1
|
Budnevsky AV, Avdeev SN, Kosanovic D, Ovsyannikov ES, Savushkina IA, Alekseeva NG, Feigelman SN, Shishkina VV, Filin AA, Esaulenko DI, Perveeva IM. Involvement of Mast Cells in the Pathology of COVID-19: Clinical and Laboratory Parallels. Cells 2024; 13:711. [PMID: 38667325 PMCID: PMC11049608 DOI: 10.3390/cells13080711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Recent studies suggested the potential role of mast cells (MCs) in the pathology of coronavirus disease 2019 (COVID-19). However, the precise description of the MCs' activation and the engagement of their proteases is still missing. The objective of this study was to further reveal the importance of MCs and their proteases (chymase, tryptase, and carboxypeptidase A3 (CPA3)) in the development of lung damage in patients with COVID-19. This study included 55 patients who died from COVID-19 and 30 controls who died from external causes. A histological analysis of the lung parenchyma was carried out to assess the protease profiles and degranulation activity of MCs. In addition, we have analyzed the general blood test, coagulogram, and C-reactive protein. The content of tryptase-positive MCs (Try-MCs) in the lungs of patients with COVID-19 was higher than in controls, but their degranulation activity was lower. The indicators of chymase-positive MCs (Chy-MCs) were significantly lower than in the controls, while the content of CPA3-positive MCs (CPA3-MCs) and their degranulation activity were higher in patients with COVID-19. In addition, we have demonstrated the existence of correlations (positive/negative) between the content of Try-MCs, Chy-MCs, and CPA3-MCs at different states of their degranulation and presence (co-adjacent/single) and the levels of various immune cells (neutrophils, eosinophils, basophils, and monocytes) and other important markers (blood hemoglobin, activated partial thromboplastin time (aPTT), international normalized ratio (INR), and fibrinogen). Thus, the identified patterns suggest the numerous and diverse mechanisms of the participation of MCs and their proteases in the pathogenesis of COVID-19, and their impact on the inflammatory process and coagulation status. At the same time, the issue requires further study in larger cohorts of patients, which will open up the possibility of using drugs acting on this link of pathogenesis to treat lung damage in patients with COVID-19.
Collapse
Affiliation(s)
- Andrey V Budnevsky
- Department of Faculty Therapy, Voronezh State Medical University Named after N.N. Burdenko, Studencheskaya Street 10, 394622 Voronezh, Russia
| | - Sergey N Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street 8, 119991 Moscow, Russia
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Street 8, 119991 Moscow, Russia
| | - Evgeniy S Ovsyannikov
- Department of Faculty Therapy, Voronezh State Medical University Named after N.N. Burdenko, Studencheskaya Street 10, 394622 Voronezh, Russia
| | - Inessa A Savushkina
- Department of Faculty Therapy, Voronezh State Medical University Named after N.N. Burdenko, Studencheskaya Street 10, 394622 Voronezh, Russia
| | - Nadezhda G Alekseeva
- Department of Faculty Therapy, Voronezh State Medical University Named after N.N. Burdenko, Studencheskaya Street 10, 394622 Voronezh, Russia
| | - Sofia N Feigelman
- Department of Faculty Therapy, Voronezh State Medical University Named after N.N. Burdenko, Studencheskaya Street 10, 394622 Voronezh, Russia
| | - Viktoria V Shishkina
- Department of Faculty Therapy, Voronezh State Medical University Named after N.N. Burdenko, Studencheskaya Street 10, 394622 Voronezh, Russia
- Research Institute of Experimental Biology and Medicine, Voronezh State Medical University Named after N.N. Burdenko, Moskovskiy Avenue, 185, 394066 Voronezh, Russia
| | - Andrey A Filin
- Department of Faculty Therapy, Voronezh State Medical University Named after N.N. Burdenko, Studencheskaya Street 10, 394622 Voronezh, Russia
- Research Institute of Experimental Biology and Medicine, Voronezh State Medical University Named after N.N. Burdenko, Moskovskiy Avenue, 185, 394066 Voronezh, Russia
| | - Dmitry I Esaulenko
- Research Institute of Experimental Biology and Medicine, Voronezh State Medical University Named after N.N. Burdenko, Moskovskiy Avenue, 185, 394066 Voronezh, Russia
| | - Inna M Perveeva
- Voronezh Regional Clinical Hospital No. 1, Moskovskiy Avenue, 151, 394066 Voronezh, Russia
| |
Collapse
|
2
|
Cao JB, Zhu ST, Huang XS, Wang XY, Wu ML, Li X, Liu FL, Chen L, Zheng YT, Wang JH. Mast cell degranulation-triggered by SARS-CoV-2 induces tracheal-bronchial epithelial inflammation and injury. Virol Sin 2024; 39:309-318. [PMID: 38458399 DOI: 10.1016/j.virs.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
SARS-CoV-2 infection-induced hyper-inflammation is a key pathogenic factor of COVID-19. Our research, along with others', has demonstrated that mast cells (MCs) play a vital role in the initiation of hyper-inflammation caused by SARS-CoV-2. In previous study, we observed that SARS-CoV-2 infection induced the accumulation of MCs in the peri-bronchus and bronchioalveolar-duct junction in humanized mice. Additionally, we found that MC degranulation triggered by the spike protein resulted in inflammation in alveolar epithelial cells and capillary endothelial cells, leading to subsequent lung injury. The trachea and bronchus are the routes for SARS-CoV-2 transmission after virus inhalation, and inflammation in these regions could promote viral spread. MCs are widely distributed throughout the respiratory tract. Thus, in this study, we investigated the role of MCs and their degranulation in the development of inflammation in tracheal-bronchial epithelium. Histological analyses showed the accumulation and degranulation of MCs in the peri-trachea of humanized mice infected with SARS-CoV-2. MC degranulation caused lesions in trachea, and the formation of papillary hyperplasia was observed. Through transcriptome analysis in bronchial epithelial cells, we found that MC degranulation significantly altered multiple cellular signaling, particularly, leading to upregulated immune responses and inflammation. The administration of ebastine or loratadine effectively suppressed the induction of inflammatory factors in bronchial epithelial cells and alleviated tracheal injury in mice. Taken together, our findings confirm the essential role of MC degranulation in SARS-CoV-2-induced hyper-inflammation and the subsequent tissue lesions. Furthermore, our results support the use of ebastine or loratadine to inhibit SARS-CoV-2-triggered degranulation, thereby preventing tissue damage caused by hyper-inflammation.
