1
|
Yan MY, Liu JM, Wu J, Chang Q. Impact of remote ischemic postconditioning on acute ischemic stroke in China: a systematic review and meta-analysis of randomized controlled trials. Syst Rev 2024; 13:141. [PMID: 38816852 PMCID: PMC11138007 DOI: 10.1186/s13643-024-02568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
OBJECTIVE Acute ischemic stroke (AIS) is a significant health burden in China, affecting a sizable portion of the population. Conventional pharmacological treatments frequently fall short of desirable outcomes. Therefore, exploring alternative therapies is crucial. Remote ischemic postconditioning (RIPostC) is a noninvasive and cost-effective adjunctive therapy. This study aimed to investigate the efficacy and safety of RIPostC as an adjunctive therapy for AIS to inform clinical practice. METHODS A comprehensive search was conducted across the PubMed, Embase, Web of Science, China National Knowledge Infrastructure (CNKI), WanFang, Weipu (VIP), and China Biology Medicine disc (CBM) databases up to October 2023. All included studies underwent bias risk assessment using the Cochrane risk-of-bias assessment tool. The primary outcome measure was the National Institute of Health Stroke Scale (NIHSS), with secondary outcomes including the Barthel index (BI), D-dimer, C-reactive protein (CRP), fibrinogen (FIB), brain-derived neurotrophic factor (BDNF), modified Rankin scale (mRS), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) levels. The data were analyzed using fixed-effects and random-effects models in Review Manager, with mean differences (MDs) and 95% confidence intervals (CIs) calculated for each outcome. The grading of recommendations, assessment, development, and evaluations (GRADE) approach was used to evaluate the level of evidence for each outcome measure. RESULTS This meta-analysis included 38 studies, encompassing 4334 patients. Compared with the control group, the RIPostC group had significantly lower NIHSS scores, serum CRP, D-dimer, IL-6, TNF-α, and FIB levels, and increased BDNF levels. Moreover, it improved the patient's BI and mRS scores. According to the GRADE approach, the quality of evidence for mRS was deemed "moderate," while the NIHSS, BI, and CRP were rated as "low" quality. IL-6, TNF-α, FIB, D-dimer, and BDNF received "very low" quality ratings. CONCLUSION The findings suggest that RIPostC activates endogenous protective mechanisms, providing benefits to patients with AIS.
Collapse
Affiliation(s)
- Ming-Yuan Yan
- Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Min Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China
| | - Jing Wu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qing Chang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, 100078, China.
| |
Collapse
|
2
|
Barrère-Lemaire S, Vincent A, Jorgensen C, Piot C, Nargeot J, Djouad F. Mesenchymal stromal cells for improvement of cardiac function following acute myocardial infarction: a matter of timing. Physiol Rev 2024; 104:659-725. [PMID: 37589393 DOI: 10.1152/physrev.00009.2023] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/05/2023] [Accepted: 08/16/2023] [Indexed: 08/18/2023] Open
Abstract
Acute myocardial infarction (AMI) is the leading cause of cardiovascular death and remains the most common cause of heart failure. Reopening of the occluded artery, i.e., reperfusion, is the only way to save the myocardium. However, the expected benefits of reducing infarct size are disappointing due to the reperfusion paradox, which also induces specific cell death. These ischemia-reperfusion (I/R) lesions can account for up to 50% of final infarct size, a major determinant for both mortality and the risk of heart failure (morbidity). In this review, we provide a detailed description of the cell death and inflammation mechanisms as features of I/R injury and cardioprotective strategies such as ischemic postconditioning as well as their underlying mechanisms. Due to their biological properties, the use of mesenchymal stromal/stem cells (MSCs) has been considered a potential therapeutic approach in AMI. Despite promising results and evidence of safety in preclinical studies using MSCs, the effects reported in clinical trials are not conclusive and even inconsistent. These discrepancies were attributed to many parameters such as donor age, in vitro culture, and storage time as well as injection time window after AMI, which alter MSC therapeutic properties. In the context of AMI, future directions will be to generate MSCs with enhanced properties to limit cell death in myocardial tissue and thereby reduce infarct size and improve the healing phase to increase postinfarct myocardial performance.
Collapse
Affiliation(s)
- Stéphanie Barrère-Lemaire
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Anne Vincent
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Christian Jorgensen
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Christophe Piot
- Département de Cardiologie Interventionnelle, Clinique du Millénaire, Montpellier, France
| | - Joël Nargeot
- Institut de Génomique Fonctionnelle, Université de Montpellier, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- LabEx Ion Channel Science and Therapeutics, Université de Nice, Nice, France
| | - Farida Djouad
- Institute of Regenerative Medicine and Biotherapies, Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Montpellier, France
- Centre Hospitalier Universitaire Montpellier, Montpellier, France
| |
Collapse
|
3
|
Jiao L, Liu Y, Yu XY, Pan X, Zhang Y, Tu J, Song YH, Li Y. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther 2023; 8:15. [PMID: 36617563 PMCID: PMC9826790 DOI: 10.1038/s41392-022-01285-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 01/10/2023] Open
Abstract
The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.
Collapse
Affiliation(s)
- Lijuan Jiao
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yuzhe Liu
- grid.452829.00000000417660726Department of Orthopedics, the Second Hospital of Jilin University, Changchun, Jilin 130000 P. R. China
| | - Xi-Yong Yu
- grid.410737.60000 0000 8653 1072Key Laboratory of Molecular Target & Clinical Pharmacology and the NMPA State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong 511436 P. R. China
| | - Xiangbin Pan
- grid.506261.60000 0001 0706 7839Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China ,Key Laboratory of Cardiovascular Appratus Innovation, Beijing, 100037 P. R. China
| | - Yu Zhang
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Junchu Tu
- grid.263761.70000 0001 0198 0694Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu 215123 P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, P. R. China. .,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P. R. China.
| | - Yangxin Li
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery, First Affiliated Hospital and Medical College of Soochow University, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
4
|
Li Y, Gao Y, Li G. Preclinical multi-target strategies for myocardial ischemia-reperfusion injury. Front Cardiovasc Med 2022; 9:967115. [PMID: 36072870 PMCID: PMC9444048 DOI: 10.3389/fcvm.2022.967115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Despite promising breakthroughs in diagnosing and treating acute coronary syndromes, cardiovascular disease’s high global mortality rate remains indisputable. Nearly half of these patients died of ischemic heart disease. Primary percutaneous coronary intervention (PCI) and coronary artery bypass grafting can rapidly restore interrupted blood flow and become the most effective method for salvaging viable myocardium. However, restoring blood flow could increase the risk of other complications and myocardial cell death attributed to myocardial ischemia-reperfusion injury (IRI). How to reduce the damage of blood reperfusion to ischemic myocardium has become an urgent problem to be solved. In preclinical experiments, many treatments have substantial cardioprotective effects against myocardial IRI. However, the transition from these cardioprotective therapies to clinically beneficial therapies for patients with acute myocardial infarction remains elusive. The reasons for the failure of the clinical translation may be multi-faceted, and three points are summarized here: (1) Our understanding of the complex pathophysiological mechanisms of myocardial IRI is far from enough, and the classification of specific therapeutic targets is not rigorous, and not clear enough; (2) Most of the clinical patients have comorbidities, and single cardioprotective strategies including ischemia regulation strategies cannot exert their due cardioprotective effects under conditions of hyperglycemia, hypertension, hyperlipidemia, and aging; (3) Most preclinical experimental results are based on adult, healthy animal models. However, most clinical patients had comorbidities and received multiple drug treatments before reperfusion therapy. In 2019, COST Action proposed a multi-target drug combination initiative for prospective myocardial IRI; the optimal cardioprotective strategy may be a combination of additive or synergistic multi-target therapy, which we support. By establishing more reasonable preclinical models, screening multi-target drug combinations more in line with clinical practice will benefit the translation of clinical treatment strategies.
