1
|
Rodríguez MA, Torres JB, Lascano EC, Mattiazzi A, Mundiña-Weilenmann C, Said M. Inhibiting NCX delays the early onset of Ca 2+ alternans in myocytes from spontaneously hypertensive rats (SHR). J Mol Cell Cardiol 2025; 202:81-89. [PMID: 40064234 DOI: 10.1016/j.yjmcc.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/12/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Spontaneously hypertensive rats (SHR) are more susceptible to cardiac alternans, a precursor to arrhythmias. Ca2+ alternans is a beat-to-beat oscillation in Ca2+ transient amplitude at constant stimulation frequency. We previously found that the early onset of alternans in SHR hearts is associated with prolonged sarcoplasmic reticulum (SR) Ca2+ release refractoriness, primarily influenced by SR Ca2+ load and RyR2 sensitivity. The Na+/Ca2+ exchanger (NCX) is critical for regulating intracellular Ca2+. In SHR myocytes, elevated intracellular Na+ and Ca2+ levels and prolonged action potential duration along with structural changes in T-tubules, where NCX is primarily located, could alter NCX function. The effect of NCX on Ca2+ alternans is complex: enhanced NCX activity may hasten Ca2+ decay, offering protection, but also reduce SR Ca2+ content, potentially promoting alternans. This study aimed to investigate NCX's role in alternans in SHR hearts using pharmacological and computational approaches. ORM-10962, a selective NCX inhibitor, increased Ca2+ transient amplitude and SR Ca2+ content in SHR myocytes, but had no effect on normotensive myocytes, suggesting preferential forward mode activation in SHR. The inhibitor delayed alternans onset and normalized SR Ca2+ release refractoriness. These findings were confirmed by the computational model. Further experiments showed that blocking of NCX's reverse mode had no impact on Ca2+ alternans in SHR myocytes. The results suggest that NCX hyperactivity in SHR myocytes prevents the necessary increase in SR Ca2+ load to overcome the prolonged refractoriness. The findings highlight NCX inhibition as a potential therapeutic strategy to prevent Ca2+ alternans and reduce arrhythmic risk in hypertensive conditions.
Collapse
Affiliation(s)
- M A Rodríguez
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - J B Torres
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - E C Lascano
- Instituto de Medicina Traslacional, Trasplante y Bioingeniería, CONICET, Universidad Favaloro, Ciudad Autónoma de Buenos Aires, Argentina
| | - A Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - C Mundiña-Weilenmann
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| | - M Said
- Centro de Investigaciones Cardiovasculares, CCT-CONICET La Plata, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
2
|
Fedotov SA, Stepanov AV, Sakuta GA, Andreev IS, Ivanova MS, Baidyuk EV. Ultrastructural Remodeling of Cardiomyocytes in Postinfarction Myocardium of Rats in the Late Stages of the Disease. Cytometry A 2025; 107:36-44. [PMID: 39739549 DOI: 10.1002/cyto.a.24915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/18/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Identifying factors that contribute to the transition to the dilated phase in cardiac ischemia is a critical challenge in heart failure treatment. Currently, no effective therapies exist for this ischemic complication, and the mechanisms driving left ventricular dilatation during chronic post-infarction remodeling remain poorly understood. One potential pathological process leading to ventricular dilatation involves specific compensatory rearrangements in the border zone adjacent to the infarct, which isolates the intact myocardium from inflammation at the scar edge. Using a rat model, we examined ultrastructural changes in the intact and border zones of post-infarction myocardium at chronic stages. Morphometric analysis of myofibrils, mitochondria, and excitation-contraction coupling structures revealed similar remodeling processes in both zones at 2 weeks post-infarction, characterized by decreased myofibril density, reduced mitochondrial area and volume density, and shortened contacts between T-tubules and sarcoplasmic reticulum. At 26 weeks post-infarction, during the dilated cardiomyopathy phase, we observed distinct compensatory changes in the border zone. Specifically, there was a loose arrangement of myofibrils and an increased volume fraction of mitochondria. These differences in remodeling between the intact and border zones highlight factors contributing to ventricular dilatation and help the development of new therapeutic strategies to delay heart failure progression in cardiac ischemia.
Collapse
Affiliation(s)
- Sergei A Fedotov
- Laboratory of Toxinology and Molecular Systematics, L.A. Orbeli Institute of Physiology, National Academy of Sciences, Yerevan, Armenia
| | - Andrei V Stepanov
- Group of Neuroregulation of Muscle Function, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Galina A Sakuta
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Ivan S Andreev
- Group of Neuroregulation of Muscle Function, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Marina S Ivanova
- Group of Neuroregulation of Muscle Function, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Ekaterina V Baidyuk
- Laboratory of Hyperspectral Imaging of Surgical Targets, Center of Excellence, L.A. Orbeli Institute of Physiology, National Academy of Sciences, Yerevan, Armenia
- Regulation of Gene Expression Laboratory, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
- Laboratory of Comparative Biochemistry of Enzymes, Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
3
|
Greiner J, Dente M, Orós-Rodrigo S, Cameron BA, Madl J, Kaltenbacher W, Kok T, Zgierski-Johnston CM, Peyronnet R, Kohl P, Sacconi L, Rog-Zielinska EA. Different effects of cardiomyocyte contractile activity on transverse and axial tubular system luminal content dynamics. J Mol Cell Cardiol 2024; 197:125-135. [PMID: 39491670 DOI: 10.1016/j.yjmcc.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/06/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND Efficient excitation-contraction coupling of mammalian ventricular cardiomyocytes depends on the transverse-axial tubular system (TATS), a network of surface membrane invaginations. TATS enables tight coupling of sarcolemmal and sarcoplasmic reticulum membranes, which is essential for rapid Ca2+-induced Ca2+ release, and uniform contraction upon electrical stimulation. The majority of TATS in healthy ventricular cardiomyocytes is composed of transverse tubules (TT, ∼90 % of TATS in rabbit). The remainder consists of mostly axial tubules (AT), which are less abundant and less well studied. In disease, however, the relative abundance of TT and AT changes. The mechanisms and relevance of this change are not known, and understanding them requires a more targeted effort to study the dynamics of AT structure and function. While TATS content is continuous with the interstitial space, it is contained within a domain of restricted diffusion. We have previously shown that TT are cyclically squeezed during stretch and contraction. This can contribute to TT content mixing and accelerates luminal content exchange with the environment. Here, we explore the effects of cardiomyocyte stretch and contraction on AT. METHODS TATS structure and diffusion dynamics were studied using 3D electron tomography of rabbit left ventricular cardiomyocytes, preserved at rest or during contraction, and ventricular tissue preserved at rest or during stretch, as well as live-cell TATS content exchange measurements. RESULTS We show (i) that cardiomyocyte contraction is associated with an increase in the apparent speed of diffusion of TT content that scales with beating rate and degree of cell shortening. In contrast, (ii) AT develop membrane folds and constrictions during contraction, (iii) with no effect of contraction on luminal exchange dynamics, while (iv) cardiomyocyte stretch is associated with AT straightening and AT and TT 'squeezing' that (v) supports an acceleration of the apparent speed of diffusion in AT and TT. Finally, (vi) we present a simple computational model outlining the potential relevance of AT in healthy and diseased cells. CONCLUSIONS Our results indicate that TT and AT are differently affected by the cardiac contractile cycle, and suggest that AT may play a role in ensuring TATS network content homogeneity in diseased cardiomyocytes. Further research is needed to explore the interplay of structural and functional remodelling of different TATS components in failing myocardium.
