOI: 10.1007/s11427-017-9223-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
|
13
|
Mechanistic Role of mPTP in Ischemia-Reperfusion Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:169-189. [PMID: 28551787 DOI: 10.1007/978-3-319-55330-6_9] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute myocardial infarction (MI) is a major cause of death and disability worldwide. The treatment of choice for reducing ischemic injury and limiting infarct size (IS) in patients with ST-segment elevation MI (STEMI) is timely and effective myocardial reperfusion via primary percutaneous coronary intervention (PCI). However, myocardial reperfusion itself may induce further cardiomyocyte death, a phenomenon known as reperfusion injury (RI). The opening of a large pore in the mitochondrial membrane, namely, the mitochondrial permeability transition pore (mPTP), is widely recognized as the final step of RI and is responsible for mitochondrial and cardiomyocyte death. Although myocardial reperfusion interventions continue to improve, there remain no effective therapies for preventing RI due to incomplete knowledge regarding RI components and mechanisms and to premature translations of findings from animals to humans. In the last year, increasing amounts of data describing mPTP components, structure, regulation and function have surfaced. These data may be crucial for gaining a better understanding of RI genesis and for planning future trials evaluating new cardioprotective strategies. In this chapter, we review the role of the mPTP in RI pathophysiology and report on recent studies investigating its structure and components. Finally, we provide a brief overview of principal cardioprotective strategies and their pitfalls.
Collapse
|
14
|
Kim D, Choi DH, Kim BB, Choi SW, Park KH, Song H. Prediction of Infarct Transmurality From C-Reactive Protein Level and Mean Platelet Volume in Patients With ST-Elevation Myocardial Infarction: Comparison of the Predictive Values of Cardiac Enzymes. J Clin Lab Anal 2016; 30:930-940. [PMID: 27075615 DOI: 10.1002/jcla.21959] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/24/2016] [Accepted: 01/30/2016] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND High C-reactive protein (CRP) and mean platelet volume (MPV) levels are associated with poor prognosis in patients with ST-segment elevation myocardial infarction (STEMI). The aim of this study was to evaluate the relationship between CRP level or MPV and infarct transmurality in patients with STEMI. METHODS We retrospectively reviewed CRP level, MPV, and infarct transmurality in 112 STEMI patients who were assessed with contrast-enhanced cardiac magnetic resonance imaging. RESULTS When the cut-off peak CRP level and MPV were set at 2.35 mg/dl and 7.3 fl using receiver operating characteristic curves analysis, the sensitivity was 67.3/69.2% and specificity was 76.7/76.7% for differentiating between the groups with and those without transmural involvement. Peak CRP level, MPV, peak creatine kinase-MB (CK-MB) level, and peak high-sensitivity cardiac troponin T (hs-cTnT) level had comparable predictive values for transmural involvement (area under the curve, 0.749, 0.761, 0.680, and 0.696, respectively). High peak CRP level and MPV were independent predictors of transmural involvement after adjusting for the peak CK-MB level, peak hs-cTnT level, baseline thrombolysis in myocardial infarction flow grade, and left ventricular ejection fraction (odds ratio: 5.16/5.42, 95% confidence interval: 1.84-14.50/2.03-14.47, P = 0.002/0.001, respectively) in the logistic regression analysis. CONCLUSION The results of this study show that peak CRP level and MPV are predictive markers for transmural involvement. Their predictive power for transmural involvement is independent of and comparable to that of peak CK-MB and hs-cTnT levels.