Collapse
|
5
|
Danková M, Domoráková I, Fagová Z, Stebnický M, Mechírová E. Induction of ischemic tolerance by remote perconditioning or postconditioning as neuroprotective strategy for spinal cord motor neurons. Life Sci 2021; 283:119789. [PMID: 34256043 DOI: 10.1016/j.lfs.2021.119789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/17/2021] [Accepted: 06/28/2021] [Indexed: 11/28/2022]
Abstract
AIMS The study is focused on the investigation of the mechanisms leading to ischemic tolerance acquisition in the spinal cord neurons via application of non-invasive method of remote conditioning. MATERIAL AND METHODS We have verified the possibility of neuroprotection of spinal cord in rabbit by using remote perconditioning (PerC) applied during last 12 min of spinal cord ischemia (SC-ischemia) or postconditioning (PostC) applied after 1st (early) or 3rd (late) h of reperfusion. Spinal cord ischemia was induced by occlusion of the aorta below the left renal artery for 20 min. Reperfusion period was 24 or 72 h. Remote conditioning was induced by compression of left forelimb with a tourniquet in 3 cycles of 2 min of ischemia, each followed by 2 min of reperfusion. Damaged neurons were detected by Fluoro Jade B method and the modified Tarlov score was used for functional assessment. KEY FINDINGS The remote conditioning significantly attenuated degeneration of motor neurons in all remote conditioned groups versus both SC-ischemia groups. We detected significant changes in number of Hsp70 positive motor neurons. At 72time point, in the group with remote late PostC we observed significant increase (p < 0.001) of Hsp70 positive motor neurons versus SC- ischemia group and sham control. There was a trend towards improvement of hindlimbs movement. SIGNIFICANCE This study showed the effectiveness of remote conditioning as a neuroprotective strategy, evidenced by induction of ischemic tolerance leading to decrease of motor neuron degeneration.
Collapse
Affiliation(s)
- Marianna Danková
- Comenius University in Bratislava, Faculty of Medicine, Institute of Histology and Embryology, Sasinkova 4, 811 04 Bratislava, Slovak Republic
| | - Iveta Domoráková
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Zuzana Fagová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| | - Milan Stebnický
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic; Pavol Jozef Šafárik University, Faculty of Medicine, 2nd Department of Surgery and L. Pasteur University Hospital, Rastislavova 43, 040 01 Košice, Slovak Republic.
| | - Eva Mechírová
- Pavol Jozef Šafárik University, Faculty of Medicine, Department of Histology and Embryology, Šrobárova 2, 040 01 Košice, Slovak Republic
| |
Collapse
|
6
|
RiPerC Attenuates Cerebral Ischemia Injury through Regulation of miR-98/PIK3IP1/PI3K/AKT Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6454281. [PMID: 33082912 PMCID: PMC7559836 DOI: 10.1155/2020/6454281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/11/2020] [Accepted: 09/19/2020] [Indexed: 02/06/2023]
Abstract
Background Cerebral ischemic stroke is a refractory disease which seriously endangers human health. Remote ischemic perconditioning (RiPerC) by which the sublethal ischemic stimulus is administered during the ischemic event is beneficial after an acute stroke. However, the regulatory mechanism of RiPerC that relieves cerebral ischemic injury is still not completely clear. Methods In the present study, we investigated the regulatory mechanism of RiPerC in a rat model of ischemia induced by the middle cerebral artery occlusion (MCAO). Forty-eight adult male Sprague-Dawley (SD) rats were injected intracerebroventricularly with miR-98 agomir, miR-98 antagomir, or their negative controls (agomir-NC, antagomir-NC) 2 h before MCAO or MCAO+RiPerC followed by animal behavior tests and infraction volume measurement at 24 h after MCAO. The expression of miR-98, PIK3IP1, and tight junction proteins in rat hippocampus and cerebral cortex tissues was detected by quantitative polymerase chain reaction (qPCR) and Western blot (WB). Enzyme-linked immunosorbent assay (ELISA) was used to assess the IL-1β, IL-6, and TNF-α levels in the rat serum. Results The results showed that in MCAO group, the expression of PIK3IP1 was upregulated, but decreased after RiPerC treatment. Then, we found that PIK3IP1 was a potential target of miR-98. Treatment with miR-98 agomir decreased the infraction volume, reduced brain edema, and improved neurological functions compared to control rats. But treating with miR-98 antagomir in RiPerC group, the protective effect on cerebral ischemia injury was canceled. Conclusion Our finding indicated that RiPerC inhibited the MCAO-induced expression of PIK3IP1 through upregulated miR-98, thereby reducing the apoptosis induced by PIK3IP1 through the PI3K/AKT signaling pathway, thus reducing the cerebral ischemia-reperfusion injury.
Collapse
|
7
|
Saxena R, Weintraub NL, Tang Y. Optimizing cardiac ischemic preconditioning and postconditioning via epitranscriptional regulation. Med Hypotheses 2020; 135:109451. [PMID: 31731058 PMCID: PMC6983341 DOI: 10.1016/j.mehy.2019.109451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/18/2019] [Accepted: 10/23/2019] [Indexed: 02/02/2023]
Abstract
Ischemic cardiac preconditioning protects the heart during myocardial infarction by activating critical cardioprotective genes such as eNOS, SOD, and HO-1. Clinical trials only show marginal effects of conventional preconditioning strategies, however, in part due to transient activation of cardioprotective genes. Recent studies have shown that N6-methyladenosine (m6A) mRNA methylation is the most abundant RNA modification in eukaryotes, and governs mRNA stability and, in turn, the level of protein expression. We hypothesize that regulation of m6A mRNA methylation levels of cardioprotective mRNAs will result in stable expression of the cardioprotective proteins, rendering ischemic cardiac preconditioning more robust and reducing infarct size. To test this hypothesis, we will test the effects of introducing m6A methylases/demethylases into ischemic preconditioned/post conditioned hearts and subjecting them to myocardial infarction. We will assess the half-life of key cardioprotective mRNAs (e.g., eNOS, SOD, and HO-1) and cardiac apoptosis to determine which m6A methylases/demethylases have a synergistic effect on cardiac preconditioning.
Collapse
Affiliation(s)
- Richa Saxena
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA; Ardrey Kell High School, Charlotte, NC, USA
| | - Neal L Weintraub
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Yaoliang Tang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, USA.
| |
Collapse
|
8
|
The Effects of Potassium Cyanide on the Functional Recovery of Isolated Rat Hearts after Ischemia and Reperfusion: The Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5979721. [PMID: 30116485 PMCID: PMC6079363 DOI: 10.1155/2018/5979721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/16/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
Abstract
This investigation is aimed at examining the effects of pharmacological PostC with potassium cyanide (KCN) on functional recovery, gene expression, cytochrome c expression, and redox status of isolated rat hearts. Rats were divided into the control and KCN groups. The hearts of male Wistar albino rats were retrogradely perfused according to the Langendorff technique at a constant perfusion pressure of 70 cmH2O. After stabilisation, control hearts were subjected to global ischemia (5 minutes), followed by reperfusion (5 minutes), while experimental hearts underwent global ischemia (5 minutes) followed by 5 minutes of reperfusion with 10 μmol/L KCN. The following parameters of heart function were measured: maximum and minimum rates of pressure development, systolic and diastolic left ventricular pressure, heart rate, and coronary flow. Levels of superoxide anion radical, hydrogen peroxide, nitrites, and index of lipid peroxidation (measured as thiobarbituric acid-reactive substances) were measured in coronary venous effluent, and activity of catalase was determined in heart tissue. Expression of Bax, Bcl-2, SOD-1, SOD-2, and cytochrome c was studied as well. It was shown that expression of Bax, Bcl-2, and SOD-2 genes did not significantly differ between groups, while expression of SOD-1 gene and cytochrome c was lower in the KCN group. Our results demonstrated that KCN improved the recovery of myocardial contractility and systolic and diastolic function, enhanced catalase activity, and diminished generation of prooxidants. However, all possible mechanisms and potential adverse effects of KCN should be further examined in the future.