Collapse
Affiliation(s)
- J Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - M Dente
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Florence, Italy
| | - S Orós-Rodrigo
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - B A Cameron
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - J Madl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - W Kaltenbacher
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - T Kok
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - C M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - R Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - P Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany; Faculty of Engineering, University of Freiburg, Freiburg, Germany
| | - L Sacconi
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute of Clinical Physiology, National Research Council, Florence, Italy
| | - E A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Foo B, Amedei H, Kaur S, Jaawan S, Boshnakovska A, Gall T, de Boer RA, Silljé HHW, Urlaub H, Rehling P, Lenz C, Lehnart SE. Unbiased complexome profiling and global proteomics analysis reveals mitochondrial impairment and potential changes at the intercalated disk in presymptomatic R14Δ/+ mice hearts. PLoS One 2024; 19:e0311203. [PMID: 39446877 PMCID: PMC11501035 DOI: 10.1371/journal.pone.0311203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/15/2024] [Indexed: 10/26/2024] Open
Abstract
Phospholamban (PLN) is a sarco-endoplasmic reticulum (SER) membrane protein that regulates cardiac contraction/relaxation by reversibly inhibiting the SERCA2a Ca2+-reuptake pump. The R14Δ-PLN mutation causes severe cardiomyopathy that is resistant to conventional treatment. Protein complexes and higher-order supercomplexes such as intercalated disk components and Ca+2-cycling domains underlie many critical cardiac functions, a subset of which may be disrupted by R14Δ-PLN. Complexome profiling (CP) is a proteomics workflow for systematic analysis of high molecular weight (MW) protein complexes and supercomplexes. We hypothesize that R14Δ-PLN may alter a subset of these assemblies, and apply CP workflows to explore these changes in presymptomatic R14Δ/+ mice hearts. Ventricular tissues from presymptomatic 28wk-old WT and R14Δ/+ mice were homogenized under non-denaturing conditions, fractionated by size-exclusion chromatography (SEC) with a linear MW-range exceeding 5 MDa, and subjected to quantitative data-independent acquisition mass spectrometry (DIA-MS) analysis. Unfortunately, current workflows for the systematic analysis of CP data proved ill-suited for use in cardiac samples. Most rely upon curated protein complex databases to provide ground-truth for analysis; however, these are derived primarily from cancerous or immortalized cell lines and, consequently, cell-type specific complexes (including cardiac-specific machinery potentially affected in R14Δ-PLN hearts) are poorly covered. We thus developed PERCOM: a novel CP data-analysis strategy that does not rely upon these databases and can, furthermore, be implemented on widely available spreadsheet software. Applying PERCOM to our CP dataset resulted in the identification of 296 proteins with disrupted elution profiles. Hits were significantly enriched for mitochondrial and intercalated disk (ICD) supercomplex components. Changes to mitochondrial supercomplexes were associated with reduced expression of mitochondrial proteins and maximal oxygen consumption rate. The observed alterations to mitochondrial and ICD supercomplexes were replicated in a second cohort of "juvenile" 9wk-old mice. These early-stage changes to key cardiac machinery may contribute to R14Δ-PLN pathogenesis.
Collapse
Affiliation(s)
- Brian Foo
- Department of Cardiology and Pneumology, Heart Research Center Göttingen, Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Hugo Amedei
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Surmeet Kaur
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Samir Jaawan
- Department of Cardiology and Pneumology, Heart Research Center Göttingen, Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Angela Boshnakovska
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Tanja Gall
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Rudolf A. de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Department of Cardiology, Erasmus MC, Thorax Center, Cardiovascular Institute, Rotterdam, the Netherlands
| | - Herman H. W. Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Henning Urlaub
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stephan E. Lehnart
- Department of Cardiology and Pneumology, Heart Research Center Göttingen, Cellular Biophysics and Translational Cardiology Section, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Abstract
In both excitable and nonexcitable cells, diverse physiological processes are linked to different calcium microdomains within nanoscale junctions that form between the plasma membrane and endo-sarcoplasmic reticula. It is now appreciated that the junctophilin protein family is responsible for establishing, maintaining, and modulating the structure and function of these junctions. We review foundational findings from more than two decades of research that have uncovered how junctophilin-organized ultrastructural domains regulate evolutionarily conserved biological processes. We discuss what is known about the junctophilin family of proteins. Our goal is to summarize the current knowledge of junctophilin domain structure, function, and regulation and to highlight emerging avenues of research that help our understanding of the transcriptional, translational, and post-translational regulation of this gene family and its roles in health and during disease.
Collapse
Affiliation(s)
- Duane D Hall
- Department of Internal Medicine, Division of Cardiovascular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; ,
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Long-Sheng Song
- Department of Internal Medicine, Division of Cardiovascular Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA; ,
- Department of Biochemistry and Molecular Biology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Palioura D, Mellidis K, Ioannidou-Kabouri K, Galatou E, Mouchtouri ET, Stamatiou R, Mavrommatis-Parasidis P, Panteris E, Varela A, Davos C, Drosatos K, Mavroidis M, Lazou A. PPARδ activation improves cardiac mitochondrial homeostasis in desmin deficient mice but does not alleviate systolic dysfunction. J Mol Cell Cardiol 2023; 183:27-41. [PMID: 37603971 DOI: 10.1016/j.yjmcc.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 07/22/2023] [Accepted: 08/14/2023] [Indexed: 08/23/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR) δ is a major transcriptional regulator of cardiac energy metabolism with pleiotropic properties, including anti-inflammatory, anti-oxidative and cardioprotective action. In this study, we sought to investigate whether pharmacological activation of PPARδ via intraperitoneal administration of the selective ligand GW0742 could ameliorate heart failure and mitochondrial dysfunction that have been previously reported in a characterized genetic model of heart failure, the desmin null mice (Des-/-). Our studies demonstrate that treatment of Des-/- mice with the PPARδ agonist attenuated cardiac inflammation, fibrosis and cardiac remodeling. In addition, PPARδ activation alleviated oxidative stress in the failing myocardium as evidenced by decreased ROS levels. Importantly, PPARδ activation stimulated mitochondrial biogenesis, prevented mitochondrial and sarcoplasmic reticulum vacuolar degeneration and improved the mitochondrial intracellular distribution. Finally, PPARδ activation alleviated the mitochondrial respiratory dysfunction, prevented energy depletion and alleviated excessive autophagy and mitophagy in Des-/- hearts. Nevertheless, improvement of all these parameters did not suffice to overcome the significant structural deficiencies that desmin deletion incurs in cardiomyocytes and cardiac function did not improve significantly. In conclusion, pharmacological PPARδ activation in Des-/- hearts exerts protective effects during myocardial degeneration and heart failure by preserving the function and quality of the mitochondrial network. These findings implicate PPARδ agonists as a supplemental constituent of heart failure medications.