Collapse
Affiliation(s)
- DongHun Kim
- Department of Radiology, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Dong-Hyun Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea.
| | - Bo-Bae Kim
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Seo-Won Choi
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Keun Ho Park
- Department of Internal Medicine, Chosun University School of Medicine, Gwangju, Republic of Korea
| | - Heesang Song
- Department of Biochemistry and Molecular Biology, Chosun University School of Medicine, Gwangju, Republic of Korea
| |
Collapse
|
15
|
Zeng XC, Li L, Wen H, Bi Q. MicroRNA-128 inhibition attenuates myocardial ischemia/reperfusion injury-induced cardiomyocyte apoptosis by the targeted activation of peroxisome proliferator-activated receptor gamma. Mol Med Rep 2016; 14:129-36. [PMID: 27150726 PMCID: PMC4918621 DOI: 10.3892/mmr.2016.5208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 04/06/2016] [Indexed: 11/11/2022] Open
Abstract
The aim of the present study was to investigate the effects of microRNA (miR)-128 inhibition on the targeted activation of peroxisome proliferator-activated receptor gamma (PPARG) and on cardiomyocyte apoptosis induced by myocardial ischemia/reperfusion (I/R) injury. In vitro, the expression of PPARG was detected by reverse transcription-quantitative polymerase chain reaction and western blotting in neonatal rat ventricular myocytes (NRVMs) and HEK293 cells transfected with the mimics or inhibitors of miR-128 or control RNA. Luciferase reporter assays were used to identify whether PPARG is a direct target of miR-128. In vivo, miR-128 was knocked down via ear vein injection of antagomir-128 in a rabbit myocardial I/R injury model. Western blotting investigated the activation of Akt [phosphorylated (p)-Akt] and the expression of total-Akt, PPARG and myeloid leukemia cell differentiation protein-1 (Mcl-1) in the myocardium. Cardiomyocyte apoptosis was examined with transmission electron microscropy and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. PPARG mRNA and protein were downregulated in NRVMs transfected with miR-128 mimics, but upregulated by antagomir-128 compared with control. This indicates that PPARG is a direct miR-128 target. Activation of Akt (p-Akt), Mcl-1 and PPARG expression in the myocardium were increased by miR-128 inhibition. Furthermore, miR-128 antagomirs significantly reduced apoptosis in hearts subjected to I/R injury, which was blocked by the PPARG inhibitor GW9662. In conclusion, miR-128 inhibition attenuated I/R injury-induced cardiomyocyte apoptosis by the targeted activation of PPARG signaling.
Collapse
Affiliation(s)
- Xiao Cong Zeng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hong Wen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qi Bi
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
16
|
Hsp90aa1: a novel target gene of miR-1 in cardiac ischemia/reperfusion injury. Sci Rep 2016; 6:24498. [PMID: 27076094 PMCID: PMC4830926 DOI: 10.1038/srep24498] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 03/30/2016] [Indexed: 11/08/2022] Open
Abstract
The role of microRNA-1 (miR-1) in ischemia/reperfusion (I/R)-induced injury is not well illustrated. The present study aimed to investigate the expression and potential target of miR-1 in the myocardium of a rat model of I/R. The apoptosis of cardiomyocytes in the ischemic rat myocardium increased on day 1, then attenuated on day 3 and day 7 post-I/R. Heat shot protein 90 (Hsp90) aa1 mRNA expression was decreased post-I/R, and Hsp90aa1 protein level was decreased on day1 post-I/R, but was reversed on day 3 and day 7 post-I/R. MiR-1 was downregulated post-I/R, and repression of miR-1 in cultured neonatal rat ventricular cells (NRVCs) led to an increase of Bcl-2 and decreases of Bax and active caspase-3. Dual luciferase reporter assays revealed that miR-1 interacted with the 310-315 nt site at the 3'UTR of Hsp90aa1, and miR-1 was verified to inhibit Hsp90aa1 expression at the posttranscriptional level. Over-expression of Hsp90aa1 could attenuate oxygen-glucose deprivation (OGD)-induced apoptosis of NRVCs. Additionally, miR-1 mimic, in parallel to Hsp90aa1 siRNA, could enhance OGD-induced apoptosis of NRVCs. Taken together, our results reveal that Hsp90aa1 is a novel target of miR-1, and repression of miR-1 may contribute to the recovery of Hsp90aa1 during myocardial I/R.