Collapse
Affiliation(s)
- Jian-Bo Cao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; School of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Shu-Tong Zhu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiao-Shan Huang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xing-Yuan Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Meng-Li Wu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xin Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Feng-Liang Liu
- Key Laboratory of Bioactive Peptides of Yunnan Province, Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ling Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yong-Tang Zheng
- Key Laboratory of Bioactive Peptides of Yunnan Province, Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Center for Biosafety Mega-Science, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
3
|
Perumal R, Shunmugam L, Naidoo K, Wilkins D, Garzino-Demo A, Brechot C, Vahlne A, Nikolich J. Biological mechanisms underpinning the development of long COVID. iScience 2023; 26:106935. [PMID: 37265584 PMCID: PMC10193768 DOI: 10.1016/j.isci.2023.106935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023] Open
Abstract
As COVID-19 evolves from a pandemic to an endemic disease, the already staggering number of people that have been or will be infected with SARS-CoV-2 is only destined to increase, and the majority of humanity will be infected. It is well understood that COVID-19, like many other viral infections, leaves a significant fraction of the infected with prolonged consequences. Continued high number of SARS-CoV-2 infections, viral evolution with escape from post-infection and vaccinal immunity, and reinfections heighten the potential impact of Long COVID. Hence, the impact of COVID-19 on human health will be seen for years to come until more effective vaccines and pharmaceutical treatments become available. To that effect, it is imperative that the mechanisms underlying the clinical manifestations of Long COVID be elucidated. In this article, we provide an in-depth analysis of the evidence on several potential mechanisms of Long COVID and discuss their relevance to its pathogenesis.
Collapse
Affiliation(s)
- Rubeshan Perumal
- South African Medical Research Council (SAMRC)-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa
- Department of Pulmonology and Critical Care, Division of Internal Medicine, School of Clinical Medicine, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban 4001, South Africa
- Department of Immunobiology and the University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, USA
| | - Letitia Shunmugam
- South African Medical Research Council (SAMRC)-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa
| | - Kogieleum Naidoo
- South African Medical Research Council (SAMRC)-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban 4001, South Africa
| | - Dave Wilkins
- The Global Virus Network, Baltimore, MD 21201, USA
| | - Alfredo Garzino-Demo
- The Global Virus Network, Baltimore, MD 21201, USA
- Department of Molecular Medicine, University of Padova, Padova 1- 35129, Italy
| | - Christian Brechot
- The Global Virus Network, Baltimore, MD 21201, USA
- Infectious Disease and International Health, University of South Florida, Tampa, FL 33620, USA
| | - Anders Vahlne
- The Global Virus Network, Baltimore, MD 21201, USA
- Division of Clinical Microbiology, Karolinska Institute, Stockholm 17165, Sweden
| | - Janko Nikolich
- The Global Virus Network, Baltimore, MD 21201, USA
- The Aegis Consortium for Pandemic-Free Future, University of Arizona Health Sciences, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724, USA
| |
Collapse
|
4
|
Tziastoudi M, Cholevas C, Stefanidis I, Theoharides TC. Genetics of COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome: a systematic review. Ann Clin Transl Neurol 2022; 9:1838-1857. [PMID: 36204816 PMCID: PMC9639636 DOI: 10.1002/acn3.51631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/08/2023] Open
Abstract
COVID‐19 and ME/CFS present with some similar symptoms, especially physical and mental fatigue. In order to understand the basis of these similarities and the possibility of underlying common genetic components, we performed a systematic review of all published genetic association and cohort studies regarding COVID‐19 and ME/CFS and extracted the genes along with the genetic variants investigated. We then performed gene ontology and pathway analysis of those genes that gave significant results in the individual studies to yield functional annotations of the studied genes using protein analysis through evolutionary relationships (PANTHER) VERSION 17.0 software. Finally, we identified the common genetic components of these two conditions. Seventy‐one studies for COVID‐19 and 26 studies for ME/CFS were included in the systematic review in which the expression of 97 genes for COVID‐19 and 429 genes for ME/CFS were significantly affected. We found that ACE, HLA‐A, HLA‐C, HLA‐DQA1, HLA‐DRB1, and TYK2 are the common genes that gave significant results. The findings of the pathway analysis highlight the contribution of inflammation mediated by chemokine and cytokine signaling pathways, and the T cell activation and Toll receptor signaling pathways. Protein class analysis revealed the contribution of defense/immunity proteins, as well as protein‐modifying enzymes. Our results suggest that the pathogenesis of both syndromes could involve some immune dysfunction.
Collapse
Affiliation(s)
- Maria Tziastoudi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christos Cholevas
- First Department of Ophthalmology, Faculty of Health Sciences, Aristotle University, AHEPA Hospital, Thessaloniki, Greece
| | - Ioannis Stefanidis
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Theoharis C Theoharides
- Institute of Neuro-Immune Medicine, Nova Southeastern University, Clearwater, FL, USA.,Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA.,School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.,Departments of Internal Medicine and Psychiatry, Tufts University School of Medicine and Tufts Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Mao XD, Li T, Xu Z, Liu K. Pathogenesis of COVID-19 and the quality control of nucleic acid detection. Biochem Biophys Res Commun 2022; 591:137-142. [PMID: 33581843 PMCID: PMC7833324 DOI: 10.1016/j.bbrc.2020.12.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 01/08/2023]
Abstract
The new coronavirus pneumonia (COVID-19) epidemic spread rapidly throughout the world. Considering the strong infectivity and clustering of COVID-19, early detection of infectious cases is of great significance to control the epidemic. Nucleic acid testing (NAT) plays an important role in rapid laboratory diagnosis, treatment assessment, epidemic prevention and control of COVID-19. However, since COVID-19 is caused by a new emerging virus and NAT for COVID-19 has not been clinically applied before, false negative results inconsistent with clinical diagnosis have appeared in clinical practice. Therefore, it is urgent to improve the sensitivity of NAT for COVID-19. This study aimed to summarize the current situation and prospect of NAT based on the latest findings on COVID-19 infection. Also, the quality control of sample collection was discussed. Hopefully, this study could help to improve the effectiveness of NAT for COVID-19.
Collapse
Affiliation(s)
- Xiao-Dong Mao
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210028, China
| | - Taiping Li
- Department of Neuro-Psychiatric Institute, Nanjing Medical University Affiliated Brain Hospital, Nanjing, Jiangsu, 210029, China
| | - Zhirong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Kangsheng Liu
- Department of Clinical Laboratory, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, 210029, China,Corresponding author
| |
Collapse
|
6
|
Zhu H, Tan J, Zhao Y, Wang Z, Wu Z, Li M. Potential Role of the Chemotaxis System in Formation and Progression of Intracranial Aneurysms Through Weighted Gene Co-Expression Network Analysis. Int J Gen Med 2022; 15:2217-2231. [PMID: 35250300 PMCID: PMC8893157 DOI: 10.2147/ijgm.s347420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 12/21/2022] Open
Abstract
Background Intracranial aneurysm (IA) is the most common and is the main cause of spontaneous subarachnoid hemorrhage (SAH). The underlying molecular mechanisms for preventing IA progression have not been fully identified. Our research aimed to identify the key genes and critical pathways of IA through gene co-expression networks. Methods Gene Expression Omnibus (GEO) datasets GSE13353, GSE54083 and GSE75436 were used in the study. The genetic data were analyzed by weighted gene co-expression network analysis (WGCNA). Then the clinically significant modules were identified and the differentially expressed genes (DEGs) with the genes were intersected in these modules. GO (gene ontology) and KEGG (Kyoto Gene and Genomic Encyclopedia) were used for gene enrichment analysis to determine the function or pathway. In addition, the composition of immune cells was analyzed by CIBERSORT algorithm. Finally, the hub genes and key genes were identified by GSE122897. Results A total of 266 DEGs and two modules with clinical significance were identified. The inflammatory response and immune response were identified by GO and KEGG. CCR5, CCL4, CCL20, and FPR3 were the key genes in the module correlated with IA. The proportions of infiltrating immune cells in IA and normal tissues were different, especially in terms of macrophages and mast cells. Conclusion The chemotactic system has been identified as a key pathway of IA, and interacting macrophages may regulate this pathological process.