Collapse
Affiliation(s)
- Dimitra Palioura
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Kyriakos Mellidis
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Konstantina Ioannidou-Kabouri
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Eleftheria Galatou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Rodopi Stamatiou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | | | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Aimilia Varela
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Constantinos Davos
- Clinical, Experimental Surgery & Translational Research Center, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Konstantinos Drosatos
- Metabolic Biology Laboratory, Cardiovascular Center, Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Manolis Mavroidis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | - Antigone Lazou
- Laboratory of Animal Physiology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
7
|
Xu X, Elkenani M, Tan X, Hain JK, Cui B, Schnelle M, Hasenfuss G, Toischer K, Mohamed BA. DNA Methylation Analysis Identifies Novel Epigenetic Loci in Dilated Murine Heart upon Exposure to Volume Overload. Int J Mol Sci 2023; 24:ijms24065885. [PMID: 36982963 PMCID: PMC10059258 DOI: 10.3390/ijms24065885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Left ventricular (LV) dilatation, a prominent risk factor for heart failure (HF), precedes functional deterioration and is used to stratify patients at risk for arrhythmias and cardiac mortality. Aberrant DNA methylation contributes to maladaptive cardiac remodeling and HF progression following pressure overload and ischemic cardiac insults. However, no study has examined cardiac DNA methylation upon exposure to volume overload (VO) despite being relatively common among HF patients. We carried out global methylome analysis of LV harvested at a decompensated HF stage following exposure to VO induced by aortocaval shunt. VO resulted in pathological cardiac remodeling, characterized by massive LV dilatation and contractile dysfunction at 16 weeks after shunt. Although methylated DNA was not markedly altered globally, 25 differentially methylated promoter regions (DMRs) were identified in shunt vs. sham hearts (20 hypermethylated and 5 hypomethylated regions). The validated hypermethylated loci in Junctophilin-2 (Jph2), Signal peptidase complex subunit 3 (Spcs3), Vesicle-associated membrane protein-associated protein B (Vapb), and Inositol polyphosphate multikinase (Ipmk) were associated with the respective downregulated expression and were consistently observed in dilated LV early after shunt at 1 week after shunt, before functional deterioration starts to manifest. These hypermethylated loci were also detected peripherally in the blood of the shunt mice. Altogether, we have identified conserved DMRs that could be novel epigenetic biomarkers in dilated LV upon VO exposure.
Collapse
Affiliation(s)
- Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Manar Elkenani
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xiaoying Tan
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, 37075 Göttingen, Germany
| | - Jara Katharina Hain
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Baolong Cui
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Moritz Schnelle
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| |
Collapse
|
8
|
Asfaw TN, Bondarenko VE. A compartmentalized mathematical model of the β 1- and β 2-adrenergic signaling systems in ventricular myocytes from mouse in heart failure. Am J Physiol Cell Physiol 2023; 324:C263-C291. [PMID: 36468844 DOI: 10.1152/ajpcell.00366.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mouse models of heart failure are extensively used to research human cardiovascular diseases. In particular, one of the most common is the mouse model of heart failure resulting from transverse aortic constriction (TAC). Despite this, there are no comprehensive compartmentalized mathematical models that describe the complex behavior of the action potential, [Ca2+]i transients, and their regulation by β1- and β2-adrenergic signaling systems in failing mouse myocytes. In this paper, we develop a novel compartmentalized mathematical model of failing mouse ventricular myocytes after TAC procedure. The model describes well the cell geometry, action potentials, [Ca2+]i transients, and β1- and β2-adrenergic signaling in the failing cells. Simulation results obtained with the failing cell model are compared with those from the normal ventricular myocytes. Exploration of the model reveals the sarcoplasmic reticulum Ca2+ load mechanisms in failing ventricular myocytes. We also show a larger susceptibility of the failing myocytes to early and delayed afterdepolarizations and to a proarrhythmic behavior of Ca2+ dynamics upon stimulation with isoproterenol. The mechanisms of the proarrhythmic behavior suppression are investigated and sensitivity analysis is performed. The developed model can explain the existing experimental data on failing mouse ventricular myocytes and make experimentally testable predictions of a failing myocyte's behavior.
Collapse
Affiliation(s)
- Tesfaye Negash Asfaw
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia
| | - Vladimir E Bondarenko
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia.,Neuroscience Institute, Georgia State University, Atlanta, Georgia
| |
Collapse
|
9
|
Lu F, Ma Q, Xie W, Liou CL, Zhang D, Sweat ME, Jardin BD, Naya FJ, Guo Y, Cheng H, Pu WT. CMYA5 establishes cardiac dyad architecture and positioning. Nat Commun 2022; 13:2185. [PMID: 35449169 PMCID: PMC9023524 DOI: 10.1038/s41467-022-29902-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Cardiac excitation-contraction coupling requires dyads, the nanoscopic microdomains formed adjacent to Z-lines by apposition of transverse tubules and junctional sarcoplasmic reticulum. Disruption of dyad architecture and function are common features of diseased cardiomyocytes. However, little is known about the mechanisms that modulate dyad organization during cardiac development, homeostasis, and disease. Here, we use proximity proteomics in intact, living hearts to identify proteins enriched near dyads. Among these proteins is CMYA5, an under-studied striated muscle protein that co-localizes with Z-lines, junctional sarcoplasmic reticulum proteins, and transverse tubules in mature cardiomyocytes. During cardiac development, CMYA5 positioning adjacent to Z-lines precedes junctional sarcoplasmic reticulum positioning or transverse tubule formation. CMYA5 ablation disrupts dyad architecture, dyad positioning at Z-lines, and junctional sarcoplasmic reticulum Ca2+ release, leading to cardiac dysfunction and inability to tolerate pressure overload. These data provide mechanistic insights into cardiomyopathy pathogenesis by demonstrating that CMYA5 anchors junctional sarcoplasmic reticulum to Z-lines, establishes dyad architecture, and regulates dyad Ca2+ release.
Collapse
Affiliation(s)
- Fujian Lu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Qing Ma
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Wenjun Xie
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, 710049, Xi'an, Shanxi, China
| | - Carter L Liou
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Donghui Zhang
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, 430062, Wuhan, Hubei, China
| | - Mason E Sweat
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Blake D Jardin
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
| | - Francisco J Naya
- Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, MA, 02215, USA
| | - Yuxuan Guo
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA
- Peking University Health Science Center, School of Basic Medical Sciences, The Institute of Cardiovascular Sciences, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, 100191, Beijing, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02115, USA.