Collapse
|
17
|
Wang J, Hu X, Jiang H. ER stress-induced apoptosis: A novel therapeutic target in myocardial ischemia and reperfusion injury. Int J Cardiol 2016; 214:233-4. [PMID: 27077539 DOI: 10.1016/j.ijcard.2016.03.176] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 03/20/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Jichun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Jiefang Road 238, Wuchang, 430060 Wuhan, PR China
| | - Xiaorong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Jiefang Road 238, Wuchang, 430060 Wuhan, PR China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Hubei Key Laboratory of Cardiology, Jiefang Road 238, Wuchang, 430060 Wuhan, PR China.
| |
Collapse
|
18
|
Wang J, Hu X, Jiang H. HDAC inhibition: A novel therapeutic target for attenuating myocardial ischemia and reperfusion injury by reversing cardiac remodeling. Int J Cardiol 2015; 190:126-7. [PMID: 25918063 DOI: 10.1016/j.ijcard.2015.04.172] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Jichun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuchang, 430060 Wuhan, PR China
| | - Xiaorong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuchang, 430060 Wuhan, PR China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuchang, 430060 Wuhan, PR China.
| |
Collapse
|
19
|
The Nrf-2/ARE–HO-1 axis: An important therapeutic approach for attenuating myocardial ischemia and reperfusion injury-induced cardiac remodeling. Int J Cardiol 2015; 184:263-264. [DOI: 10.1016/j.ijcard.2015.02.073] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 02/21/2015] [Indexed: 01/04/2023]
|
20
|
Wang J, Li L, Jiang H. c-Cbl inhibition: A novel therapeutic approach for attenuating myocardial ischemia and reperfusion injury. Int J Cardiol 2015; 186:50-1. [PMID: 25804470 DOI: 10.1016/j.ijcard.2015.03.254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/17/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Jichun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuchang, 430060 Wuhan, PR China
| | - Li Li
- Department of Cardiology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, PR China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuchang, 430060 Wuhan, PR China.
| |
Collapse
|
21
|
MSCs modified with HO-1 gene transplantation: A novel therapeutic approach for attenuating myocardial ischemia and reperfusion injury. Int J Cardiol 2015; 180:38-9. [DOI: 10.1016/j.ijcard.2014.11.163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 11/23/2014] [Indexed: 11/20/2022]
|
22
|
Okada H, Takemura G, Kanamori H, Tsujimoto A, Goto K, Kawamura I, Watanabe T, Morishita K, Miyazaki N, Tanaka T, Ushikoshi H, Kawasaki M, Miyazaki T, Suzui N, Nishigaki K, Mikami A, Ogura S, Minatoguchi S. Phenotype and physiological significance of the endocardial smooth muscle cells in human failing hearts. Circ Heart Fail 2014; 8:149-55. [PMID: 25466765 DOI: 10.1161/circheartfailure.114.001746] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Extravascular smooth muscle cells are often observed in the endocardium of human failing hearts. Here, we characterized the phenotype of those cells and investigated their physiological significance. METHODS AND RESULTS We examined left ventricular biopsy specimens obtained from 44 patients with dilated cardiomyopathy and 6 nonfailing hearts. In Masson trichrome-stained histological preparations, bundles of smooth muscle cells were seen localized in the endocardium in 23 of the 44 specimens (none of the 6 controls). These cells were immunopositive for α-smooth muscle actin, type 2 smooth muscle myosin, desmin, and calponin, but were negative for embryonic smooth muscle myosin, vimentin, fibronectin, and periostin. This profile is indicative of a late differentiation (contractile) smooth muscle phenotype. Electron microscopy confirmed that phenotype, revealing the cells to contain abundant myofilaments with dense bodies but little rough endoplasmic reticulum or Golgi apparatus. In the endocardial smooth muscle-positive group, the left ventricular end-systolic volume index (73±34 versus 105±50 mL/m(2); P=0.021), left ventricular peak wall stress (164±47 versus 196±43 dynes 10(3)/cm(2); P=0.023), and left ventricular end-systolic meridional wall stress (97±38 versus 121±37 dynes 10(3)/cm(2); P=0.036) were all significantly smaller, and the ejection fraction was larger (41±8.8 versus 33±9.3%; P=0.005) than in the endocardial smooth muscle-negative group. However, no histological parameters differed between the 2 groups. CONCLUSIONS Endocardial smooth muscle cell bundles in hearts with dilated cardiomyopathy exhibit a mature contractile phenotype and may play a compensatory role mitigating heart failure by reducing left ventricular wall stress and systolic dysfunction.