Collapse
|
9
|
Czigany Z, Bleilevens C, Beckers C, Stoppe C, Möhring M, Fülöp A, Szijarto A, Lurje G, Neumann UP, Tolba RH. Limb remote ischemic conditioning of the recipient protects the liver in a rat model of arterialized orthotopic liver transplantation. PLoS One 2018; 13:e0195507. [PMID: 29617450 PMCID: PMC5884561 DOI: 10.1371/journal.pone.0195507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 02/24/2018] [Indexed: 02/06/2023] Open
Abstract
Background Ischemic-reperfusion (IR) injury still represents a major concern in clinical transplantation, especially in the era of extreme organ shortage and extended criteria donor organs. In the present study we aimed to investigate the hepatoprotective effects of remote ischemic conditioning (RIC) in a rat model of arterialized orthotopic liver transplantation (OLT). Methods Male Lewis rats were used (n = 144 / 72 OLT cases; 240–340g) as donors and recipients. Livers were flushed and stored in 4°C HTK-solution for 8h before implantation. Recipients were randomly allocated into three experimental groups: RIC 1, RIC 2, Control. In RIC 1, RIC 2 groups, RIC was applied in the recipient before hepatectomy or after reperfusion (4x5-5min IR via clamping the infrarenal aorta), respectively. Animals were sacrificed at 1, 3, 24, 168h post-reperfusion (n = 6 recipient/group/time point). Hepatocellular injury, graft circulation, serum cytokines, tissue redox-stress and adenosine-triphosphate (ATP) levels have been assessed. Additional markers were analyzed, using Western blotting and reverse-transcription polymerase chain reaction. Results RIC 1 group showed significantly (p<0.05) improved portal venous and microcirculation flow as well as velocity. RIC has significantly reduced tissue injury according to the serum levels of transaminases and results of histopathological evaluation. Reduced TUNEL-staining (p<0.01 RIC 1–2 vs. Control) and elevated pBAD/BAD ratio was detected in the RIC groups (p<0.01 RIC 1 vs. Control). Supporting findings were obtained from measurements of serum IL-10 as well as tissue malondialdehyde and ATP levels. Hemoxygenase-1 (HO-1) mRNA-expression was significantly higher in RIC 1 compared to Control (p<0.05 RIC 1 vs. Control). Conclusion These results suggest that RIC might confer potent protection against the detrimental effects of IR injury including tissue damage, apoptosis, graft circulation, inflammation, tissue energetic status in OLT. HO-1 overexpression might play an orchestrating role in RIC mediated organ protection. An earlier intervention (RIC 1 protocol) was more effective than remote conditioning after graft reperfusion.
Collapse
Affiliation(s)
- Zoltan Czigany
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Aachen, Germany
- Department of Surgery and Transplantation, RWTH-Aachen University, Aachen, Germany
- * E-mail:
| | | | - Christian Beckers
- Department of Intensive Care Medicine, RWTH-Aachen University, Aachen, Germany
| | - Christian Stoppe
- Department of Intensive Care Medicine, RWTH-Aachen University, Aachen, Germany
| | - Michaela Möhring
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Aachen, Germany
| | - Andras Fülöp
- HPB Research Center, 1st Department of Surgery, Semmelweis UniversityBudapest, Hungary
| | - Attila Szijarto
- HPB Research Center, 1st Department of Surgery, Semmelweis UniversityBudapest, Hungary
| | - Georg Lurje
- Department of Surgery and Transplantation, RWTH-Aachen University, Aachen, Germany
| | - Ulf P. Neumann
- Department of Surgery and Transplantation, RWTH-Aachen University, Aachen, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, RWTH-Aachen University, Aachen, Germany
| |
Collapse
|
10
|
Jung H. Kidney transplantation and ischemic conditioning: past, present and future perspectives. Anesth Pain Med (Seoul) 2018. [DOI: 10.17085/apm.2018.13.1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Hoon Jung
- Department of Anesthesiology and Pain Medicine, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
11
|
Abstract
The opioid receptor family, with associated endogenous ligands, has numerous roles throughout the body. Moreover, the delta opioid receptor (DORs) has various integrated roles within the physiological systems, including the cardiovascular system. While DORs are important modulators of cardiovascular autonomic balance, they are well-established contributors to cardioprotective mechanisms. Both endogenous and exogenous opioids acting upon DORs have roles in myocardial hibernation and protection against ischaemia-reperfusion (I-R) injury. Downstream signalling mechanisms governing protective responses alternate, depending on the timing and duration of DOR activation. The following review describes models and mechanisms of DOR-mediated cardioprotection, the impact of co-morbidities and challenges for clinical translation.
Collapse
Affiliation(s)
- Louise See Hoe
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia
- Critical Care Research Group, The Prince Charles Hospital and The University of Queensland, Chermside, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, CA, USA
- Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, 4222, Australia.
| |
Collapse
|
12
|
Zhou M, Lu S, Lu G, Huang J, Liu L, An S, Li Z, Shen H. Effects of remote ischemic post‑conditioning on fracture healing in rats. Mol Med Rep 2017; 15:3186-3192. [PMID: 28339014 DOI: 10.3892/mmr.2017.6348] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 01/01/2017] [Indexed: 11/06/2022] Open
Abstract
Remote ischemic post‑conditioning (RIPC) is an established method to activate the hypoxia‑inducible factor‑1α (HIF‑1α) pathway, which is involved in the impairment of fracture healing. However, the role of RIPC in fracture healing remains to be fully elucidated. In the present study, rats received fractures and were divided into two groups: Control and RIPC, in which hind limb occlusion was performed. Rats were sacrificed at 7, 14, 28 and 42 days subsequent to tibial fracture. Micro‑computed tomography was performed to measure healing of the bone tissue and biomechanical testing was used to test mechanical strength. In addition, the effects of hind limb occlusion on the expression of two primary angiogenic mediators, HIF‑1α and vascular endothelial growth factor (VEGF), as well as the osteoblast markers runt‑related transcription factor 2 (Runx2), alkaline phosphatase (ALP) and osteocalcin (OCN), were determined at the mRNA and protein levels by reverse transcription‑quantitative polymerase chain reaction, western blot analysis and immunohistochemistry. Systemic administration of hind limb occlusion (3 cycles/day, with each occlusion or release phase lasting 10 min) significantly promoted fracture healing and mechanical strength. The present study demonstrated that in rats treated with hind limb occlusion, the expression of HIF‑1α, VEGF, Runx2, ALP and OCN was significantly increased at the mRNA and protein levels, and that RIPC enhances fracture repair in vivo.
Collapse
Affiliation(s)
- Meng Zhou
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Shibao Lu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Guowei Lu
- Institute of Hypoxia Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Jiang Huang
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Limin Liu
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Shuai An
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Zheng Li
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Huiliang Shen
- Department of Orthopedics, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| |
Collapse
|
13
|
Berbamine postconditioning protects the heart from ischemia/reperfusion injury through modulation of autophagy. Cell Death Dis 2017; 8:e2577. [PMID: 28151484 PMCID: PMC5386498 DOI: 10.1038/cddis.2017.7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/17/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022]
Abstract
Pretreatment of berbamine protects the heart from ischemia/reperfusion (I/R) injury. However it is unknown whether it has cardioprotection when given at the onset of reperfusion (postconditioning (PoC)), a protocol with more clinical impact. Autophagy is upregulated in I/R myocardium and exacerbates cardiomyocyte death during reperfusion. However, it is unknown whether the autophagy during reperfusion is regulated by berbamine. Here we investigated whether berbamine PoC (BMPoC) protects the heart through regulation of autophagy by analyzing the effects of BMPoC on infarct size and/or cell death, functional recovery and autophagy in perfused rat hearts and isolated cardiomyocytes subjected to I/R. Berbamine from 10 to 100 nM given during the first 5 min of reperfusion concentration-dependently improved post-ischemic myocardial function and attenuated cell death. Similar protections were observed in cardiomyocytes subjected to simulated I/R. Meanwhile, BMPoC prevented I/R-induced impairment of autophagosome processing in cardiomyocytes, characterized by increased LC3-II level and GFP-LC3 puncta, and decreased p62 degradation. Besides, lysosomal inhibitor chloroquine did not induce additional increase of LC3-II and P62 abundance after I/R but it reversed the effects of BMPoC in those parameters in cardiomyocytes, suggesting that I/R-impaired autophagic flux is restored by BMPoC. Moreover, I/R injury was accompanied by enhanced expression of Beclin 1, which was significantly inhibited by BMPoC. In vitro and in vivo adenovirus-mediated knockdown of Beclin 1 in myocardium and cardiomyocytes restored I/R-impaired autophagosome processing, associated with an improvement of post-ischemic recovery of myocardial contractile function and a reduction of cell death, but it did not have additive effects to BMPoC. Conversely, overexpression of Beclin 1 abolished the cardioprotection of BMPoC as did by overexpression of an essential autophagy gene Atg5. Furthermore, BMPoC-mediated cardioprotection was abolished by a specific Akt1/2 inhibitor A6730. Our results demonstrate that BMPoC confers cardioprotection by modulating autophagy during reperfusion through the activation of PI3K/Akt signaling pathway.