- Harvard Stem Cell Institute, 7 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
10
|
Kohl P, Greiner J, Rog-Zielinska EA. Electron microscopy of cardiac 3D nanodynamics: form, function, future. Nat Rev Cardiol 2022; 19:607-619. [PMID: 35396547 DOI: 10.1038/s41569-022-00677-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/04/2022] [Indexed: 11/09/2022]
Abstract
The 3D nanostructure of the heart, its dynamic deformation during cycles of contraction and relaxation, and the effects of this deformation on cell function remain largely uncharted territory. Over the past decade, the first inroads have been made towards 3D reconstruction of heart cells, with a native resolution of around 1 nm3, and of individual molecules relevant to heart function at a near-atomic scale. These advances have provided access to a new generation of data and have driven the development of increasingly smart, artificial intelligence-based, deep-learning image-analysis algorithms. By high-pressure freezing of cardiomyocytes with millisecond accuracy after initiation of an action potential, pseudodynamic snapshots of contraction-induced deformation of intracellular organelles can now be captured. In combination with functional studies, such as fluorescence imaging, exciting insights into cardiac autoregulatory processes at nano-to-micro scales are starting to emerge. In this Review, we discuss the progress in this fascinating new field to highlight the fundamental scientific insight that has emerged, based on technological breakthroughs in biological sample preparation, 3D imaging and data analysis; to illustrate the potential clinical relevance of understanding 3D cardiac nanodynamics; and to predict further progress that we can reasonably expect to see over the next 10 years.
Collapse
Affiliation(s)
- Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Engineering, University of Freiburg, Freiburg, Germany.,Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Joachim Greiner
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Eva A Rog-Zielinska
- Institute for Experimental Cardiovascular Medicine, University Heart Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Abstract
In mammalian cardiac myocytes, the plasma membrane includes the surface sarcolemma but also a network of membrane invaginations called transverse (t-) tubules. These structures carry the action potential deep into the cell interior, allowing efficient triggering of Ca2+ release and initiation of contraction. Once thought to serve as rather static enablers of excitation-contraction coupling, recent work has provided a newfound appreciation of the plasticity of the t-tubule network's structure and function. Indeed, t-tubules are now understood to support dynamic regulation of the heartbeat across a range of timescales, during all stages of life, in both health and disease. This review article aims to summarize these concepts, with consideration given to emerging t-tubule regulators and their targeting in future therapies.
Collapse
Affiliation(s)
- Katharine M Dibb
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- K.G. Jebsen Centre for Cardiac Research, University of Oslo, Oslo Norway
| | - Andrew W Trafford
- Unit of Cardiac Physiology, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom;
| |
Collapse
|
12
|
Dixon RE. Nanoscale Organization, Regulation, and Dynamic Reorganization of Cardiac Calcium Channels. Front Physiol 2022; 12:810408. [PMID: 35069264 PMCID: PMC8769284 DOI: 10.3389/fphys.2021.810408] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
The architectural specializations and targeted delivery pathways of cardiomyocytes ensure that L-type Ca2+ channels (CaV1.2) are concentrated on the t-tubule sarcolemma within nanometers of their intracellular partners the type 2 ryanodine receptors (RyR2) which cluster on the junctional sarcoplasmic reticulum (jSR). The organization and distribution of these two groups of cardiac calcium channel clusters critically underlies the uniform contraction of the myocardium. Ca2+ signaling between these two sets of adjacent clusters produces Ca2+ sparks that in health, cannot escalate into Ca2+ waves because there is sufficient separation of adjacent clusters so that the release of Ca2+ from one RyR2 cluster or supercluster, cannot activate and sustain the release of Ca2+ from neighboring clusters. Instead, thousands of these Ca2+ release units (CRUs) generate near simultaneous Ca2+ sparks across every cardiomyocyte during the action potential when calcium induced calcium release from RyR2 is stimulated by depolarization induced Ca2+ influx through voltage dependent CaV1.2 channel clusters. These sparks summate to generate a global Ca2+ transient that activates the myofilaments and thus the electrical signal of the action potential is transduced into a functional output, myocardial contraction. To generate more, or less contractile force to match the hemodynamic and metabolic demands of the body, the heart responds to β-adrenergic signaling by altering activity of calcium channels to tune excitation-contraction coupling accordingly. Recent accumulating evidence suggests that this tuning process also involves altered expression, and dynamic reorganization of CaV1.2 and RyR2 channels on their respective membranes to control the amplitude of Ca2+ entry, SR Ca2+ release and myocardial function. In heart failure and aging, altered distribution and reorganization of these key Ca2+ signaling proteins occurs alongside architectural remodeling and is thought to contribute to impaired contractile function. In the present review we discuss these latest developments, their implications, and future questions to be addressed.
Collapse
Affiliation(s)
- Rose E Dixon
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
13
|
Abstract
Junctophilins (JPHs) comprise a family of structural proteins that connect the plasma membrane to intracellular organelles such as the endo/sarcoplasmic reticulum. Tethering of these membrane structures results in the formation of highly organized subcellular junctions that play important signaling roles in all excitable cell types. There are four JPH isoforms, expressed primarily in muscle and neuronal cell types. Each JPH protein consists of 6 'membrane occupation and recognition nexus' (MORN) motifs, a joining region connecting these to another set of 2 MORN motifs, a putative alpha-helical region, a divergent region exhibiting low homology between JPH isoforms, and a carboxy-terminal transmembrane region anchoring into the ER/SR membrane. JPH isoforms play essential roles in developing and maintaining subcellular membrane junctions. Conversely, inherited mutations in JPH2 cause hypertrophic or dilated cardiomyopathy, while trinucleotide expansions in the JPH3 gene cause Huntington Disease-Like 2. Loss of JPH1 protein levels can cause skeletal myopathy, while loss of cardiac JPH2 levels causes heart failure and atrial fibrillation, among other disease. This review will provide a comprehensive overview of the JPH gene family, phylogeny, and evolutionary analysis of JPH genes and other MORN domain proteins. JPH biogenesis, membrane tethering, and binding partners will be discussed, as well as functional roles of JPH isoforms in excitable cells. Finally, potential roles of JPH isoform deficits in human disease pathogenesis will be reviewed.