Collapse
Affiliation(s)
- Huaxin Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
| | - Jiacong Tan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
| | - Yeyu Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
| | - Zhihua Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
| | - Zhiwu Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, People’s Republic of China
- Correspondence: Meihua Li, Email
| |
Collapse
|
7
|
Wu ML, Liu FL, Sun J, Li X, He XY, Zheng HY, Zhou YH, Yan Q, Chen L, Yu GY, Chang J, Jin X, Zhao J, Chen XW, Zheng YT, Wang JH. SARS-CoV-2-triggered mast cell rapid degranulation induces alveolar epithelial inflammation and lung injury. Signal Transduct Target Ther 2021; 6:428. [PMID: 34921131 PMCID: PMC8677926 DOI: 10.1038/s41392-021-00849-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 infection-induced hyper-inflammation links to the acute lung injury and COVID-19 severity. Identifying the primary mediators that initiate the uncontrolled hypercytokinemia is essential for treatments. Mast cells (MCs) are strategically located at the mucosa and beneficially or detrimentally regulate immune inflammations. In this study, we showed that SARS-CoV-2-triggered MC degranulation initiated alveolar epithelial inflammation and lung injury. SARS-CoV-2 challenge induced MC degranulation in ACE-2 humanized mice and rhesus macaques, and a rapid MC degranulation could be recapitulated with Spike-RBD binding to ACE2 in cells; MC degranulation altered various signaling pathways in alveolar epithelial cells, particularly, the induction of pro-inflammatory factors and consequential disruption of tight junctions. Importantly, the administration of clinical MC stabilizers for blocking degranulation dampened SARS-CoV-2-induced production of pro-inflammatory factors and prevented lung injury. These findings uncover a novel mechanism for SARS-CoV-2 initiating lung inflammation, and suggest an off-label use of MC stabilizer as immunomodulators for COVID-19 treatments.
Collapse
Affiliation(s)
- Meng-Li Wu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Feng-Liang Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Xin Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Xiao-Yan He
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yan-Heng Zhou
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qihong Yan
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Ling Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Guo-Ying Yu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Junbiao Chang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xia Jin
- Shanghai Public Health Clinical Center Affiliated to Fudan University, Shanghai, 201508, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Xin-Wen Chen
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, 510005, China.
| | - Jian-Hua Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- University of Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
8
|
Kovács MG, Kovács ZZA, Varga Z, Szűcs G, Freiwan M, Farkas K, Kővári B, Cserni G, Kriston A, Kovács F, Horváth P, Földesi I, Csont T, Kahán Z, Sárközy M. Investigation of the Antihypertrophic and Antifibrotic Effects of Losartan in a Rat Model of Radiation-Induced Heart Disease. Int J Mol Sci 2021; 22:12963. [PMID: 34884782 PMCID: PMC8657420 DOI: 10.3390/ijms222312963] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Radiation-induced heart disease (RIHD) is a potential late side-effect of thoracic radiotherapy resulting in left ventricular hypertrophy (LVH) and fibrosis due to a complex pathomechanism leading to heart failure. Angiotensin-II receptor blockers (ARBs), including losartan, are frequently used to control heart failure of various etiologies. Preclinical evidence is lacking on the anti-remodeling effects of ARBs in RIHD, while the results of clinical studies are controversial. We aimed at investigating the effects of losartan in a rat model of RIHD. Male Sprague-Dawley rats were studied in three groups: (1) control, (2) radiotherapy (RT) only, (3) RT treated with losartan (per os 10 mg/kg/day), and were followed for 1, 3, or 15 weeks. At 15 weeks post-irradiation, losartan alleviated the echocardiographic and histological signs of LVH and fibrosis and reduced the overexpression of chymase, connective tissue growth factor, and transforming growth factor-beta in the myocardium measured by qPCR; likewise, the level of the SMAD2/3 protein determined by Western blot decreased. In both RT groups, the pro-survival phospho-AKT/AKT and the phospho-ERK1,2/ERK1,2 ratios were increased at week 15. The antiremodeling effects of losartan seem to be associated with the repression of chymase and several elements of the TGF-β/SMAD signaling pathway in our RIHD model.
Collapse
Affiliation(s)
- Mónika Gabriella Kovács
- Interdisciplinary Center of Excellence and MEDICS Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.G.K.); (Z.Z.A.K.); (G.S.); (M.F.)
| | - Zsuzsanna Z. A. Kovács
- Interdisciplinary Center of Excellence and MEDICS Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.G.K.); (Z.Z.A.K.); (G.S.); (M.F.)
| | - Zoltán Varga
- Department of Oncotherapy, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (Z.V.); (Z.K.)
| | - Gergő Szűcs
- Interdisciplinary Center of Excellence and MEDICS Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.G.K.); (Z.Z.A.K.); (G.S.); (M.F.)
| | - Marah Freiwan
- Interdisciplinary Center of Excellence and MEDICS Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.G.K.); (Z.Z.A.K.); (G.S.); (M.F.)
| | - Katalin Farkas
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (K.F.); (I.F.)
| | - Bence Kővári
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (B.K.); (G.C.)
| | - Gábor Cserni
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (B.K.); (G.C.)
| | - András Kriston
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (A.K.); (F.K.); (P.H.)
- Single-Cell Technologies Ltd., H-6726 Szeged, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014 Helsinki, Finland
| | - Ferenc Kovács
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (A.K.); (F.K.); (P.H.)
- Single-Cell Technologies Ltd., H-6726 Szeged, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014 Helsinki, Finland
| | - Péter Horváth
- Synthetic and Systems Biology Unit, Biological Research Centre, Eötvös Loránd Research Network, H-6726 Szeged, Hungary; (A.K.); (F.K.); (P.H.)