Collapse
|
14
|
Hu Z, Hu S, Yang S, Chen M, Zhang P, Liu J, Abbott GW. Remote Liver Ischemic Preconditioning Protects against Sudden Cardiac Death via an ERK/GSK-3β-Dependent Mechanism. PLoS One 2016; 11:e0165123. [PMID: 27768739 PMCID: PMC5074543 DOI: 10.1371/journal.pone.0165123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 10/06/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Preconditioning stimuli conducted in remote organs can protect the heart against subsequent ischemic injury, but effects on arrhythmogenesis and sudden cardiac death (SCD) are unclear. Here, we investigated the effect of remote liver ischemia preconditioning (RLIPC) on ischemia/reperfusion (I/R)-induced cardiac arrhythmia and sudden cardiac death (SCD) in vivo, and determined the potential role of ERK/GSK-3βsignaling. METHODS/RESULTS Male Sprague Dawley rats were randomized to sham-operated, control, or RLIPC groups. RLIPC was induced by alternating four 5-minute cycles of liver ischemia with 5-minute intermittent reperfusions. To investigate I/R-induced arrhythmogenesis, hearts in each group were subsequently subjected to 5-minute left main coronary artery ligation followed by 20-minute reperfusion. RLIPC reduced post-I/R ventricular arrhythmias, and decreased the incidence of SCD >threefold. RLIPC increased phosphorylation of cardiac ERK1/2, and GSK-3β Ser9 but not Tyr216 post-I/R injury. Inhibition of either GSK-3β (with SB216763) or ERK1/2 (with U0126) abolished RLIPC-induced antiarrhythmic activity and GSK-3β Ser9 and ERK1/2 phosphorylation, leaving GSK-3β Tyr216 phosphorylation unchanged. CONCLUSIONS RLIPC exerts a powerful antiarrhythmic effect and reduces predisposition to post-IR SCD. The underlying mechanism of RLIPC cardioprotection against I/R-induced early arrhythmogenesis may involve ERK1/2/GSK-3β Ser9-dependent pathways.
Collapse
Affiliation(s)
- Zhaoyang Hu
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sheng Hu
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Shuai Yang
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mou Chen
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ping Zhang
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jin Liu
- Laboratory of Anesthesiology & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- * E-mail: (GWA); (JL)
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Dept. of Pharmacology and Dept. of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail: (GWA); (JL)
| |
Collapse
|
15
|
Cardioprotective Effect of Electroacupuncture Pretreatment on Myocardial Ischemia/Reperfusion Injury via Antiapoptotic Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:4609784. [PMID: 27313648 PMCID: PMC4897718 DOI: 10.1155/2016/4609784] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/03/2016] [Indexed: 12/29/2022]
Abstract
Objectives. Our previous study has used RNA-seq technology to show that apoptotic molecules were involved in the myocardial protection of electroacupuncture pretreatment (EAP) on the ischemia/reperfusion (I/R) animal model. Therefore, this study was designed to investigate how EAP protects myocardium against myocardial I/R injury through antiapoptotic mechanism. Methods. By using rats with myocardial I/R, we ligated the left anterior descending artery (LAD) for 30 minutes followed by 4 hr of reperfusion after EAP at the Neiguan (PC6) acupoint for 12 days; we employed arrhythmia scores, serum myocardial enzymes, and cardiac troponin T (cTnT) to evaluate the cardioprotective effect. Heart tissues were harvested for western blot analyses for the expressions of pro- and antiapoptotic signaling molecules. Results. Our preliminary findings showed that EAP increased the survival of the animals along with declined arrhythmia scores and decreased CK, LDH, CK-Mb, and cTnT levels. Further analyses with the heart tissues detected reduced myocardial fiber damage, decreased number of apoptotic cells and the protein expressions of Cyt c and cleaved caspase 3, and the elevated level of Endo G and AIF after EAP intervention. At the same time, the protein expressions of antiapoptotic molecules, including Xiap, BclxL, and Bcl2, were obviously increased. Conclusions. The present study suggested that EAP protected the myocardium from I/R injury at least partially through the activation of endogenous antiapoptotic signaling.
Collapse
|
16
|
Efecto del precondicionamiento isquémico remoto en el fracaso renal agudo en pacientes de alto riesgo sometidos a cirugía cardíaca: un ensayo clínico aleatorizado. CIRUGIA CARDIOVASCULAR 2016. [DOI: 10.1016/j.circv.2015.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
|
18
|
Jiang Q, Yu T, Huang K, Lu J, Zhang H, Hu S. Remote Ischemic Postconditioning Ameliorates the Mesenchymal Stem Cells Engraftment in Reperfused Myocardium. PLoS One 2016; 11:e0146074. [PMID: 26760781 PMCID: PMC4712013 DOI: 10.1371/journal.pone.0146074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
Objectives Remote Ischemic postconditioning (RIPoC) is a cardioprotective strategy for alleviating the reperfusion injury. We hypothesized that RIPoC or ischemic postconditioning (IPoC) could protect the engrafted mesenchymal stem cells (MSCs) in reperfusion myocardium. Methods Female Sprague-Dawley rats were subject to 30 minutes of occlusion of left anterior descending (LAD). Ischemia reperfusion (IR) received reperfusion without interruption after ischemia. RIPoC received 3 cycles of 30 seconds reperfusion and re-occlusion on the limb at the onset of reperfusion. IPoC received 3 cycles of 30 seconds reperfusion and re-occlusion on the LAD at the same time. Male MSCs were intramyocardially administered after ischemia. Results Compared with that in IR group, ischemic myocardium in RIPoC+IPoC group, RIPoC group and IPoC group were found to have higher anti-oxidative stress and mitochondrial function level, lower lipid peroxidation and inflammational injury level, higher level of stromal cell derived factor-1 alpha and vascular endothelium growth factor gene expression at 3 days later. By immunohistochemical examination and quantitative polymerase chain reaction, more engrafted MSCs, better cardiac function and less cardiac fibrosis in RIPoC+IPoC group, RIPoC group and IPoC group were detected at 3 weeks after delivery. There were no significant differences between RIPoC and RIPoC+IPoC group. Conclusions Combination therapy using intramyocardial MSCs transplantation with RIPoC enhanced transplantation efficiency and cardiac function, and reduced cardiac fibrosis. These beneficial effects were mainly attributed to hospitable milieu for engrafted cells. IPoC could not render additional effect on MSCs engraftment elicited by RIPoC.