Collapse
Affiliation(s)
- Stephan E Lehnart
- Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, Department of Cardiology and Pneumology, Georg-August University Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, Texas, United States; Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), Pediatrics (Cardiology), Neuroscience, and Center for Space Medicine, Baylor College of Medicine, Houston, Texas, United States
| |
Collapse
|
14
|
Abstract
The number of therapies for heart failure (HF) with reduced ejection fraction has nearly doubled in the past decade. In addition, new therapies for HF caused by hypertrophic and infiltrative disease are emerging rapidly. Indeed, we are on the verge of a new era in HF in which insights into the biology of myocardial disease can be matched to an understanding of the genetic predisposition in an individual patient to inform precision approaches to therapy. In this Review, we summarize the biology of HF, emphasizing the causal relationships between genetic contributors and traditional structure-based remodelling outcomes, and highlight the mechanisms of action of traditional and novel therapeutics. We discuss the latest advances in our understanding of both the Mendelian genetics of cardiomyopathy and the complex genetics of the clinical syndrome presenting as HF. In the phenotypic domain, we discuss applications of machine learning for the subcategorization of HF in ways that might inform rational prescribing of medications. We aim to bridge the gap between the biology of the failing heart, its diverse clinical presentations and the range of medications that we can now use to treat it. We present a roadmap for the future of precision medicine in HF.
Collapse
|
15
|
Setterberg IE, Le C, Frisk M, Li J, Louch WE. The Physiology and Pathophysiology of T-Tubules in the Heart. Front Physiol 2021; 12:718404. [PMID: 34566684 PMCID: PMC8458775 DOI: 10.3389/fphys.2021.718404] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
In cardiomyocytes, invaginations of the sarcolemmal membrane called t-tubules are critically important for triggering contraction by excitation-contraction (EC) coupling. These structures form functional junctions with the sarcoplasmic reticulum (SR), and thereby enable close contact between L-type Ca2+ channels (LTCCs) and Ryanodine Receptors (RyRs). This arrangement in turn ensures efficient triggering of Ca2+ release, and contraction. While new data indicate that t-tubules are capable of exhibiting compensatory remodeling, they are also widely reported to be structurally and functionally compromised during disease, resulting in disrupted Ca2+ homeostasis, impaired systolic and/or diastolic function, and arrhythmogenesis. This review summarizes these findings, while highlighting an emerging appreciation of the distinct roles of t-tubules in the pathophysiology of heart failure with reduced and preserved ejection fraction (HFrEF and HFpEF). In this context, we review current understanding of the processes underlying t-tubule growth, maintenance, and degradation, underscoring the involvement of a variety of regulatory proteins, including junctophilin-2 (JPH2), amphiphysin-2 (BIN1), caveolin-3 (Cav3), and newer candidate proteins. Upstream regulation of t-tubule structure/function by cardiac workload and specifically ventricular wall stress is also discussed, alongside perspectives for novel strategies which may therapeutically target these mechanisms.
Collapse
Affiliation(s)
- Ingunn E Setterberg
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Christopher Le
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Michael Frisk
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Jia Li
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
16
|
Biquand A, Spinozzi S, Tonino P, Cosette J, Strom J, Elbeck Z, Knöll R, Granzier H, Lostal W, Richard I. Titin M-line insertion sequence 7 is required for proper cardiac function in mice. J Cell Sci 2021; 134:271843. [PMID: 34401916 DOI: 10.1242/jcs.258684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/06/2021] [Indexed: 11/20/2022] Open
Abstract
Titin is a giant sarcomeric protein that is involved in a large number of functions, with a primary role in skeletal and cardiac sarcomere organization and stiffness. The titin gene (TTN) is subject to various alternative splicing events, but in the region that is present at the M-line, the only exon that can be spliced out is Mex5, which encodes for the insertion sequence 7 (is7). Interestingly, in the heart, the majority of titin isoforms are Mex5+, suggesting a cardiac role for is7. Here, we performed comprehensive functional, histological, transcriptomic, microscopic and molecular analyses of a mouse model lacking the Ttn Mex5 exon (ΔMex5), and revealed that the absence of the is7 is causative for dilated cardiomyopathy. ΔMex5 mice showed altered cardiac function accompanied by increased fibrosis and ultrastructural alterations. Abnormal expression of excitation-contraction coupling proteins was also observed. The results reported here confirm the importance of the C-terminal region of titin in cardiac function and are the first to suggest a possible relationship between the is7 and excitation-contraction coupling. Finally, these findings give important insights for the identification of new targets in the treatment of titinopathies.
Collapse
Affiliation(s)
- Ariane Biquand
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Simone Spinozzi
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Paola Tonino
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | | | - Joshua Strom
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Zaher Elbeck
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institutet, 141 57 Huddinge, Sweden
| | - Ralph Knöll
- Department of Medicine, Integrated Cardio Metabolic Centre (ICMC), Heart and Vascular Theme, Karolinska Institutet, 141 57 Huddinge, Sweden.,Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, 431 50 Gothenburg, Sweden
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - William Lostal
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| | - Isabelle Richard
- Genethon, 91000 Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR_S951, 91000 Evry-Courcouronnes, France
| |
Collapse
|
17
|
Yang L, Li RC, Xiang B, Li YC, Wang LP, Guo YB, Liang JH, Wang XT, Hou T, Xing X, Zhou ZQ, Ye H, Feng RQ, Lakatta EG, Chai Z, Wang SQ. Transcriptional regulation of intermolecular Ca 2+ signaling in hibernating ground squirrel cardiomyocytes: The myocardin-junctophilin axis. Proc Natl Acad Sci U S A 2021; 118:e2025333118. [PMID: 33785600 PMCID: PMC8040632 DOI: 10.1073/pnas.2025333118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The contraction of heart cells is controlled by the intermolecular signaling between L-type Ca2+ channels (LCCs) and ryanodine receptors (RyRs), and the nanodistance between them depends on the interaction between junctophilin-2 (JPH2) in the sarcoplasmic reticulum (SR) and caveolin-3 (CAV3) in the transversal tubule (TT). In heart failure, decreased expression of JPH2 compromises LCC-RyR communication leading to deficient blood-pumping power. In the present study, we found that JPH2 and CAV3 transcription was concurrently regulated by serum response factor (SRF) and myocardin. In cardiomyocytes from torpid ground squirrels, compared with those from euthermic counterparts, myocardin expression was up-regulated, which boosted both JPH2 and CAV3 expression. Transmission electron microscopic imaging showed that the physical coupling between TTs and SRs was tightened during hibernation and after myocardin overexpression. Confocal Ca2+ imaging under the whole-cell patch clamp condition revealed that these changes enhanced the efficiency of LCC-RyR intermolecular signaling and fully compensated the adaptive down-regulation of LCCs, maintaining the power of heart contraction while avoiding the risk of calcium overload during hibernation. Our finding not only revealed an essential molecular mechanism underlying the survival of hibernating mammals, but also demonstrated a "reverse model of heart failure" at the molecular level, suggesting a strategy for treating heart diseases.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Rong-Chang Li
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Bin Xiang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yi-Chen Li
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Peng Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yun-Bo Guo
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jing-Hui Liang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xiao-Ting Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tingting Hou