- Single-Cell Technologies Ltd., H-6726 Szeged, Hungary
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, FIN-00014 Helsinki, Finland
| | - Imre Földesi
- Department of Laboratory Medicine, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (K.F.); (I.F.)
| | - Tamás Csont
- Interdisciplinary Center of Excellence and MEDICS Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.G.K.); (Z.Z.A.K.); (G.S.); (M.F.)
| | - Zsuzsanna Kahán
- Department of Oncotherapy, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (Z.V.); (Z.K.)
| | - Márta Sárközy
- Interdisciplinary Center of Excellence and MEDICS Research Group, Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary; (M.G.K.); (Z.Z.A.K.); (G.S.); (M.F.)
| |
Collapse
|
9
|
Vincent L, Lapointe C, Lo M, Gagnon H, Pejler G, Takai S, Day R, D'Orléans-Juste P. Mast Cell Degranulation Increases Mouse Mast Cell Protease 4-Dependent Vasopressor Responses to Big Endothelin-1 But Not Angiotensin I. J Pharmacol Exp Ther 2021; 376:213-221. [PMID: 33154104 DOI: 10.1124/jpet.120.000325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022] Open
Abstract
Mouse mast cell protease 4 (mMCP-4), the murine functional analog to the human chymase, is a serine protease synthesized and stored in mast cell secretory granules. Our previous studies reported physiologic and pathologic roles for mMCP-4 in the maturation and synthesis of the vasoactive peptide endothelin-1 (ET-1) from its precursor, big ET-1. The aim of this study was to investigate the impact of mast cell degranulation or stabilization on mMCP-4-dependent pressor responses after the administration of big ET-1 or angiotensin I (Ang I). In anesthetized mice, mast cell degranulation induced by compound 48/80 (C48/80) or stabilization by cromolyn enhanced or repressed, respectively, the dose-dependent vasopressor responses to big ET-1 in wild-type (WT) mice but not in mMCP-4 knockout mice in a chymase inhibitor (TY-51469)-sensitive fashion. In addition, mMCP-4-dependent hydrolysis of the fluorogenic substrate Suc-Leu-Leu-Val-Tyr-7-amino-4-methylcoumarin was depleted or enhanced in peritoneal mast cells isolated from mice pretreated with C48/80 or cromolyn, respectively. Furthermore, C48/80 or cromolyn markedly increased or abolished, respectively, ET-1 (1-31) conversion from exogenous big ET-1 in WT mice peritoneal fluid-isolated mast cells, in vitro. Finally, the vasopressor responses to Ang I were unaffected by mast cell activation or stabilization, whereas those induced by the angiotensin-converting enzyme-resistant Ang I analog, [Pro11, D-Ala12] Ang I, were potentiated by C48/80. Altogether, the present study shows that mast cell activation enhances the mMCP-4-dependent vasoactive properties of big ET-1 but not Ang I in the mouse model. SIGNIFICANCE STATEMENT: The current work demonstrates a significant role for mast cell stability in the cardiovascular pharmacology of big endothelin-1 but not angiotensin I in the murine systemic circulation.
Collapse
Affiliation(s)
- Laurence Vincent
- Department of Pharmacology and Physiology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada (L.V., C.L., M.L., P.D.-J.); PhenoSwitch Bioscience Inc., Sherbrooke, Quebec, Canada (H.G.); Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden (G.P.); Department of Innovative Medicine, Osaka Medical College, Osaka, Japan (S.T.); and Department of Surgery, Division of Urology, Université de Sherbrooke, Sherbrooke, Quebec, Canada (R.D.)
| | - Catherine Lapointe
- Department of Pharmacology and Physiology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada (L.V., C.L., M.L., P.D.-J.); PhenoSwitch Bioscience Inc., Sherbrooke, Quebec, Canada (H.G.); Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden (G.P.); Department of Innovative Medicine, Osaka Medical College, Osaka, Japan (S.T.); and Department of Surgery, Division of Urology, Université de Sherbrooke, Sherbrooke, Quebec, Canada (R.D.)
| | - Modou Lo
- Department of Pharmacology and Physiology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada (L.V., C.L., M.L., P.D.-J.); PhenoSwitch Bioscience Inc., Sherbrooke, Quebec, Canada (H.G.); Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden (G.P.); Department of Innovative Medicine, Osaka Medical College, Osaka, Japan (S.T.); and Department of Surgery, Division of Urology, Université de Sherbrooke, Sherbrooke, Quebec, Canada (R.D.)
| | - Hugo Gagnon
- Department of Pharmacology and Physiology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada (L.V., C.L., M.L., P.D.-J.); PhenoSwitch Bioscience Inc., Sherbrooke, Quebec, Canada (H.G.); Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden (G.P.); Department of Innovative Medicine, Osaka Medical College, Osaka, Japan (S.T.); and Department of Surgery, Division of Urology, Université de Sherbrooke, Sherbrooke, Quebec, Canada (R.D.)
| | - Gunnar Pejler
- Department of Pharmacology and Physiology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada (L.V., C.L., M.L., P.D.-J.); PhenoSwitch Bioscience Inc., Sherbrooke, Quebec, Canada (H.G.); Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden (G.P.); Department of Innovative Medicine, Osaka Medical College, Osaka, Japan (S.T.); and Department of Surgery, Division of Urology, Université de Sherbrooke, Sherbrooke, Quebec, Canada (R.D.)
| | - Shinji Takai
- Department of Pharmacology and Physiology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada (L.V., C.L., M.L., P.D.-J.); PhenoSwitch Bioscience Inc., Sherbrooke, Quebec, Canada (H.G.); Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden (G.P.); Department of Innovative Medicine, Osaka Medical College, Osaka, Japan (S.T.); and Department of Surgery, Division of Urology, Université de Sherbrooke, Sherbrooke, Quebec, Canada (R.D.)
| | - Robert Day
- Department of Pharmacology and Physiology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada (L.V., C.L., M.L., P.D.-J.); PhenoSwitch Bioscience Inc., Sherbrooke, Quebec, Canada (H.G.); Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden (G.P.); Department of Innovative Medicine, Osaka Medical College, Osaka, Japan (S.T.); and Department of Surgery, Division of Urology, Université de Sherbrooke, Sherbrooke, Quebec, Canada (R.D.)
| | - Pedro D'Orléans-Juste
- Department of Pharmacology and Physiology, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada (L.V., C.L., M.L., P.D.-J.); PhenoSwitch Bioscience Inc., Sherbrooke, Quebec, Canada (H.G.); Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden (G.P.); Department of Innovative Medicine, Osaka Medical College, Osaka, Japan (S.T.); and Department of Surgery, Division of Urology, Université de Sherbrooke, Sherbrooke, Quebec, Canada (R.D.)
| |
Collapse
|
10
|
Juettner NE, Bogen JP, Bauer TA, Knapp S, Pfeifer F, Huettenhain SH, Meusinger R, Kraemer A, Fuchsbauer HL. Decoding the Papain Inhibitor from Streptomyces mobaraensis as Being Hydroxylated Chymostatin Derivatives: Purification, Structure Analysis, and Putative Biosynthetic Pathway. JOURNAL OF NATURAL PRODUCTS 2020; 83:2983-2995. [PMID: 32998509 DOI: 10.1021/acs.jnatprod.0c00201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Streptomyces mobaraensis produces the papain inhibitor SPI consisting of a 12 kDa protein and small active compounds (SPIac). Purification of the papain inhibitory compounds resulted in four diverse chymostatin derivatives that were characterized by NMR and MS analysis. Chymostatins are hydrophobic tetrapeptide aldehydes from streptomycetes, e.g., S. lavendulae and S. hygroscopicus, that reverse chymosin-mediated angiotensin activation and inhibit other serine and cysteine proteases. Chymotrypsin and papain were both inhibited by the SPIac compounds in the low nanomolar range. SPIac differs from the characterized chymostatins by the exchange of phenylalanine for tyrosine. The crystal structure of one of these chymostatin variants confirmed its molecular structure and revealed a S-configured hemithioacetal bond with the catalytic Cys25 thiolate as well as close interactions with hydrophobic S1 and S2 subsite amino acids. A model for chymostatin biosynthesis is provided based on the discovery of clustered genes encoding several putative nonribosomal peptide synthetases; among them, there is the unusual CstF enzyme that accommodates two canonical amino acid activation domains as well as three peptide carrier protein domains.