Collapse
Affiliation(s)
- Qin Jiang
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology, Chengdu, China
| | - Tao Yu
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology, Chengdu, China
| | - Keli Huang
- Department of Cardiac Surgery, Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology, Chengdu, China
- * E-mail: (KLH); (JL)
| | - Jing Lu
- Department of Anesthesiology, Sichuan Provincial People’s Hospital, Affiliated Hospital of University of Electronic Science and Technology, Chengdu, China
- * E-mail: (KLH); (JL)
| | - Hao Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shengshou Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Ferko M, Kancirová I, Jašová M, Waczulíková I, Čarnická S, Kucharská J, Uličná O, Vančová O, Muráriková M, Ravingerová T, Ziegelhöffer A. Participation of heart mitochondria in myocardial protection against ischemia/reperfusion injury: benefit effects of short-term adaptation processes. Physiol Res 2015; 64:S617-25. [PMID: 26674282 DOI: 10.33549/physiolres.933218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Acute streptozotocin diabetes mellitus (DM) as well as remote ischemic preconditioning (RPC) has shown a favorable effect on the postischemic-reperfusion function of the myocardium. Cardioprotective mechanisms offered by these experimental models involve the mitochondria with the changes in functional properties of membrane as the end-effector. The aim was to find out whether separate effects of RPC and DM would stimulate the mechanisms of cardioprotection to a maximal level or whether RPC and DM conditions would cooperate in stimulation of cardioprotection. Experiments were performed on male Wistar rats divided into groups: control, DM, RPC and DM treated by RPC (RPC+DM). RPC protocol of 3 cycles of 5-min hind limb ischemia followed by 5-min reperfusion was used. Ischemic-reperfusion injury was induced by 30-min ischemia followed by 40-min reperfusion of the hearts in Langendorff mode. Mitochondria were isolated by differential centrifugation, infarct size assessed by staining with 1 % 2,3,5-triphenyltetrazolium chloride, mitochondrial membrane fluidity with a fluorescent probe DPH, CoQ(9) and CoQ(10) with HPLC. Results revealed that RPC as well as DM decreased the infarct size and preserved mitochondrial function by increasing the mitochondrial membrane fluidity. Both used models separately offered a sufficient protection against ischemic-reperfusion injury without an additive effect of their combination.
Collapse
Affiliation(s)
- M Ferko
- Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Headrick JP, See Hoe LE, Du Toit EF, Peart JN. Opioid receptors and cardioprotection - 'opioidergic conditioning' of the heart. Br J Pharmacol 2015. [PMID: 25521834 DOI: 10.1111/bph.13042.pubmed:25521834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Ischaemic heart disease (IHD) remains a major cause of morbidity/mortality globally, firmly established in Westernized or 'developed' countries and rising in prevalence in developing nations. Thus, cardioprotective therapies to limit myocardial damage with associated ischaemia-reperfusion (I-R), during infarction or surgical ischaemia, is a very important, although still elusive, clinical goal. The opioid receptor system, encompassing the δ (vas deferens), κ (ketocyclazocine) and μ (morphine) opioid receptors and their endogenous opioid ligands (endorphins, dynorphins, enkephalins), appears as a logical candidate for such exploitation. This regulatory system may orchestrate organism and organ responses to stress, induces mammalian hibernation and associated metabolic protection, triggers powerful adaptive stress resistance in response to ischaemia/hypoxia (preconditioning), and mediates cardiac benefit stemming from physical activity. In addition to direct myocardial actions, central opioid receptor signalling may also enhance the ability of the heart to withstand I-R injury. The δ- and κ-opioid receptors are strongly implicated in cardioprotection across models and species (including anti-infarct and anti-arrhythmic actions), with mixed evidence for μ opioid receptor-dependent protection in animal and human tissues. A small number of clinical trials have provided evidence of cardiac benefit from morphine or remifentanil in cardiopulmonary bypass or coronary angioplasty patients, although further trials of subtype-specific opioid receptor agonists are needed. The precise roles and utility of this GPCR family in healthy and diseased human myocardium, and in mediating central and peripheral survival responses, warrant further investigation, as do the putative negative influences of ageing, IHD co-morbidities, and relevant drugs on opioid receptor signalling and protective responses.
Collapse
Affiliation(s)
- John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute Griffith University, Southport, Qld., Australia
| | | | | | | |
Collapse
|
21
|
Headrick JP, See Hoe LE, Du Toit EF, Peart JN. Opioid receptors and cardioprotection - 'opioidergic conditioning' of the heart. Br J Pharmacol 2015; 172:2026-50. [PMID: 25521834 PMCID: PMC4386979 DOI: 10.1111/bph.13042] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/18/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022] Open
Abstract
Ischaemic heart disease (IHD) remains a major cause of morbidity/mortality globally, firmly established in Westernized or 'developed' countries and rising in prevalence in developing nations. Thus, cardioprotective therapies to limit myocardial damage with associated ischaemia-reperfusion (I-R), during infarction or surgical ischaemia, is a very important, although still elusive, clinical goal. The opioid receptor system, encompassing the δ (vas deferens), κ (ketocyclazocine) and μ (morphine) opioid receptors and their endogenous opioid ligands (endorphins, dynorphins, enkephalins), appears as a logical candidate for such exploitation. This regulatory system may orchestrate organism and organ responses to stress, induces mammalian hibernation and associated metabolic protection, triggers powerful adaptive stress resistance in response to ischaemia/hypoxia (preconditioning), and mediates cardiac benefit stemming from physical activity. In addition to direct myocardial actions, central opioid receptor signalling may also enhance the ability of the heart to withstand I-R injury. The δ- and κ-opioid receptors are strongly implicated in cardioprotection across models and species (including anti-infarct and anti-arrhythmic actions), with mixed evidence for μ opioid receptor-dependent protection in animal and human tissues. A small number of clinical trials have provided evidence of cardiac benefit from morphine or remifentanil in cardiopulmonary bypass or coronary angioplasty patients, although further trials of subtype-specific opioid receptor agonists are needed. The precise roles and utility of this GPCR family in healthy and diseased human myocardium, and in mediating central and peripheral survival responses, warrant further investigation, as do the putative negative influences of ageing, IHD co-morbidities, and relevant drugs on opioid receptor signalling and protective responses.
Collapse
Affiliation(s)
- John P Headrick
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| | - Louise E See Hoe
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| | - Eugene F Du Toit
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| | - Jason N Peart
- Heart Foundation Research Centre, Griffith Health Institute Griffith UniversitySouthport, Qld., Australia
| |
Collapse
|
22
|
Nacar AB, Topcu S, Kurt M, Tanboga IH, Karakaş MF, Buyukkaya E, Aksakal E, Sen N, Akcay AB, Bilen E. Effect of Remote Ischemic Postconditioning on Left Ventricular Mechanics. Echocardiography 2015; 32:448-53. [DOI: 10.1111/echo.12677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Selim Topcu
- School of Medicine; Ataturk University; Erzurum Turkey
| | - Mustafa Kurt
- Mustafa Kemal University; School of Medicine; Hatay Turkey
| | | | | | - Eyup Buyukkaya
- Mustafa Kemal University; School of Medicine; Hatay Turkey
| | | | - Nihat Sen
- Mustafa Kemal University; School of Medicine; Hatay Turkey
| | | | - Emine Bilen
- Ankara Ataturk Education and Research Hospital; Ankara Turkey
| |
Collapse
|
23
|
Bice JS, Baxter GF. Postconditioning signalling in the heart: mechanisms and translatability. Br J Pharmacol 2014; 172:1933-46. [PMID: 25303373 DOI: 10.1111/bph.12976] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/29/2014] [Accepted: 10/05/2014] [Indexed: 12/15/2022] Open
Abstract
The protective effect of ischaemic postconditioning (short cycles of reperfusion and reocclusion of a previously occluded vessel) was identified over a decade ago commanding intense interest as an approach for modifying reperfusion injury which contributes to infarct size in acute myocardial infarction. Elucidation of the major mechanisms of postconditioning has identified potential pharmacological targets for limitation of reperfusion injury. These include ligands for membrane-associated receptors, activators of phosphokinase survival signalling pathways and inhibitors of the mitochondrial permeability transition pore. In experimental models, numerous agents that target these mechanisms have shown promise as postconditioning mimetics. Nevertheless, clinical studies of ischaemic postconditioning and pharmacological postconditioning mimetics are equivocal. The majority of experimental research is conducted in animal models which do not fully portray the complexity of risk factors and comorbidities with which patients present and which we now know modify the signalling pathways recruited in postconditioning. Cohort size and power, patient selection, and deficiencies in clinical infarct size estimation may all represent major obstacles to assessing the therapeutic efficacy of postconditioning. Furthermore, chronic treatment of these patients with drugs like ACE inhibitors, statins and nitrates may modify signalling, inhibiting the protective effect of postconditioning mimetics, or conversely induce a maximally protected state wherein no further benefit can be demonstrated. Arguably, successful translation of postconditioning cannot occur until all of these issues are addressed, that is, experimental investigation requires more complex models that better reflect the clinical setting, while clinical investigation requires bigger trials with appropriate patient selection and standardization of clinical infarct size measurements.