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xin Xing
- College of Life Science, Shenyang Normal University, Shenyang 110034, China
| | - Zeng-Quan Zhou
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Haihong Ye
- Beijing Key Laboratory of Neural Regeneration and Repair, Department of Medical Genetics and Developmental Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Ren-Qing Feng
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Edward G Lakatta
- Laboratory of Cardiovascular Science, National Institute on Aging, Baltimore, MD 21224
| | - Zhen Chai
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China;
- Chinese Institute for Brain Research, Beijing 102206, China
| |
Collapse
|
18
|
Iaparov BI, Zahradnik I, Moskvin AS, Zahradníková A. In silico simulations reveal that RYR distribution affects the dynamics of calcium release in cardiac myocytes. J Gen Physiol 2021; 153:211900. [PMID: 33735373 PMCID: PMC7980188 DOI: 10.1085/jgp.202012685] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/08/2021] [Indexed: 11/20/2022] Open
Abstract
The dyads of cardiac myocytes contain ryanodine receptors (RYRs) that generate calcium sparks upon activation. To test how geometric factors of RYR distribution contribute to the formation of calcium sparks, which cannot be addressed experimentally, we performed in silico simulations on a large set of models of calcium release sites (CRSs). Our models covered the observed range of RYR number, density, and spatial arrangement. The calcium release function of CRSs was modeled by RYR openings, with an open probability dependent on concentrations of free Ca2+ and Mg2+ ions, in a rapidly buffered system, with a constant open RYR calcium current. We found that simulations of spontaneous sparks by repeatedly opening one of the RYRs in a CRS produced three different types of calcium release events (CREs) in any of the models. Transformation of simulated CREs into fluorescence signals yielded calcium sparks with characteristics close to the observed ones. CRE occurrence varied broadly with the spatial distribution of RYRs in the CRS but did not consistently correlate with RYR number, surface density, or calcium current. However, it correlated with RYR coupling strength, defined as the weighted product of RYR vicinity and calcium current, so that CRE characteristics of all models followed the same state-response function. This finding revealed the synergy between structure and function of CRSs in shaping dyad function. Lastly, rearrangements of RYRs simulating hypothetical experiments on splitting and compaction of a dyad revealed an increased propensity to generate spontaneous sparks and an overall increase in calcium release in smaller and more compact dyads, thus underlying the importance and physiological role of RYR arrangement in cardiac myocytes.
Collapse
Affiliation(s)
- Bogdan I Iaparov
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Research Institute of Physics and Applied Mathematics, and Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russia
| | - Ivan Zahradnik
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Alexander S Moskvin
- Research Institute of Physics and Applied Mathematics, and Department of Theoretical and Mathematical Physics, Ural Federal University, Ekaterinburg, Russia
| | - Alexandra Zahradníková
- Department of Cellular Cardiology, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
19
|
Celestino-Montes A, Pérez-Treviño P, Sandoval-Herrera MD, Gómez-Víquez NL, Altamirano J. Relative role of T-tubules disruption and decreased SERCA2 on contractile dynamics of isolated rat ventricular myocytes. Life Sci 2021; 264:118700. [PMID: 33130073 DOI: 10.1016/j.lfs.2020.118700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
AIMS Ventricular myocytes (VM) depolarization activates L-type Ca2+ channels (LCC) allowing Ca2+ influx (ICa) to synchronize sarcoplasmic reticulum (SR) Ca2+ release, via Ca2+-release channels (RyR2). The resulting whole-cell Ca2+ transient triggers contraction, while cytosolic Ca2+ removal by SR Ca2+ pump (SERCA2) and sarcolemmal Na+/Ca2+ exchanger (NCX) allows relaxation. In diseased hearts, extensive VM remodeling causes heterogeneous, blunted and slow Ca2+ transients. Among remodeling changes are: A) T-tubules disorganization. B) Diminished SERCA2 and low SR Ca2+. However, those often overlap, hindering their relative contribution to contractile dysfunction (CD). Furthermore, few studies have assessed their specific impact on the spatiotemporal Ca2+ transient properties and contractile dynamics simultaneously. Therefore, we sought to perform a quantitative comparison of how heterogeneous and slow Ca2+ transients, with different underlying determinants, affect contractile performance. METHODS We used two experimental models: A) formamide-induced acute "detubulation", where VM retain functional RyR2 and SERCA2, but lack T-tubules-associated LCC and NCX. B) Intact VM from hypothyroid rats, presenting decreased SERCA2 and SR Ca2+, but maintained T-tubules. By confocal imaging of Fluo-4-loaded VM, under field-stimulation, simultaneously acquired Ca2+ transients and shortening, allowing direct correlations. KEY FINDINGS We found near-linear correlations among key parameters of altered Ca2+ transients, caused independently by T-tubules disruption or decreased SR Ca2+, and shortening and relaxation, SIGNIFICANCE: Unrelated structural and molecular alterations converge in similarly abnormal Ca2+ transients and CD, highlighting the importance of independently reproduce disease-specific alterations, to quantitatively assess their impact on Ca2+ signaling and contractility, which would be valuable to determine potential disease-specific therapeutic targets.
Collapse
Affiliation(s)
- Antonio Celestino-Montes
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico
| | - Perla Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico
| | - Maya D Sandoval-Herrera
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico
| | - Norma L Gómez-Víquez
- Departamento de Farmacobiologia, CINVESTAV-IPN sede Sur, Mexico, D.F. 14330, Mexico
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L. 64710, Mexico.
| |
Collapse
|
20
|
Poulet C, Sanchez-Alonso J, Swiatlowska P, Mouy F, Lucarelli C, Alvarez-Laviada A, Gross P, Terracciano C, Houser S, Gorelik J. Junctophilin-2 tethers T-tubules and recruits functional L-type calcium channels to lipid rafts in adult cardiomyocytes. Cardiovasc Res 2021; 117:149-161. [PMID: 32053184 PMCID: PMC7797210 DOI: 10.1093/cvr/cvaa033] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/08/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
AIM In cardiomyocytes, transverse tubules (T-tubules) associate with the sarcoplasmic reticulum (SR), forming junctional membrane complexes (JMCs) where L-type calcium channels (LTCCs) are juxtaposed to Ryanodine receptors (RyR). Junctophilin-2 (JPH2) supports the assembly of JMCs by tethering T-tubules to the SR membrane. T-tubule remodelling in cardiac diseases is associated with downregulation of JPH2 expression suggesting that JPH2 plays a crucial role in T-tubule stability. Furthermore, increasing evidence indicate that JPH2 might additionally act as a modulator of calcium signalling by directly regulating RyR and LTCCs. This study aimed at determining whether JPH2 overexpression restores normal T-tubule structure and LTCC function in cultured cardiomyocytes. METHODS AND RESULTS Rat ventricular myocytes kept in culture for 4 days showed extensive T-tubule remodelling with impaired JPH2 localization and relocation of the scaffolding protein Caveolin3 (Cav3) from the T-tubules to the outer membrane. Overexpression of JPH2 restored T-tubule structure and Cav3 relocation. Depletion of membrane cholesterol by chronic treatment with methyl-β-cyclodextrin (MβCD) countered the stabilizing effect of JPH2 overexpression on T-tubules and Cav3. Super-resolution scanning patch-clamp showed that JPH2 overexpression greatly increased the number of functional LTCCs at the plasma membrane. Treatment with MβCD reduced LTCC open probability and activity. Proximity ligation assays showed that MβCD did not affect JPH2 interaction with RyR and the pore-forming LTCC subunit Cav1.2, but strongly impaired JPH2 association with Cav3 and the accessory LTCC subunit Cavβ2. CONCLUSIONS JPH2 promotes T-tubule structural stability and recruits functional LTCCs to the membrane, most likely by directly binding to the channel. Cholesterol is involved in the binding of JPH2 to T-tubules as well as in the modulation of LTCC activity. We propose a model where cholesterol and Cav3 support the assembly of lipid rafts which provide an anchor for JPH2 to form JMCs and a platform for signalling complexes to regulate LTCC activity.