Collapse
Affiliation(s)
- Hideshi Okada
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Genzou Takemura
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.).
| | - Hiromitsu Kanamori
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Akiko Tsujimoto
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Kazuko Goto
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Itta Kawamura
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Takatomo Watanabe
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Kentaro Morishita
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Nagisa Miyazaki
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Toshiki Tanaka
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Hiroaki Ushikoshi
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Masanori Kawasaki
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Tatsuhiko Miyazaki
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Natsuko Suzui
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Kazuhiko Nishigaki
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Atsushi Mikami
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Shinji Ogura
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| | - Shinya Minatoguchi
- From the Departments of Emergency and Disaster Medicine (H.O., K.M., H.U., S.O.) and Cardiology (H.K., A.T., K.G., I.K., T.W., N.M., T.T., M.K., K.N., A.M., S.M.), Gifu University Graduate School of Medicine, Gifu, Japan; Department of Internal Medicine, Asahi University, Mizuho, Japan (G.T.); and Division of Pathology, Gifu University Hospital, Gifu, Japan (T.M., N.S.)
| |
Collapse
|
23
|
Garcia-Dorado D, García-del-Blanco B, Otaegui I, Rodríguez-Palomares J, Pineda V, Gimeno F, Ruiz-Salmerón R, Elizaga J, Evangelista A, Fernandez-Avilés F, San-Román A, Ferreira-González I. Intracoronary injection of adenosine before reperfusion in patients with ST-segment elevation myocardial infarction: A randomized controlled clinical trial. Int J Cardiol 2014; 177:935-41. [DOI: 10.1016/j.ijcard.2014.09.203] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/16/2014] [Accepted: 09/30/2014] [Indexed: 12/12/2022]
|
24
|
Sheriff A, Schindler R, Vogt B, Abdel-Aty H, Unger JK, Bock C, Gebauer F, Slagman A, Jerichow T, Mans D, Yapici G, Janelt G, Schröder M, Kunze R, Möckel M. Selective apheresis of C-reactive protein: a new therapeutic option in myocardial infarction? J Clin Apher 2014; 30:15-21. [PMID: 25044559 DOI: 10.1002/jca.21344] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is substantial evidence that C-reactive protein (CRP) mediates secondary damage of the myocardium after acute myocardial infarction (AMI). The aim of this animal trial in pigs was to specifically deplete CRP from porcine plasma after AMI and to study possible beneficial effects of the reduced CRP concentration on the infarcted area. METHODS Ten pigs received balloon catheter-induced myocardial infarction. CRP was depleted from five animals utilizing a new specific CRP-adsorber, five animals served as controls. The area of infarction was analyzed by cardiovascular magnetic resonance imaging on day 1 and day 14 after AMI. Porcine CRP levels were determined by ELISA. RESULTS CRP-apheresis resulted in a mean reduction of the CRP levels up to 48.3%. The area of infarction was significantly reduced by 30 ± 6% (P = 0.003) within 14 days in the treatment group, whereas it increased by 19 ± 11% (P = 0.260) in the controls. Fourteen days after infarction, the infarcted area revealed compact, transmural scars in the controls, whereas animals receiving CRP-apheresis showed spotted scar morphology. In the interventional group, a significantly higher left ventricular ejection fraction (LVEF) was observed after 14 days as compared to the controls (57.6 ± 2.4% vs. 46.4 ± 2.7%; P = 0.007). CONCLUSIONS In a pig model for AMI, we observed that selective CRP-apheresis significantly reduces CRP levels and the volume of the infarction zone after AMI. Additionally, it changes the morphology of the scars and preserves cardiac output (LVEF).