Collapse
Affiliation(s)
- Justin S Bice
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | |
Collapse
|
24
|
Ferdinandy P, Hausenloy DJ, Heusch G, Baxter GF, Schulz R. Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev 2014; 66:1142-74. [PMID: 25261534 DOI: 10.1124/pr.113.008300] [Citation(s) in RCA: 461] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Pre-, post-, and remote conditioning of the myocardium are well described adaptive responses that markedly enhance the ability of the heart to withstand a prolonged ischemia/reperfusion insult and provide therapeutic paradigms for cardioprotection. Nevertheless, more than 25 years after the discovery of ischemic preconditioning, we still do not have established cardioprotective drugs on the market. Most experimental studies on cardioprotection are still undertaken in animal models, in which ischemia/reperfusion is imposed in the absence of cardiovascular risk factors. However, ischemic heart disease in humans is a complex disorder caused by, or associated with, cardiovascular risk factors and comorbidities, including hypertension, hyperlipidemia, diabetes, insulin resistance, heart failure, altered coronary circulation, and aging. These risk factors induce fundamental alterations in cellular signaling cascades that affect the development of ischemia/reperfusion injury per se and responses to cardioprotective interventions. Moreover, some of the medications used to treat these risk factors, including statins, nitrates, and antidiabetic drugs, may impact cardioprotection by modifying cellular signaling. The aim of this article is to review the recent evidence that cardiovascular risk factors and their medication may modify the response to cardioprotective interventions. We emphasize the critical need to take into account the presence of cardiovascular risk factors and concomitant medications when designing preclinical studies for the identification and validation of cardioprotective drug targets and clinical studies. This will hopefully maximize the success rate of developing rational approaches to effective cardioprotective therapies for the majority of patients with multiple risk factors.
Collapse
Affiliation(s)
- Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Derek J Hausenloy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gerd Heusch
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Gary F Baxter
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Cardiovascular Research Group, Department of Biochemistry, University of Szeged, Szeged and Pharmahungary Group, Szeged, Hungary (P.F.); The Hatter Cardiovascular Institute, University College London, London, United Kingdom (D.J.H.); Institute for Pathophysiology, University of Essen Medical School, Essen, Germany (G.H.); Division of Pharmacology, Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, United Kingdom (G.F.B.); and Institute of Physiology, Justus-Liebig University, Giessen, Germany (R.S.)
| |
Collapse
|
25
|
RISK and SAFE signaling pathway involvement in apolipoprotein A-I-induced cardioprotection. PLoS One 2014; 9:e107950. [PMID: 25237809 PMCID: PMC4169577 DOI: 10.1371/journal.pone.0107950] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 08/18/2014] [Indexed: 01/24/2023] Open
Abstract
Recent findings indicate that apolipoprotein A-I (ApoA-I) may be a protective humoral mediator involved in remote ischemic preconditioning (RIPC). This study sought to determine if ApoA-I mediates its protective effects via the RISK and SAFE signaling pathways implicated in RIPC. Wistar rats were allocated to one of the following groups. Control: rats were subjected to myocardial ischemia/reperfusion (I/R) without any further intervention; RIPC: four cycles of limb I/R were applied prior to myocardial ischemia; ApoA-I: 10 mg/Kg of ApoA-I were intravenously injected prior to myocardial ischemia; ApoA-I + inhibitor: pharmacological inhibitors of RISK/SAFE pro-survival kinase (Akt, ERK1/2 and STAT-3) were administered prior to ApoA-I injection. Infarct size was significantly reduced in the RIPC group compared to Control. Similarly, ApoA-I injection efficiently protected the heart, recapitulating RIPC-induced cardioprotection. The ApoA-I protective effect was associated with Akt and GSK-3β phosphorylation and substantially inhibited by pretreatment with Akt and ERK1/2 inhibitors. Pretreatment with ApoA-I in a rat model of I/R recapitulates RIPC-induced cardioprotection and shares some similar molecular mechanisms with those of RIPC-involved protection of the heart.
Collapse
|
26
|
Garcia-Dorado D, Rodríguez-Sinovas A, Ruiz-Meana M, Inserte J. Protección contra el daño miocárdico por isquemia-reperfusión en la práctica clínica. Rev Esp Cardiol 2014. [DOI: 10.1016/j.recesp.2014.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
27
|
Jiang B, Liang P, Wang K, Lv C, Sun L, Tong Z, Liu Y, Xiao X. Nucleolin involved in myocardial ischaemic preconditioning via post-transcriptional control of HSPA1A expression. Cardiovasc Res 2014; 102:56-67. [PMID: 24442868 DOI: 10.1093/cvr/cvu006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS Recent studies have identified the critical roles of nucleolin in a variety of cellular processes, including regulation of viral replication and tumour formation. However, the possible roles of nucleolin in myocardial preconditioning remain undefined. METHODS AND RESULTS We used an in vivo rat myocardial ischaemic preconditioning (IP) model (four cycles of 5 min ischaemia and 10 min reperfusion) and cellular hydrogen peroxide preconditioning (H2O2-PC) models. We found that nucleolin mRNA and protein expression showed a time-dependent increase during the recovery of myocardial ischaemic preconditioning in rats and H2O2-PC in neonatal rat cardiomyocytes. Nucleolin overexpression enhanced the protective effects of H2O2-PC, whereas nucleolin ablation abrogated the H2O2-PC-mediated protection in cardiomyocytes. On the other hand, nucleolin overexpression increased the stabilization of the HSPA1A mRNA and the expression of HSPA1A protein in cardiomyocytes, whereas nucleolin ablation abrogated the up-regulation of HSPA1A induced by H2O2-PC in cardiomyocytes. An interaction between nucleolin and HSPA1A mRNA was further identified using the RNA-protein interaction studies. Reporter gene assays, which depended on the untranslated regions (UTR) of HSPA1A mRNA, revealed that the post-transcriptional regulation was mainly attributed to the 3' UTR. Finally, HSPA1A anti-sense oligonucleotides (asODNs) attenuated the protective effect of nucleolin in cardiomyocytes. CONCLUSION These results indicate that nucleolin is up-regulated and involved in myocardial protection of ischaemic preconditioning via a post-transcriptional control of HSPA1A expression.
Collapse
Affiliation(s)
- Bimei Jiang
- Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan 410008, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Garcia-Dorado D, Rodríguez-Sinovas A, Ruiz-Meana M, Inserte J. Protection against myocardial ischemia-reperfusion injury in clinical practice. ACTA ACUST UNITED AC 2014; 67:394-404. [PMID: 24774733 DOI: 10.1016/j.rec.2014.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 01/22/2014] [Indexed: 12/28/2022]
Abstract
Even when reperfusion therapy is applied as early as possible, survival and quality of life are compromised in a considerable number of patients with ST-segment elevation acute myocardial infarction. Some cell death following transient coronary occlusion occurs during reperfusion, due to poor handling of calcium in the sarcoplasmic reticulum-mitochondria system, calpain activation, oxidative stress, and mitochondrial failure, all promoted by rapid normalization of intracellular pH. Various clinical trials have shown that infarct size can be limited by nonpharmacological strategies--such as ischemic postconditioning and remote ischemic conditioning--or by drugs--such as cyclosporine, insulin, glucagon-like peptide-1 agonists, beta-blockers, or stimulation of cyclic guanosine monophosphate synthesis. However, some clinical studies have yielded negative results, largely due to a lack of consistent preclinical data or a poor design, especially delayed administration. Large-scale clinical trials are therefore necessary, particularly those with primary clinical variables and combined therapies that consider age, sex, and comorbidities, to convert protection against reperfusion injury into a standard treatment for patients with ST-segment elevation acute myocardial infarction.