Collapse
Affiliation(s)
- Norbert E Juettner
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
- The Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Jan P Bogen
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
| | - Tobias A Bauer
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
- Structural Genomics Consortium, Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Straße 15, 60438 Frankfurt am Main, Germany
| | - Felicitas Pfeifer
- The Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | - Stefan H Huettenhain
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
| | - Reinhard Meusinger
- The Department of Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Andreas Kraemer
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Hans-Lothar Fuchsbauer
- The Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt, Stephanstraße 7, 64295 Darmstadt, Germany
| |
Collapse
|
11
|
Furukawa H, Wada K, Tada Y, Kuwabara A, Sato H, Ai J, Lawton MT, Hashimoto T. Mast Cell Promotes the Development of Intracranial Aneurysm Rupture. Stroke 2020; 51:3332-3339. [PMID: 33019897 DOI: 10.1161/strokeaha.120.030834] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Inflammation has emerged as a key component of the pathophysiology of intracranial aneurysms. Mast cells have been detected in human intracranial aneurysm tissues, and their presence was associated with intramural microhemorrhage and wall degeneration. We hypothesized that mast cells play a critical role in the development of aneurysmal rupture, and that mast cells can be used as a therapeutic target for the prevention of aneurysm rupture. METHODS Intracranial aneurysms were induced in adult mice using a combination of induced systemic hypertension and a single injection of elastase into the cerebrospinal fluid. Aneurysm formation and rupture were assessed over 3 weeks. Roles of mast cells were assessed using a mast cell stabilizer (cromolyn), a mast cell activator (C48/80), and mice that are genetically lacking mature mast cells (KitW-sh/W-sh mice). RESULTS Pharmacological stabilization of mast cells with cromolyn markedly decreased the rupture rate of aneurysms (80% versus 19%, n=10 versus n =16) without affecting the aneurysm formation. The activation of mast cells with C48/80 significantly increased the rupture rate of aneurysms (25% versus 100%, n=4 versus n=5) without affecting the overall rate of aneurysm formation. Furthermore, the genetic deficiency of mast cells significantly prevented aneurysm rupture (80% versus 25%, n=10 versus n=8, wild-type versus KitW-sh/W-sh mice). CONCLUSIONS These results suggest that mast cells play a key role in promoting aneurysm rupture but not formation. Stabilizers of mast cells may have a potential therapeutic value in preventing intracranial aneurysm rupture in patients.
Collapse
Affiliation(s)
- Hajime Furukawa
- Departments of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| | - Kosuke Wada
- Departments of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| | - Yoshiteru Tada
- Departments of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| | - Atsushi Kuwabara
- Departments of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| | - Hiroki Sato
- Departments of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| | - Jinglu Ai
- Departments of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| | - Michael T Lawton
- Departments of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| | - Tomoki Hashimoto
- Departments of Neurosurgery and Neurobiology, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ
| |
Collapse
|
12
|
Wu J, Yuan X, Wang B, Gu R, Li W, Xiang X, Tang L, Sun H. Severe Acute Respiratory Syndrome Coronavirus 2: From Gene Structure to Pathogenic Mechanisms and Potential Therapy. Front Microbiol 2020; 11:1576. [PMID: 32719672 PMCID: PMC7347906 DOI: 10.3389/fmicb.2020.01576] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerging respiratory virus with high morbidity, which was named coronavirus disease 2019 (COVID-19) by World Health Organization (WHO). COVID-19 has triggered a series of threats to global public health. Even worse, new cases of COVID-19 infection are still increasing rapidly. Therefore, it is imperative that various effective vaccines and drugs should be developed to prevent and treat COVID-19 and reduce the serious impact on human beings. For this purpose, detailed information about the pathogenesis of COVID-19 at the cellular and molecular levels is urgently needed. In this review, we summarized the current understanding on gene structure, protein function, and pathogenic mechanisms of SARS-CoV-2. Based on the above, we refined the correlations among gene structure, protein function, and pathogenic mechanisms of SARS-CoV-2. Importantly, we further discussed potential therapeutic targets, aiming to accelerate the advanced design and development of vaccines and therapeutic drugs against COVID-19.
Collapse
Affiliation(s)
- Jun Wu
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Xiaohui Yuan
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Bing Wang
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Rui Gu
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
| | - Wei Li
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
| | - Xuemei Xiang
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
| | - Lijun Tang
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hongyu Sun
- Department of Basic Medical Sciences, The General Hospital of Western Theater Command, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
13
|
Vila-Caballer M, González-Granado JM, Zorita V, Abu Nabah YN, Silvestre-Roig C, Del Monte-Monge A, Molina-Sánchez P, Ait-Oufella H, Andrés-Manzano MJ, Sanz MJ, Weber C, Kremer L, Gutiérrez J, Mallat Z, Andrés V. Disruption of the CCL1-CCR8 axis inhibits vascular Treg recruitment and function and promotes atherosclerosis in mice. J Mol Cell Cardiol 2019; 132:154-163. [PMID: 31121182 DOI: 10.1016/j.yjmcc.2019.05.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/12/2019] [Indexed: 12/23/2022]
Abstract
The CC chemokine 1 (CCL1, also called I-309 or TCA3) is a potent chemoattractant for leukocytes that plays an important role in inflammatory processes and diseases through binding to its receptor CCR8. Here, we investigated the role of the CCL1-CCR8 axis in atherosclerosis. We found increased expression of CCL1 in the aortas of atherosclerosis-prone fat-fed apolipoprotein E (Apoe)-null mice; moreover, in vitro flow chamber assays and in vivo intravital microscopy demonstrated an essential role for CCL1 in leukocyte recruitment. Mice doubly deficient for CCL1 and Apoe exhibited enhanced atherosclerosis in aorta, which was associated with reduced plasma levels of the anti-inflammatory interleukin 10, an increased splenocyte Th1/Th2 ratio, and a reduced regulatory T cell (Treg) content in aorta and spleen. Reduced Treg recruitment and aggravated atherosclerosis were also detected in the aortas of fat-fed low-density lipoprotein receptor-null mice treated with CCR8 blocking antibodies. These findings demonstrate that disruption of the CCL1-CCR8 axis promotes atherosclerosis by inhibiting interleukin 10 production and Treg recruitment and function.