Collapse
Affiliation(s)
- Ahmed Sheriff
- Department of Nephrology and Internal Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:260429. [PMID: 25101151 PMCID: PMC4102082 DOI: 10.1155/2014/260429] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 04/12/2014] [Accepted: 04/30/2014] [Indexed: 12/30/2022]
Abstract
Heart failure (HF) is frequently the consequence of sustained, abnormal neurohormonal, and mechanical stress and remains a leading cause of death worldwide. The key pathophysiological process leading to HF is cardiac remodeling, a term referring to maladaptation to cardiac stress at the molecular, cellular, tissue, and organ levels. HF and many of the conditions that predispose one to HF are associated with oxidative stress. Increased generation of reactive oxygen species (ROS) in the heart can directly lead to increased necrosis and apoptosis of cardiomyocytes which subsequently induce cardiac remodeling and dysfunction. Nuclear factor-erythroid-2- (NF-E2-) related factor 2 (Nrf2) is a transcription factor that controls the basal and inducible expression of a battery of antioxidant genes and other cytoprotective phase II detoxifying enzymes that are ubiquitously expressed in the cardiovascular system. Emerging evidence has revealed that Nrf2 and its target genes are critical regulators of cardiovascular homeostasis via the suppression of oxidative stress, which is the key player in the development and progression of HF. The purpose of this review is to summarize evidence that activation of Nrf2 enhances endogenous antioxidant defenses and counteracts oxidative stress-associated cardiac remodeling and HF.
Collapse
|
26
|
Garcia-Dorado D, Rodríguez-Sinovas A, Ruiz-Meana M, Inserte J. Protección contra el daño miocárdico por isquemia-reperfusión en la práctica clínica. Rev Esp Cardiol 2014. [DOI: 10.1016/j.recesp.2014.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Hu X, Xu W, Jiang H. HMGB1/IL-17A axis: an important mechanism for myocardial ischemia-reperfusion injury. Int J Cardiol 2014; 174:447-8. [PMID: 24767137 DOI: 10.1016/j.ijcard.2014.04.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/02/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Xiaorong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Weipan Xu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute of Wuhan University, Wuhan, China.
| |
Collapse
|
28
|
Garcia-Dorado D, Rodríguez-Sinovas A, Ruiz-Meana M, Inserte J. Protection against myocardial ischemia-reperfusion injury in clinical practice. ACTA ACUST UNITED AC 2014; 67:394-404. [PMID: 24774733 DOI: 10.1016/j.rec.2014.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 12/28/2022]
Abstract
Even when reperfusion therapy is applied as early as possible, survival and quality of life are compromised in a considerable number of patients with ST-segment elevation acute myocardial infarction. Some cell death following transient coronary occlusion occurs during reperfusion, due to poor handling of calcium in the sarcoplasmic reticulum-mitochondria system, calpain activation, oxidative stress, and mitochondrial failure, all promoted by rapid normalization of intracellular pH. Various clinical trials have shown that infarct size can be limited by nonpharmacological strategies--such as ischemic postconditioning and remote ischemic conditioning--or by drugs--such as cyclosporine, insulin, glucagon-like peptide-1 agonists, beta-blockers, or stimulation of cyclic guanosine monophosphate synthesis. However, some clinical studies have yielded negative results, largely due to a lack of consistent preclinical data or a poor design, especially delayed administration. Large-scale clinical trials are therefore necessary, particularly those with primary clinical variables and combined therapies that consider age, sex, and comorbidities, to convert protection against reperfusion injury into a standard treatment for patients with ST-segment elevation acute myocardial infarction.