Collapse
Affiliation(s)
- David Garcia-Dorado
- Hospital Universitario e Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Antonio Rodríguez-Sinovas
- Hospital Universitario e Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marisol Ruiz-Meana
- Hospital Universitario e Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Javier Inserte
- Hospital Universitario e Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
29
|
Hsiao ST, Dilley RJ, Dusting GJ, Lim SY. Ischemic preconditioning for cell-based therapy and tissue engineering. Pharmacol Ther 2013; 142:141-53. [PMID: 24321597 DOI: 10.1016/j.pharmthera.2013.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/02/2013] [Indexed: 01/07/2023]
Abstract
Cell- and tissue-based therapies are innovative strategies to repair and regenerate injured hearts. Despite major advances achieved in optimizing these strategies in terms of cell source and delivery method, the clinical outcome of cell-based therapy remains unsatisfactory. The non-genetic approach of ischemic/hypoxic preconditioning to enhance cell- and tissue-based therapies has received much attention in recent years due to its non-invasive drug-free application. Here we discuss the current development of hypoxic/ischemic preconditioning to enhance stem cell-based cardiac repair and regeneration.
Collapse
Affiliation(s)
- Sarah T Hsiao
- Department of Cardiovascular Science, University of Sheffield, United Kingdom
| | - Rodney J Dilley
- Ear Science Institute Australia and Ear Sciences Centre, School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, University of Melbourne, East Melbourne, Victoria, Australia; Department of Surgery, University of Melbourne, Fitzroy, Victoria, Australia; O'Brien Institute, Fitzroy, Victoria, Australia
| | - Shiang Y Lim
- Department of Surgery, University of Melbourne, Fitzroy, Victoria, Australia; O'Brien Institute, Fitzroy, Victoria, Australia.
| |
Collapse
|
30
|
|
31
|
Bibli SI, Andreadou I, Lazaris E, Zoga A, Varnavas V, Andreou CC, Dagres N, Iliodromitis EK, Kyriakides ZS. Myocardial Protection Provided by Chronic Skeletal Muscle Ischemia Is Not Further Enhanced by Ischemic Pre- or Postconditioning. J Cardiovasc Pharmacol Ther 2013; 19:220-7. [DOI: 10.1177/1074248413508002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chronic skeletal muscle ischemia protects the ischemic heart by preserving coronary flow and inducing arterioangiogenesis. We sought to determine the effect and the underlying molecular mechanisms of preconditioning (PreC) and postconditioning (PostC), applied in a model of chronic skeletal muscle ischemia. Male rabbits were divided into 3 series. In each series, the animals were subjected either to severe hind limb (HL) ischemia, by excision of the femoral artery, or to sham operation (SHO). After 4 weeks, all the animals underwent 30 minutes of regional heart ischemia and 3 hours reperfusion. The animals of the first series received no further intervention (HL and SHO groups), those of the second series underwent PreC (HL + PreC and SHO + PreC), and of the third series PostC (HL + PostC and SHO + PostC). Infarct size (I) and risk zones (R) were determined, and their ratio was calculated in percentage. Three additional series of experiments were performed with respective interventions up to the 10th minute of reperfusion, where sample tissue was obtained for assessment of protein kinase B (Akt), endothelial nitric oxide synthase (eNOS), glycogen synthase kinase 3β (GSK3β), p44/42, signal transducer and activator of transcription (STAT) 3, and STAT5. All groups demonstrated significantly smaller percentage of I/R compared with the SHO group (HL: 14.4% ± 3.7%, HL + PreC: 13.1% ± 1.0%, SHO + PreC: 21.3% ± 1.6%, HL + PostC: 18.0% ± 1.1%, and SHO + PostC: 24.3% ± 1.7%, P < .05 vs 35.7% ± 4.4% in SHO). The PreC and PostC did not further reduce the infarct size in HL groups. The Akt, eNOS, GSK3β, p44/42, and STAT3 were activated in all PreC or PostC groups regardless of the infarct size reduction. The STAT5 was activated only in the HL groups compared with the SHO groups. In conclusion, chronic skeletal muscle ischemia results in effective cardioprotection, which is not further enhanced with application of PreC or PostC. The Akt, eNOS, GSK3β, p44/42, and STAT3 may only be considered as indicators of the intracellular changes taking place during protection. Activation of STAT5 is possibly the end effector, which is responsible for infarct size reduction provided by chronic skeletal muscle ischemia.
Collapse
Affiliation(s)
- Sofia-Iris Bibli
- Department of Pharmaceutical Chemistry, University of Athens School of Pharmacy, Athens, Greece
| | - Ioanna Andreadou
- Department of Pharmaceutical Chemistry, University of Athens School of Pharmacy, Athens, Greece
| | - Evangelos Lazaris
- Second Department of Cardiology, Athens Red Cross General Hospital, Athens, Greece
| | - Anastasia Zoga
- Second Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
| | - Varnavas Varnavas
- Second Department of Cardiology, Athens Red Cross General Hospital, Athens, Greece
| | | | - Nikolaos Dagres
- Second Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
| | - Efstathios K. Iliodromitis
- Second Department of Cardiology, University of Athens Medical School, Attikon University Hospital, Athens, Greece
| | - Zenon S. Kyriakides
- Second Department of Cardiology, Athens Red Cross General Hospital, Athens, Greece
| |
Collapse
|
32
|
Role of hypoxia inducible factor-1α in remote limb ischemic preconditioning. J Mol Cell Cardiol 2013; 65:98-104. [PMID: 24140799 DOI: 10.1016/j.yjmcc.2013.10.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/04/2013] [Accepted: 10/04/2013] [Indexed: 11/23/2022]
Abstract
Remote ischemic preconditioning (RIPC) has emerged as a feasible and attractive therapeutic procedure for heart protection against ischemia/reperfusion (I/R) injury. However, its molecular mechanisms remain poorly understood. Hypoxia inducible factor-1α (HIF-1α) is a transcription factor that plays a key role in the cellular adaptation to hypoxia and ischemia. This study's aim was to test whether RIPC-induced cardioprotection requires HIF-1α upregulation to be effective. In the first study, wild-type mice and mice heterozygous for HIF1a (gene encoding the HIF-1α protein) were subjected to RIPC immediately before myocardial infarction (MI). RIPC resulted in a robust HIF-1α activation in the limb and acute cardioprotection in wild-type mice. RIPC-induced cardioprotection was preserved in heterozygous mice, despite the low HIF-1α expression in their limbs. In the second study, the role of HIF-1α in RIPC was evaluated using cadmium (Cd), a pharmacological HIF-1α inhibitor. Rats were subjected to MI (MI group) or to RIPC immediately prior to MI (R-MI group). Cd was injected 18 0min before RIPC (Cd-R-MI group). RIPC induced robust HIF-1α activation in rat limbs and significantly reduced infarct size (IS). Despite Cd's inhibition of HIF-1α activation, RIPC-induced cardioprotection was preserved in the Cd-R-MI group. RIPC applied immediately prior to MI increased HIF-1α expression and attenuated IS in rats and wild-type mice. However, RIPC-induced cardioprotection was preserved in partially HIF1a-deficient mice and in rats pretreated with Cd. When considered together, these results suggest that HIF-1α upregulation is unnecessary in acute RIPC.