Collapse
Affiliation(s)
- Marian Vila-Caballer
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain; Universidad Cardenal Herrera-CEU (CEU Universities), Valencia, Spain
| | - José M González-Granado
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain; LamImSys Laboratory, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Virginia Zorita
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Yafa N Abu Nabah
- Instituto de Biomedicina de Valencia (IBV-CSIC), Valencia, Spain
| | - Carlos Silvestre-Roig
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Alberto Del Monte-Monge
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | | | - Hafid Ait-Oufella
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Paris, France
| | - María J Andrés-Manzano
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain
| | - María J Sanz
- Departamento de Farmacología, Universidad de Valencia and Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Christian Weber
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilian University, Munich, Germany
| | - Leonor Kremer
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Julio Gutiérrez
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Ziad Mallat
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Paris, France; Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain; CIBER de Enfermedades Cardiovasculares (CIBER-CV), Spain.
| |
Collapse
|
14
|
Castells M, Butterfield J. Mast Cell Activation Syndrome and Mastocytosis: Initial Treatment Options and Long-Term Management. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2019; 7:1097-1106. [DOI: 10.1016/j.jaip.2019.02.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
|
15
|
Hristova M, Stanilova S, Miteva L. Serum concentration of renin-angiotensin system components in association with ACE I/D polymorphism among hypertensive subjects in response to ACE inhibitor therapy. Clin Exp Hypertens 2018; 41:662-669. [PMID: 30307755 DOI: 10.1080/10641963.2018.1529782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: Renin-angiotensin system (RAS) is a complex network of enzymes and peptides with the essential role in blood pressure control. The relationships between RAS components, RAS-related genetic polymorphisms and therapy response in essential hypertension (EH) were widely explored but the results were inconclusive. Aim: The aim of this study was to explore the functional role of ACE insertion/deletion (I/D) polymorphism on the systemic quantity of angiotensin-converting enzyme (ACE), its homolog - ACE2, chymase and angiotensin II in EH patients with respect to achieved therapeutic blood pressure control. Results: Genotyping of ACE I/D polymorphism was performed among 140 patients with EH from Bulgaria. The serological analyses reveal the significant elevation of the serum quantity of all investigated enzymes in EH than normotensive controls. In addition, serum ACE2 (183.57 pg/ml; vs. 151.78 pg/ml; p = 0.02) and chymase (68.5 pg/ml; vs. 23.66 pg/ml; p = 0.034) were significantly higher in patients with uncontrolled EH than controlled EH in response to ACE-inhibitory therapy. Also, ACE I/D polymorphism showed a significant impact on the serum ACE and chymase levels. ACE quantity was the highest among carriers of DD-genotype, followed by ID and II-genotype. Contrary, chymase was in the highest quantity in II-genotype compared to ID-genotype (p = 0.025) and DD-genotype (p = 0.044). Conclusions: Our results suggest that insufficient blood pressure control by ACE-inhibitory therapy could be associated with elevation of serum ACE2 and chymase levels. Also, it appears that ACE I/D polymorphism may influence the circulating quantity of chymase in addition to ACE.
Collapse
Affiliation(s)
- Mariyana Hristova
- a Department of Internal Medicine, Medical Faculty, Trakia University , Stara Zagora , Bulgaria
| | - Spaska Stanilova
- b Department of Molecular biology, Immunology and Medical Genetics, Medical Faculty, Trakia University , Stara Zagora , Bulgaria
| | - Lyuba Miteva
- b Department of Molecular biology, Immunology and Medical Genetics, Medical Faculty, Trakia University , Stara Zagora , Bulgaria
| |
Collapse
|
16
|
Marques P, Collado A, Escudero P, Rius C, González C, Servera E, Piqueras L, Sanz MJ. Cigarette Smoke Increases Endothelial CXCL16-Leukocyte CXCR6 Adhesion In Vitro and In Vivo. Potential Consequences in Chronic Obstructive Pulmonary Disease. Front Immunol 2017; 8:1766. [PMID: 29326688 PMCID: PMC5733535 DOI: 10.3389/fimmu.2017.01766] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular disease (CVD) is a major comorbidity in chronic obstructive pulmonary disease (COPD). Although the mechanism of its development remains largely unknown, it appears to be associated with cigarette consumption and reduced lung function. Therefore, the aim of this study was to investigate the potential link between water-soluble cigarette smoke extract (CSE)-induced endothelial dysfunction and the function of CXCL16/CXCR6 axis on the initial attachment of leukocytes, in addition to its possible impact on COPD-associated systemic inflammation. To do this, we employed several experimental approaches, including RNA silencing and flow cytometry analysis, the dynamic flow chamber technique, and intravital microscopy in the cremasteric arterioles of animals exposed to cigarette smoke (CS). CSE-induced arterial CXCL16 expression, leading to increased platelet–leukocyte and mononuclear cell adhesiveness. CSE-induced CXCL16 expression was dependent on Nox5 expression and subsequent RhoA/p38 MAPK/NF-κB activation. Flow cytometry analysis revealed that COPD patients (n = 35) presented greater numbers of activated circulating platelets (PAC-1+ and P-selectin+) expressing CXCL16 and CXCR6 as compared with age-matched controls (n = 17), with a higher number of CXCR6+-platelets in the smoking COPD group than in ex-smokers. This correlated with enhanced circulating CXCR6+-platelet–leukocyte aggregates in COPD patients. The increase in circulating numbers of CXCR6-expressing platelets and mononuclear cells resulted in enhanced platelet–leukocyte and leukocyte adhesiveness to CSE-stimulated arterial endothelium, which was greater than that found in age-matched controls and was partly dependent on endothelial CXCL16 upregulation. Furthermore, CS exposure provoked CXCL16-dependent leukocyte–arteriolar adhesion in cremasteric arterioles, which was significantly reduced in animals with a nonfunctional CXCR6 receptor. In conclusion, we provide the first evidence that increased numbers of CXCR6-expressing circulating platelets and mononuclear leukocytes from patients with COPD might be a marker of systemic inflammation with potential consequences in CVD development. Accordingly, CXCL16/CXCR6 axis blockade might constitute a new therapeutic approach for decreasing the risk of CVD in COPD patients.
Collapse
Affiliation(s)
- Patrice Marques
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Aida Collado
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Paula Escudero
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Cristina Rius
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Cruz González
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,Neumology Unit, University Clinic Hospital of Valencia, Valencia, Spain
| | - Emilio Servera
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain.,Neumology Unit, University Clinic Hospital of Valencia, Valencia, Spain
| | - Laura Piqueras
- Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| | - Maria-Jesus Sanz
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain.,Institute of Health Research INCLIVA, University Clinic Hospital of Valencia, Valencia, Spain
| |
Collapse
|
17
|
Gaddam RR, Ang AD, Badiei A, Chambers ST, Bhatia M. Alteration of the renin-angiotensin system in caerulein induced acute pancreatitis in the mouse. Pancreatology 2015; 15:647-653. [PMID: 26444748 DOI: 10.1016/j.pan.2015.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/28/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The objective of this study was to determine if RAS bioactive enzymes and peptides are perturbed in acute pancreatitis and associated lung injury. METHODS The intervention group of mice were treated with ten hourly intraperitoneal (i.p.) injections of caerulein (50 μg/kg) to induce acute pancreatitis. Animals were euthanized, samples of pancreas, lung and blood were collected, and plasma was prepared and stored for subsequent analysis. ACE and ACE2 activities were determined by spectrofluorometric assay. ACE, ACE2, Ang II and Ang-(1-7) levels were quantified by ELISA. RESULTS There was a significant decrease in ACE2 enzymatic activity in pancreatic and lung tissues of mice with acute pancreatitis. In contrast, there were no significant changes in measured levels of ACE and ACE2 in the pancreas, and lung or activity of ACE in pancreatic and lung tissue following acute pancreatitis. There were no significant differences in the activities and levels of circulating ACE and ACE2 following acute pancreatitis. The ACE to ACE2 activity ratio was markedly increased in pancreatic and lung tissues of mice with acute pancreatitis. No significant changes were observed in the levels of Ang II except for a decrease in lung tissue. No changes were observed in Ang-(1-7) levels in pancreas, lung and plasma between the groups. The Ang II to Ang-(1-7) ratio was increased in the pancreas but was decreased in the lung following caerulein treatment. CONCLUSION These data suggest dysregulation of RAS in acute pancreatitis as evidenced by altered Ang II/Ang-(1-7) levels induced by the imbalance of ACE/ACE2 activity.