Collapse
Affiliation(s)
- David Garcia-Dorado
- Hospital Universitario e Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Antonio Rodríguez-Sinovas
- Hospital Universitario e Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marisol Ruiz-Meana
- Hospital Universitario e Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Inserte
- Hospital Universitario e Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Wang J, Hu X, Jiang H. Nrf-2-HO-1-HMGB1 axis: an important therapeutic approach for protection against myocardial ischemia and reperfusion injury. Int J Cardiol 2014; 172:223-4. [PMID: 24456890 DOI: 10.1016/j.ijcard.2013.12.273] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 12/29/2013] [Indexed: 11/15/2022]
Affiliation(s)
- Jichun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuchang, 430060 Wuhan, PR China
| | - Xiaorong Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuchang, 430060 Wuhan, PR China
| | - H Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Jiefang Road 238, Wuchang, 430060 Wuhan, PR China.
| |
Collapse
|
30
|
Zhou S, Liu Y, Prater K, Zheng Y, Cai L. Roles of microRNAs in pressure overload- and ischemia-related myocardial remodeling. Life Sci 2013; 93:855-862. [PMID: 24021888 DOI: 10.1016/j.lfs.2013.08.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/21/2013] [Accepted: 08/29/2013] [Indexed: 12/11/2022]
Abstract
Cardiac remodeling, a term that spans maladaptation at the molecular, cellular, tissue and organ levels, is the key pathophysiological process that leads to heart failure (HF). In clinic, pressure overload and ischemia are the two most common reasons to induce cardiac remodeling and HF, which includes but is not limited to cardiac hypertrophy, fibrosis, and cardiomyocyte apoptosis. MicroRNAs (miRNAs) are endogenous, single-stranded, short non-coding RNAs. By imperfectly binding to the 3' untranslated region (UTR) of messenger RNAs (mRNAs), miRNAs are able to suppress target gene expression by promoting degradation or by inhibiting translation of the target mRNAs, thus playing an important role in a wide range of biologic processes. Growing evidence has indicated that miRNAs are aberrantly expressed in the cardiovascular system under experimental and clinical conditions with cardiac remodeling and HF. Clinically there is increasing evidence that miRNAs can act as diagnostic biomarker and even represent a novel therapeutic target in several cardiovascular disorders. This review provides an overview of several miRNAs' impacts in pressure-overload and ischemia-induced cardiac remodeling and HF.
Collapse
Affiliation(s)
- Shanshan Zhou
- The Cardiovascular Center, The First Hospital of Jilin University, Changchun, China; Kosair Children's Hospital Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | | | | | | | | |
Collapse
|
31
|
Xenon and isoflurane reduce left ventricular remodeling after myocardial infarction in the rat. Anesthesiology 2013; 118:1385-94. [PMID: 23364599 DOI: 10.1097/aln.0b013e31828744c0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Xenon and isoflurane are known to have cardioprotective properties. We tested the hypothesis that these anesthetics positively influence myocardial remodeling 28 days after experimental perioperative myocardial infarction and compared their effects. METHODS A total of 60 male Sprague-Dawley rats were subjected to 60 min of coronary artery occlusion and 120 min of reperfusion. Prior to ischemia, the animals were randomized for the different narcotic regimes (0.6 vol% isoflurane, 70 vol% xenon, or intraperitoneal injection of s-ketamine). Acute injury was quantified by echocardiography and troponin I. After 4 weeks, left ventricular function was assessed by conductance catheter to quantify hemodynamic compromise. Cardiac remodeling was characterized by quantification of dilatation, hypertrophy, fibrosis, capillary density, apoptosis, and expression of fetal genes (α/β myosin heavy chains, α-skeletal actin, periostin, and sarco/endoplasmic reticulum Ca2+-ATPase). RESULTS Whereas xenon and isoflurane impeded the acute effects of ischemia-reperfusion on hemodynamics and myocardial injury at a comparable level, differences were found after 4 weeks. Xenon in contrast to isoflurane or ketamine anesthetized animals demonstrated a lower remodeling index (0.7 ± 0.1 vs. 0.9 ± 0.3 and 1.0 ± 0.3g/ml), better ejection fraction (62 ± 9 vs. 49 ± 7 and 35 ± 6%), and reduced expression of β-myosin heavy chain and periostin. The effects on hypertrophy, fibrosis, capillary density, and apoptosis were comparable. CONCLUSIONS Compared to isoflurane and s-ketamine, xenon limited progressive adverse cardiac remodeling and contractile dysfunction 28 days after perioperative myocardial infarction.