Collapse
Affiliation(s)
- Claire Poulet
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Jose Sanchez-Alonso
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Pamela Swiatlowska
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Florence Mouy
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Carla Lucarelli
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
- Department of Cardiac Surgery, School of Medicine, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy
| | - Anita Alvarez-Laviada
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Polina Gross
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, 3500 N. Broad St., Philadelphia, PA 19140, USA
| | - Cesare Terracciano
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Steven Houser
- Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, 3500 N. Broad St., Philadelphia, PA 19140, USA
| | - Julia Gorelik
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
21
|
Structural variability of dyads relates to calcium release in rat ventricular myocytes. Sci Rep 2020; 10:8076. [PMID: 32415205 PMCID: PMC7229197 DOI: 10.1038/s41598-020-64840-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/11/2020] [Indexed: 12/30/2022] Open
Abstract
Cardiac excitation-contraction coupling relies on dyads, the intracellular calcium synapses of cardiac myocytes, where the plasma membrane contacts sarcoplasmic reticulum and where electrical excitation triggers calcium release. The morphology of dyads and dynamics of local calcium release vary substantially. To better understand the correspondence between the structure and the functionality of dyads, we estimated incidences of structurally different dyads and of kinetically different calcium release sites and tested their responsiveness to experimental myocardial injury in left ventricular myocytes of rats. According to the structure of dyads estimated in random electron microscopic images of myocardial tissue, the dyads were sorted into 'compact' or 'loose' types. The calcium release fluxes, triggered at local calcium release sites in patch-clamped ventricular myocytes and recorded by laser scanning confocal fluorescence microscopy, were decomposed into 'early' and 'late' components. ANOVA tests revealed very high correlation between the relative amplitudes of early and late calcium release flux components and the relative occurrences of compact and loose dyads in the control and in the injured myocardium. This finding ascertained the relationship between the structure of dyads and the functionality of calcium release sites and the responsiveness of calcium release sites to physical load in cardiac myocytes.
Collapse
|
22
|
Gilbert G, Demydenko K, Dries E, Puertas RD, Jin X, Sipido K, Roderick HL. Calcium Signaling in Cardiomyocyte Function. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035428. [PMID: 31308143 DOI: 10.1101/cshperspect.a035428] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Rhythmic increases in intracellular Ca2+ concentration underlie the contractile function of the heart. These heart muscle-wide changes in intracellular Ca2+ are induced and coordinated by electrical depolarization of the cardiomyocyte sarcolemma by the action potential. Originating at the sinoatrial node, conduction of this electrical signal throughout the heart ensures synchronization of individual myocytes into an effective cardiac pump. Ca2+ signaling pathways also regulate gene expression and cardiomyocyte growth during development and in pathology. These fundamental roles of Ca2+ in the heart are illustrated by the prevalence of altered Ca2+ homeostasis in cardiovascular diseases. Indeed, heart failure (an inability of the heart to support hemodynamic needs), rhythmic disturbances, and inappropriate cardiac growth all share an involvement of altered Ca2+ handling. The prevalence of these pathologies, contributing to a third of all deaths in the developed world as well as to substantial morbidity makes understanding the mechanisms of Ca2+ handling and dysregulation in cardiomyocytes of great importance.
Collapse
Affiliation(s)
- Guillaume Gilbert
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Kateryna Demydenko
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Eef Dries
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Rosa Doñate Puertas
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Xin Jin
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - Karin Sipido
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KU Leuven, BE3000 Leuven, Belgium
| |
Collapse
|
23
|
Li X, Xu G, Wei S, Zhang B, Yao H, Chen Y, Liu W, Wang B, Zhao J, Gao Y. Lingguizhugan decoction attenuates doxorubicin-induced heart failure in rats by improving TT-SR microstructural remodeling. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:360. [PMID: 31829159 PMCID: PMC6907350 DOI: 10.1186/s12906-019-2771-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 11/25/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Lingguizhugan decoction (LGZG), an ancient Chinese herbal formula, has been used to treat cardiovascular diseases in eastern Asia. We investigated whether LGZG has protective activity and the mechanism underlying its effect in an animal model of heart failure (HF). METHODS A rat model of HF was established by administering eight intraperitoneal injections of doxorubicin (DOX) (cumulative dose of 16 mg/kg) over a 4-week period. Subsequently, LGZG at 5, 10, and 15 mL/kg/d was administered to the rats intragastrically once daily for 4 weeks. The body weight, heart weight index (HWI), heart weight/tibia length ratio (HW/TL), and serum BNP level were investigated to assess the effect of LGZG on HF. Echocardiography was performed to investigate cardiac function, and H&E staining to visualize myocardial morphology. Myocardial ultrastructure and T-tubule-sarcoplasmic reticulum (TT-SR) junctions were observed by transmission electron microscopy. The JP-2 protein level was determined by Western blotting. The mRNA level of CACNA1S and RyR2 and the microRNA-24 (miR-24) level were assayed by quantitative RT-PCR. RESULTS Four weeks after DOX treatment, rats developed cardiac damage and exhibited a significantly increased BNP level compared with the control rats (169.6 ± 29.6 pg/mL versus 80.1 ± 9.8 pg/mL, P < 0.001). Conversely, LGZG, especially at the highest dose, markedly reduced the BNP level (93.8 ± 17.9 pg/mL, P < 0.001). Rats treated with DOX developed cardiac dysfunction, characterized by a strong decrease in left ventricular ejection fraction compared with the control (58.5 ± 8.7% versus 88.7 ± 4.0%; P < 0.001). Digoxin and LGZG improved cardiac dysfunction (79.6 ± 6.1%, 69.2 ± 2.5%, respectively) and preserved the left ventricular ejection fraction (77.9 ± 5.1, and 80.5 ± 4.9, respectively, P < 0.01). LGZG also improved the LVEDD, LVESD, and FS and eliminated ventricular hypertrophy, as indicated by decreased HWI and HW/TL ratio. LGZG attenuated morphological abnormalities and mitochondrial damage in the myocardium. In addition, a high dose of LGZG significantly downregulated the expression of miR-24 compared with that in DOX-treated rats (fold change 1.4 versus 3.4, P < 0.001), but upregulated the expression of JP-2 and antagonized DOX-induced T-tubule TT-SR microstructural remodeling. These activities improved periodic Ca2+ transients and cell contraction, which may underly the beneficial effect of LGZG on HF. CONCLUSIONS LGZG exerted beneficial effects on DOX-induced HF in rats, which were mediated in part by improved TT-SR microstructural remodeling.