Collapse
Affiliation(s)
| | - Abel Damien Ang
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Alireza Badiei
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | | | - Madhav Bhatia
- Department of Pathology, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
18
|
El ratón deficiente en apolipoproteína E, un modelo traslacional para el estudio de la aterosclerosis. ANGIOLOGIA 2015. [DOI: 10.1016/j.angio.2015.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Yang M, Ma Y, Ding J, Rao L, Li J. Preconditioning donor livers with cromolyn or compound 48/80 prolongs recipient survival in a rat orthotopic liver transplantation model. Transplant Proc 2015; 46:1554-9. [PMID: 24935329 DOI: 10.1016/j.transproceed.2014.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/17/2013] [Accepted: 01/15/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND Acute rejection (AR) remains a challenge in organ transplantation. Preconditioning donor organs can reduce AR and prolong survival. Whether preconditioning with cromolyn (CRM), a mast cell (MC) stabilizer, or compound 48/80 (CMP 48/80), a MC degranulator, can alleviate AR and prolong survival has not been studied. METHODS We used the male-DA-to-female-Lewis-rat orthotopic liver transplantation (OLT) model. Donors were preconditioned with CRM in a MC stabilizing way (CRM group) or CMP 48/80 in a MC depleting way (CMP 48/80 group). Rats preconditioned with phosphate-buffered saline were used as controls (PBS group). After preconditioning, OLT surgeries were carried out. OLT male-Lewis-to-female-Lewis-rats were used as the syngeneic group (syngeneic group). RESULTS Rats in the PBS group developed AR rapidly and died at 7.40 ± 1.14 days. Rats in the CRM and CMP 48/80 groups had significantly slower rejections and died at day 17.40 ± 1.67 or 14.20 ± 2.28, respectively (P < .05). Rats in the syngeneic group survived more than 60 days. Rejection activity indexes (RAIs) and liver functions were all alleviated through CRM or CMP 48/80 preconditioning. Interferon-γ messenger RNA (mRNA) expressions were reduced and interleukin-10 mRNA levels were higher in allografts in the CRM and CMP 48/80 groups, compared with the PBS group. These were confirmed by testing serum interferon-γ and interlerkin-10. CONCLUSION Preconditioning donor livers with CRM or CMP 48/80 can reduce AR and prolong survival of recipients after OLT.
Collapse
Affiliation(s)
- M Yang
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Y Ma
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Ding
- Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - L Rao
- Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - J Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China; Department of General Surgery, Xinhua Hospital, affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Intravital Microscopy in the Cremaster Muscle Microcirculation for Endothelial Dysfunction Studies. Methods Mol Biol 2015; 1339:357-66. [PMID: 26445803 DOI: 10.1007/978-1-4939-2929-0_26] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The intravital microscopy in the mouse cremaster muscle microcirculation is a method widely used to visualize in vivo blood cells interacting with the endothelium and within the vessels. Therefore, it is a suitable technique to study leukocyte-endothelial cell interactions along every stage of the canonical leukocyte recruitment cascade: rolling, adhesion, intravascular crawling, and migration both in postcapillary venules and arterioles of the mouse cremasteric microcirculation. This technique also enables to assess vessel functionality, since hemodynamic parameters such as shear stress, flow rate, and vasodilatation/vasoconstriction, among other vascular events, can be additionally determined. Furthermore, response to multiple drugs and mechanisms underlying blood cells interactions within the vascular system can be studied in a real scenario. This chapter describes a protocol for intravital microscopy in the mouse cremaster muscle microcirculation.
Collapse
|
21
|
DeBruin EJ, Gold M, Lo BC, Snyder K, Cait A, Lasic N, Lopez M, McNagny KM, Hughes MR. Mast cells in human health and disease. Methods Mol Biol 2015; 1220:93-119. [PMID: 25388247 DOI: 10.1007/978-1-4939-1568-2_7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mast cells are primarily known for their role in defense against pathogens, particularly bacteria; neutralization of venom toxins; and for triggering allergic responses and anaphylaxis. In addition to these direct effector functions, activated mast cells rapidly recruit other innate and adaptive immune cells and can participate in "tuning" the immune response. In this review we touch briefly on these important functions and then focus on some of the less-appreciated roles of mast cells in human disease including cancer, autoimmune inflammation, organ transplant, and fibrosis. Although it is difficult to formally assign causal roles to mast cells in human disease, we offer a general review of data that correlate the presence and activation of mast cells with exacerbated inflammation and disease progression. Conversely, in some restricted contexts, mast cells may offer protective roles. For example, the presence of mast cells in some malignant or cardiovascular diseases is associated with favorable prognosis. In these cases, specific localization of mast cells within the tissue and whether they express chymase or tryptase (or both) are diagnostically important considerations. Finally, we review experimental animal models that imply a causal role for mast cells in disease and discuss important caveats and controversies of these findings.
Collapse
Affiliation(s)
- Erin J DeBruin
- Department of Experimental Medicine, The Biomedical Research Centre, The University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Simões e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol 2014; 169:477-92. [PMID: 23488800 DOI: 10.1111/bph.12159] [Citation(s) in RCA: 412] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 12/14/2022] Open
Abstract
Recent advances have improved our understanding of the renin-angiotensin system (RAS). These have included the recognition that angiotensin (Ang)-(1-7) is a biologically active product of the RAS cascade. The identification of the ACE homologue ACE2, which forms Ang-(1-7) from Ang II, and the GPCR Mas as an Ang-(1-7) receptor have provided the necessary biochemical and molecular background and tools to study the biological significance of Ang-(1-7). Most available evidence supports a counter-regulatory role for Ang-(1-7) by opposing many actions of Ang II on AT₁ receptors, especially vasoconstriction and proliferation. Many studies have now shown that Ang-(1-7) by acting via Mas receptor exerts inhibitory effects on inflammation and on vascular and cellular growth mechanisms. Ang-(1-7) has also been shown to reduce key signalling pathways and molecules thought to be relevant for fibrogenesis. Here, we review recent findings related to the function of the ACE2/Ang-(1-7)/Mas axis and focus on the role of this axis in modifying processes associated with acute and chronic inflammation, including leukocyte influx, fibrogenesis and proliferation of certain cell types. More attention will be given to the involvement of the ACE2/Ang-(1-7)/Mas axis in the context of renal disease because of the known relevance of the RAS for the function of this organ and for the regulation of kidney inflammation and fibrosis. Taken together, this knowledge may help in paving the way for the development of novel treatments for chronic inflammatory and renal diseases.