Collapse
|
32
|
Patterson NL, Iyer RP, de Castro Brás LE, Li Y, Andrews TG, Aune GJ, Lange RA, Lindsey ML. Using proteomics to uncover extracellular matrix interactions during cardiac remodeling. Proteomics Clin Appl 2013; 7:516-27. [PMID: 23532927 DOI: 10.1002/prca.201200100] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 01/30/2013] [Accepted: 02/18/2013] [Indexed: 01/13/2023]
Abstract
The left ventricle (LV) responds to a myocardial infarction with an orchestrated sequence of events that result in fundamental changes to both the structure and function of the myocardium. This collection of responses is termed as LV remodeling. Myocardial ischemia resulting in necrosis is the initiating event that culminates in the formation of an extracellular matrix (ECM) rich infarct scar that replaces necrotic myocytes. While the cardiomyocyte is the major cell type that responds to ischemia, infiltrating leukocytes and cardiac fibroblasts coordinate the subsequent wound healing response. The matrix metalloproteinase family of enzymes regulates the inflammatory and ECM responses that modulate scar formation. Matridomics is the proteomic evaluation focused on ECM, while degradomics is the proteomic evaluation of proteases as well as their inhibitors and substrates. This review will summarize the use of proteomics to better understand matrix metalloproteinase roles in post myocardial infarction LV remodeling.
Collapse
Affiliation(s)
- Nicolle L Patterson
- San Antonio Cardiovascular Proteomics Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Hu X, Wang J, Jiang H. Heme oxygenase-1: an important therapeutic target for protecting against myocardial ischemia and reperfusion injury. Int J Cardiol 2012; 167:587-8. [PMID: 23084548 DOI: 10.1016/j.ijcard.2012.09.225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 09/29/2012] [Indexed: 01/27/2023]
|
34
|
Butler J. Primary prevention of heart failure. ISRN CARDIOLOGY 2012; 2012:982417. [PMID: 22957272 PMCID: PMC3431085 DOI: 10.5402/2012/982417] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/25/2012] [Indexed: 12/17/2022]
Abstract
Most heart failure research and quality improvement efforts are targeted at treatment and secondary prevention of patients with manifest heart failure. This is distinct from coronary disease where primary prevention has been a focus for over three decades. Given the current importance and the projected worsening of heart failure epidemiology, a more focused effort on prevention is urgently needed.
Collapse
|
35
|
Luo D, Yao YY, Li YF, Sheng ZL, Tang Y, Fang F, Fang K, Ma GS, Teng GJ. Myocardial infarction quantification with late gadolinium-enhanced magnetic resonance imaging in rats using a 7-T scanner. Cardiovasc Pathol 2012; 21:112-9. [DOI: 10.1016/j.carpath.2011.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/14/2011] [Accepted: 03/31/2011] [Indexed: 11/29/2022] Open
|
36
|
Lindsey ML, Weintraub ST, Lange RA. Using extracellular matrix proteomics to understand left ventricular remodeling. CIRCULATION. CARDIOVASCULAR GENETICS 2012; 5:o1-7. [PMID: 22337931 PMCID: PMC3282021 DOI: 10.1161/circgenetics.110.957803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Survival following myocardial infarction (MI) has improved substantially over the last 40 years; however, the incidence of subsequent congestive heart failure has dramatically increased as a consequence. Discovering plasma markers that signify adverse cardiac remodeling may allow high-risk patients to be recognized earlier and may provide an improved way to assess treatment efficacy. Alterations in extracellular matrix (ECM) regulate cardiac remodeling following MI and potentially provide a large array of candidate indicators. The field of cardiac proteomics has progressed rapidly over the past 20 years, since publication of the first two-dimensional electrophoretic gels of left ventricle proteins. Proteomic approaches are now routinely utilized to better understand how the left ventricle responds to injury. In this review, we will discuss how methods have developed to allow comprehensive evaluation of the ECM proteome. We will explain how ECM proteomic data can be used to predict adverse remodeling for an individual patient and highlight future directions. Although this review will focus on the use of ECM proteomics to better understand post-MI remodeling responses, these approaches have applicability to a wide-range of cardiac pathologies, including pressure overload hypertrophy, viral myocarditis, and non-ischemic heart failure.