Collapse
|
33
|
Krenz M, Baines C, Kalogeris T, Korthuis R. Cell Survival Programs and Ischemia/Reperfusion: Hormesis, Preconditioning, and Cardioprotection. ACTA ACUST UNITED AC 2013. [DOI: 10.4199/c00090ed1v01y201309isp044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Zhong H, Gao Z, Chen M, Zhao J, Wang F, Li L, Dong H, Liu L, Wang Q, Xiong L. Cardioprotective effect of remote ischemic postconditioning on children undergoing cardiac surgery: a randomized controlled trial. Paediatr Anaesth 2013; 23:726-33. [PMID: 23668330 DOI: 10.1111/pan.12181] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2013] [Indexed: 11/27/2022]
Abstract
BACKGROUND Remote ischemic postconditioning (RPostC) is a noninvasive intervention that has demonstrated cardioprotection and neuroprotection in animal studies. OBJECTIVE Our goal was to investigate the cardio-cerebral protective effects of RPostC on children undergoing open-heart surgery for repair of congenital heart defects (CHD). METHODS Children undergoing open-heart repair of CHD were randomly assigned to a RPostC or control group. RPostC was induced by three 5-min cycles of lower limb ischemia and reperfusion using a blood pressure cuff (200 mmHg) at the onset of aortic unclamping. Serum cardiac troponin I (cTnI), creatine kinase-MB (CK-MB), neuron-specific enolase (NSE), S100β, cytokines, and clinical outcomes were assessed. RESULTS There were 35 children in the control group and 34 in the RPostC group. The mean age (3.64 ± 1.95 years vs. 3.45 ± 3.02 years, P = 0.80), weight (15.11 ± 6.91 kg vs. 13.40 ± 6.33 kg, P = 0.37), surgical time (144.82 ± 38.51 min vs. 129.92 ± 30.76 min, P = 0.15), and bypass time (78.01 ± 27.22 min vs. 72.52 ± 26.05 min, P = 0.49) were not different. Compared with the control group, the postoperative levels of cTnI (P = 0.037) and CK-MB (P = 0.046) were significantly reduced in the RPostC group. Furthermore, the MAP was higher (P = 0.008), and ICU stay (36.87 ± 3.30 h vs. 60.57 ± 7.35 h, P = 0.006) and postoperative hospital stay (8.56 ± 1.50 days vs. 10.06 ± 2.41 days, P = 0.048) were shorter in the RPostC group than in the control group. However, the postoperative CVP and the concentrations of NSE, S100β, CRP, TNF-α, IL-1β, IL-6, and IL-10 were not significantly different. CONCLUSION RPostC significantly alleviates cardiac injury in children undergoing open-heart repair of CHD and may also reduce cerebral injury.
Collapse
Affiliation(s)
- Haixing Zhong
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li J, Loukili N, Rosenblatt-Velin N, Pacher P, Feihl F, Waeber B, Liaudet L. Peroxynitrite is a key mediator of the cardioprotection afforded by ischemic postconditioning in vivo. PLoS One 2013; 8:e70331. [PMID: 23875026 PMCID: PMC3707883 DOI: 10.1371/journal.pone.0070331] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/23/2013] [Indexed: 12/11/2022] Open
Abstract
Myocardial ischemic postconditioning (PosC) describes an acquired resistance to lethal ischemia-reperfusion (I/R) injury afforded by brief episodes of I/R applied immediately after the ischemic insult. Cardioprotection is conveyed by parallel signaling pathways converging to prevent mitochondria permeability transition. Recent observations indicated that PostC is associated with free radicals generation, including nitric oxide (NO(.)) and superoxide (O2 (.-)), and that cardioprotection is abrogated by antioxidants. Since NO. And O2 (. -) react to form peroxynitrite, we hypothesized that postC might trigger the formation of peroxyntrite to promote cardioprotection in vivo. Rats were exposed to 45 min of myocardial ischemia followed by 3h reperfusion. PostC (3 cycles of 30 seconds ischemia/30 seconds reperfusion) was applied at the end of index ischemia. In a subgroup of rats, the peroxynitrite decomposition catalyst 5,10,15,20-tetrakis(4-sulphonatophenyl) porphyrinato iron (FeTPPS) was given intravenously (10 mg/kg(-1)) 5 minutes before PostC. Myocardial nitrotyrosine was determined as an index of peroxynitrite formation. Infarct size (colorimetric technique and plasma creatine kinase-CK-levels) and left ventricle (LV) function (micro-tip pressure transducer), were determined. A significant generation of 3-nitrotyrosine was detected just after the PostC manoeuvre. PostC resulted in a marked reduction of infarct size, CK release and LV systolic dysfunction. Treatment with FeTPPS before PostC abrogated the beneficial effects of PostC on myocardial infarct size and LV function. Thus, peroxynitrite formed in the myocardium during PostC induces cardioprotective mechanisms improving both structural and functional integrity of the left ventricle exposed to ischemia and reperfusion in vivo.
Collapse
Affiliation(s)
- Jianhui Li
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou, China
- Department of Intensive Care Medicine and Burn Center, Lausanne University Hospital Medical Center, Lausanne, Switzerland
| | - Noureddine Loukili
- Department of Intensive Care Medicine and Burn Center, Lausanne University Hospital Medical Center, Lausanne, Switzerland
| | - Nathalie Rosenblatt-Velin
- Division of Clinical Pathophysiology, Department of Internal Medicine, Lausanne University Hospital Medical Center, Lausanne, Switzerland
| | - Pal Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - François Feihl
- Division of Clinical Pathophysiology, Department of Internal Medicine, Lausanne University Hospital Medical Center, Lausanne, Switzerland
| | - Bernard Waeber
- Division of Clinical Pathophysiology, Department of Internal Medicine, Lausanne University Hospital Medical Center, Lausanne, Switzerland
| | - Lucas Liaudet
- Department of Intensive Care Medicine and Burn Center, Lausanne University Hospital Medical Center, Lausanne, Switzerland
- Division of Clinical Pathophysiology, Department of Internal Medicine, Lausanne University Hospital Medical Center, Lausanne, Switzerland
| |
Collapse
|
36
|
Duicu OM, Angoulvant D, Muntean DM. Cardioprotection against myocardial reperfusion injury: successes, failures, and perspectives. Can J Physiol Pharmacol 2013; 91:657-62. [PMID: 23889135 DOI: 10.1139/cjpp-2013-0048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The past few decades have witnessed an enormous number of research strategies aimed at protecting the heart against myocardial ischemia-reperfusion injury. Several randomized clinical trials are nowadays in progress testing whether promising therapeutic strategies aimed at preventing lethal reperfusion injury can be translated from bench to bedside. Many of these interventions, either pharmacological or mechanical, are targeting mitochondria as the final effectors of cardioprotection. Despite encouraging pre-clinical studies and small proof of concept clinical trials, there are still several limitations that may jeopardize the efficacy of cardioprotective strategies. These limitations include clinical setting, patient profile, drug administration, and methods for evaluating treatment efficacy. Identifying potential mechanistic and methodological pitfalls in the field may improve future translational research.
Collapse
Affiliation(s)
- Oana M Duicu
- Department of Pathophysiology, Victor Babeş University of Medicine and Pharmacy Timisoara, Romania
| | | | | |
Collapse
|
37
|
|
38
|
Protecting the heart through delivering DNA encoding for heme oxygenase-1 into skeletal muscle. Life Sci 2012; 91:828-36. [DOI: 10.1016/j.lfs.2012.08.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 07/16/2012] [Accepted: 08/08/2012] [Indexed: 01/06/2023]
|
39
|
|
40
|
Szijártó A, Czigány Z, Turóczi Z, Harsányi L. Remote ischemic perconditioning--a simple, low-risk method to decrease ischemic reperfusion injury: models, protocols and mechanistic background. A review. J Surg Res 2012; 178:797-806. [PMID: 22868050 DOI: 10.1016/j.jss.2012.06.067] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 06/18/2012] [Accepted: 06/26/2012] [Indexed: 12/18/2022]
Abstract
Interruption of blood flow can cause ischemic reperfusion injury, which sometimes has a fatal outcome. Recognition of the phenomenon known as reperfusion injury has led to initial interventional approaches to lessen the degree of damage. A number of efficient pharmacologic agents and surgical techniques (e.g., local ischemic preconditioning and postconditioning) are available. A novel, alternative approach to target organ protection is remote ischemic conditioning triggered by brief repetitive ischemia and reperfusion periods in distant organs. Among the different surgical techniques is so-called remote ischemic perconditioning, a method that applies short periods of ischemic reperfusion to a distant organ delivered during target organ ischemia. Although ischemic reperfusion injury is reduced by this technique, the explanation for this phenomenon is still unclear, and approximately only a dozen reports on the topic have appeared in the literature. In our study, therefore, we investigated the connective mechanisms, signal transduction, and effector mechanisms behind remote perconditioning, with a review on molecular background and favorable effects. In addition, we summarize the various treatment protocols and models to promote future experimental and clinical research.
Collapse
Affiliation(s)
- Attila Szijártó
- First Department of Surgery, Semmelweis University, Budapest, Hungary.
| | | | | | | |
Collapse
|
41
|
Bell RM, Yellon DM. Conditioning the whole heart—not just the cardiomyocyte. J Mol Cell Cardiol 2012; 53:24-32. [DOI: 10.1016/j.yjmcc.2012.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 03/05/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
|
42
|
|