Collapse
Affiliation(s)
- A C Simões e Silva
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
23
|
Expression of recombinant human mast cell chymase with Asn-linked glycans in glycoengineered Pichia pastoris. Protein Expr Purif 2014; 102:69-75. [PMID: 25131858 DOI: 10.1016/j.pep.2014.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 11/22/2022]
Abstract
Recombinant human mast cell chymase (rhChymase) was expressed in secreted form as an active enzyme in the SuperMan5 strain of GlycoSwitch® Pichia pastoris, which is engineered to produce proteins with (Man)5(GlcNAc)2 Asn-linked glycans. Cation exchange and heparin affinity chromatography yielded 5mg of active rhChymase per liter of fermentation medium. Purified rhChymase migrated on SDS-PAGE as a single band of 30 kDa and treatment with peptide N-glycosidase F decreased this to 25 kDa, consistent with the established properties of native human chymase (hChymase). Polyclonal antibodies against hChymase detected rhChymase by Western blot. Active site titration with Eglin C, a potent chymase inhibitor, quantified the concentration of purified active enzyme. Kinetic analyses with succinyl-Ala-Ala-Pro-Phe (suc-AAPF) p-nitroanilide and thiobenzyl ester synthetic substrates showed that heparin significantly reduced KM, whereas heparin effects on kcat were minor. Pure rhChymase with Asn-linked glycans closely resembles hChymase. This bioengineering approach avoided hyperglycosylation and provides a source of active rhChymase for other studies as well as a foundation for production of recombinant enzyme with human glycosylation patterns.
Collapse
|
24
|
Rius C, Piqueras L, González-Navarro H, Albertos F, Company C, López-Ginés C, Ludwig A, Blanes JI, Morcillo EJ, Sanz MJ. Arterial and venous endothelia display differential functional fractalkine (CX3CL1) expression by angiotensin-II. Arterioscler Thromb Vasc Biol 2012; 33:96-104. [PMID: 23117657 DOI: 10.1161/atvbaha.112.254870] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Angiotensin-II (Ang-II) promotes the interaction of mononuclear cells with arterioles and neutrophils with postcapillary venules. To investigate the mechanisms underlying this dissimilar response, the involvement of fractalkine (CX(3)CL1) was explored. METHODS AND RESULTS Enhanced CX(3)CL1 expression was detected in both cremasteric arterioles and postcapillary venules 24 hours after Ang-II intrascrotal injection. Arteriolar leukocyte adhesion was the unique parameter significantly reduced (83%) in animals lacking CX(3)CL1 receptor (CX(3)CR1). Human umbilical arterial and venous endothelial cell stimulation with 1 μmol/L Ang-II increased CX(3)CL1 expression, yet neutralization of CX(3)CL1 activity only significantly inhibited Ang-II-induced mononuclear cell-human umbilical arterial endothelial cell interactions (73%) but not with human umbilical venous endothelial cells. The use of small interfering RNA revealed the involvement of tumor necrosis factor-α in Ang-II-induced CX(3)CL1 upregulation and mononuclear cell arrest. Nox5 knockdown with small interfering RNA or pharmacological inhibition of extracellular signal-regulated kinases1/2, p38 mitogen-activated protein kinase, and nuclear factor-κB also abolished these responses. Finally, when human umbilical arterial endothelial cells were costimulated with Ang-II, tumor necrosis factor-α, and interferon-γ, CX(3)CL1 expression and mononuclear cell adhesiveness were more pronounced than when each stimulus was provided alone. CONCLUSIONS These results suggest that Ang-II induces functional CX(3)CL1 expression in arterial but not in venous endothelia. Thus, targeting endothelial CX(3)CL1-mononuclear leukocyte CX(3)CR1 interactions may constitute a new therapeutic strategy in the treatment of Ang-II-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Cristina Rius
- Department of Pharmacology, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Becker BF. All because of the mast cell: blocking the angiotensin receptor-1 should be better than inhibiting ACE (theoretically). Cardiovasc Res 2011; 92:7-9. [PMID: 21825003 DOI: 10.1093/cvr/cvr214] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
26
|
Abstract
Mast cells are multifunctional cells that initiate not only IgE-dependent allergic diseases but also play a fundamental role in innate and adaptive immune responses to microbial infection. They are also thought to play a role in angiogenesis, tissue remodeling, wound healing, and tumor repression or growth. The broad scope of these physiologic and pathologic roles illustrates the flexible nature of mast cells, which is enabled in part by their phenotypic adaptability to different tissue microenvironments and their ability to generate and release a diverse array of bioactive mediators in response to multiple types of cell-surface and cytosolic receptors. There is increasing evidence from studies in cell cultures that release of these mediators can be selectively modulated depending on the types or groups of receptors activated. The intent of this review is to foster interest in the interplay among mast cell receptors to help understand the underlying mechanisms for each of the immunological and non-immunological functions attributed to mast cells. The second intent of this review is to assess the pathophysiologic roles of mast cells and their products in health and disease. Although mast cells have a sufficient repertoire of bioactive mediators to mount effective innate and adaptive defense mechanisms against invading microorganisms, these same mediators can adversely affect surrounding tissues in the host, resulting in autoimmune disease as well as allergic disorders.
Collapse
Affiliation(s)
- Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-1881, USA.
| | | |
Collapse
|
27
|
Orlik B, Handzlik G, Olszanecka-Glinianowicz M. [The role of adipokines and insulin resistance in the pathogenesis of nonalcoholic fatty liver disease]. Thromb Haemost 2010; 109:399-406. [PMID: 20498498 DOI: 10.1160/th12-09-0703] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/15/2012] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) develops in 17-33% of the population of developed countries. The incidence of NAFLD is constantly growing due to the increasing prevalence of obesity. It is estimated that one third of subjects with NAFLD suffer from nonalcoholic steatohepatitis (NASH) and 15% of them develop liver cirrhosis within a five-year period. In recent years this important complication of obesity became the subject of numerous studies. It, the pathogenesis of NAFLD is still unclear. A key role in the development of this disease was attributed to insulin resistance. Hormones and cytokines produced by adipose tissue called adipokines may be a link between obesity, insulin resistance, and NAFLD. However, it is well known that increased levels of adipokines such as TNF-alpha, IL-6, and resistin and a decreased level of adiponectin augment inflammation in the liver. Further studies are necessary to explain the roles of leptin, visfatin, retinol binding protein-4, omentin, and vaspin in the pathogenesis of NAFLD. The aim this paper is to introduce new areas of study on the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Bartłomiej Orlik
- Studenckie Koło Naukowe przy Katedrze Patofizjologii Slaskiego Uniwersytetu Medycznego w Katowicach
| | | | | |
Collapse
|