Collapse
Affiliation(s)
- Merry L Lindsey
- Department of Medicine and Department of Biochemistry, University of Texas Health Science Center at San Antonio, TX, USA.
| | | | | |
Collapse
|
37
|
Zhu H, Fan GC. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc Res 2011; 94:284-92. [PMID: 22038740 DOI: 10.1093/cvr/cvr291] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myocardial ischaemia/reperfusion (I/R)-induced remodelling generally includes cell death (necrosis and apoptosis), myocyte hypertrophy, angiogenesis, cardiac fibrosis, and myocardial dysfunction. It is becoming increasingly clear that microRNAs (miRNAs or miRs), a group of highly conserved small (∼18-24 nucleotide) non-coding RNAs, fulfil specific functions in the reperfused myocardium towards post-infarct remodelling. While miR-21, -133, -150, -195, and -214 regulate cardiomyocyte hypertrophy, miR-1/-133 and miR-208 have been elucidated to influence myocardial contractile function. In addition, miR-21, -24, -133, -210, -494, and -499 appear to protect myocytes against I/R-induced apoptosis, whereas miR-1, -29, -199a, and -320 promote apoptosis. Myocardial fibrosis can be regulated by the miR-29 family and miR-21. Moreover, miR-126 and miR-210 augment I/R-induced angiogenesis, but miR-24, -92a, and -320 suppress post-infarct neoangiogenesis. In this review, we summarize the latest advances in the identification of myocardial ischaemia-associated miRNAs and their functional significance in the modulation of I/R-triggered remodelling. Controversial effects of some miRNAs in post-infarct remodelling will be also discussed.
Collapse
Affiliation(s)
- Hongyan Zhu
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA
| | | |
Collapse
|
38
|
Csonka C, Kupai K, Kocsis GF, Novák G, Fekete V, Bencsik P, Csont T, Ferdinandy P. Measurement of myocardial infarct size in preclinical studies. J Pharmacol Toxicol Methods 2010; 61:163-70. [PMID: 20188845 DOI: 10.1016/j.vascn.2010.02.014] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/19/2010] [Accepted: 02/20/2010] [Indexed: 12/18/2022]
Abstract
Ischemic heart disease is a major cause of morbidity and mortality worldwide. Myocardial ischemia followed by reperfusion results in tissue injury termed ischemia/reperfusion injury which is characterized by decreased myocardial contractile function, occurrence of arrhythmias, and development of tissue necrosis (infarction). These pathologies are all relevant as clinical consequences of myocardial ischemia/reperfusion injury and they are also important as experimental correlates and endpoints. The most critical determinant of acute and long-term mortality after myocardial infarction is the volume of the infarcted tissue. Therefore, development of cardioprotective therapies aims at reducing the size of the infarct developing due to myocardial ischemia/reperfusion injury. Different techniques are available to measure myocardial infarct size in humans and in experimental settings, however, accurate determination of the extent of infarction is necessary to evaluate interventions that may delay the onset of necrosis and/or limit the total extent of infarct size during ischemia/reperfusion. This paper highlights recent advances of the different techniques to measure infarct size.
Collapse
Affiliation(s)
- Csaba Csonka
- Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Update on phase II studies of erythropoietin in acute myocardial infarction. Rationale and design of Exogenous erythroPoietin in Acute Myocardial Infarction: New Outlook aNd Dose Association Study (EPAMINONDAS). J Thromb Thrombolysis 2009; 28:489-95. [DOI: 10.1007/s11239-009-0363-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
41
|
|