Collapse
|
24
|
Pérez-Treviño P, Sepúlveda-Leal J, Altamirano J. Simultaneous assessment of calcium handling and contractility dynamics in isolated ventricular myocytes of a rat model of post-acute isoproterenol-induced cardiomyopathy. Cell Calcium 2019; 86:102138. [PMID: 31838436 DOI: 10.1016/j.ceca.2019.102138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Stress-induced cardiomyopathy (SIC) results from a profound catecholaminergic surge during strong emotional or physical stress. SIC is characterized by acute left ventricular apex hypokinesia, in the absence of coronary arteries occlusion, and can lead to arrhythmias and acute heart failure. Although, most SIC patients recover, the process could be slow, and recurrence or death may occur. Despite that the SIC common denominator is a large catecholamine discharge, the pathophysiological mechanism is incompletely understood. It is thought that catecholamines have direct cytotoxicity on apical ventricular myocytes (VM), which have the highest β-adrenergic receptors density, and whose overstimulation might cause acute Ca2+ overload and oxidative stress, causing death in some VM and stunning others. Rodents receiving acute isoproterenol (ISO) overdose (OV) mimic SIC development, however, they have not been used to simultaneously assess Ca2+ handling and contractility status in isolated VM, which might explain ventricular hypokinesia. Therefore, treating rats with a single ISO-OV (67 mg/kg body weight), we sought out to characterize, with confocal imaging, Ca2+ and shortening dynamics in Fluo-4-loaded VM, during the early (1-5 days) and late post-acute phases (15 days). We found that ISO-OV VM showed contractile dysfunction; blunted shortening with slower force development and relaxation. These correlated with Ca2+ mishandling; blunted Ca2+ transient, with slower time to peak and SR Ca2+ recovery. SR Ca2+ content was low, nevertheless, diastolic Ca2+ sparks were more frequent, and their duration increased. Contractility and Ca2+ dysfunction aggravated or remained altered over time, explaining slow recovery. We conclude that diminished VM contractility is the main determinant of ISO-OV hypokinesia and is mostly related to Ca2+ mishandling.
Collapse
Affiliation(s)
- Perla Pérez-Treviño
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L., 64710, Mexico
| | - José Sepúlveda-Leal
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L., 64710, Mexico
| | - Julio Altamirano
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto No. 3000 Pte., Monterrey, N.L., 64710, Mexico.
| |
Collapse
|
25
|
Chan BYH, Roczkowsky A, Cho WJ, Poirier M, Lee TYT, Mahmud Z, Schulz R. Junctophilin-2 is a target of matrix metalloproteinase-2 in myocardial ischemia-reperfusion injury. Basic Res Cardiol 2019; 114:42. [PMID: 31506724 DOI: 10.1007/s00395-019-0749-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 09/02/2019] [Indexed: 11/30/2022]
Abstract
Junctophilin-2 is a structural membrane protein that tethers T-tubules to the sarcoplasmic reticulum to allow for coordinated calcium-induced calcium release in cardiomyocytes. Defective excitation-contraction coupling in myocardial ischemia-reperfusion (IR) injury is associated with junctophilin-2 proteolysis. However, it remains unclear whether preventing junctophilin-2 proteolysis improves the recovery of cardiac contractile dysfunction in IR injury. Matrix metalloproteinase-2 (MMP-2) is a zinc and calcium-dependent protease that is activated by oxidative stress in myocardial IR injury and cleaves both intracellular and extracellular substrates. To determine whether junctophilin-2 is targeted by MMP-2, isolated rat hearts were perfused in working mode aerobically or subjected to IR injury with the selective MMP inhibitor ARP-100. IR injury impaired the recovery of cardiac contractile function which was associated with increased degradation of junctophilin-2 and damaged cardiac dyads. In IR hearts, ARP-100 improved the recovery of cardiac contractile function, attenuated junctophilin-2 proteolysis, and prevented ultrastructural damage to the dyad. MMP-2 was co-localized with junctophilin-2 in aerobic and IR hearts by immunoprecipitation and immunohistochemistry. In situ zymography showed that MMP activity was localized to the Z-disc and sarcomere in aerobic hearts and accumulated at sites where the striated JPH-2 staining was disrupted in IR hearts. In vitro proteolysis assays determined that junctophilin-2 is susceptible to proteolysis by MMP-2 and in silico analysis predicted multiple MMP-2 cleavage sites between the membrane occupation and recognition nexus repeats and within the divergent region of junctophilin-2. Degradation of junctophilin-2 by MMP-2 is an early consequence of myocardial IR injury which may initiate a cascade of sequelae leading to impaired contractile function.
Collapse
Affiliation(s)
- Brandon Y H Chan
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Andrej Roczkowsky
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Woo Jung Cho
- Faculty of Medicine and Dentistry Cell Imaging Centre, University of Alberta, Edmonton, AB, Canada
| | - Mathieu Poirier
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Tim Y T Lee
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Zabed Mahmud
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Departments of Pediatrics and Pharmacology, Mazankowski Alberta Heart Institute, 462 Heritage Medical Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
26
|
Nader M. The SLMAP/Striatin complex: An emerging regulator of normal and abnormal cardiac excitation-contraction coupling. Eur J Pharmacol 2019; 858:172491. [PMID: 31233748 DOI: 10.1016/j.ejphar.2019.172491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/01/2022]
Abstract
The excitation-contraction (E-C) module involves a harmonized correspondence between the sarcolemma and the sarcoplasmic reticulum. This is provided by membrane proteins, which primarily shape the caveolae, the T-tubule/Sarcoplasmic reticulum (TT/SR) junction, and the intercalated discs (ICDs). Distortion of either one of these structures impairs myocardial contraction, and subsequently translates into cardiac failure. Thus, detailed studies on the molecular cues of the E-C module are becoming increasingly necessary to pharmacologically eradicate cardiac failure Herein we reviewed the organization of caveolae, TT/SR junctions, and the ICDs in the heart, with special attention to the Sarcolemma Membrane Associated Protein (SLMAP) and striatin (STRN) in cardiac membranes biology and cardiomyocyte contraction. We emphasized on their in vivo and in vitro signaling in cardiac function/dysfunction. SLMAP is a cardiac membrane protein that plays an important role in E-C coupling and the adrenergic response of the heart. Similarly, STRN is a dynamic protein that is also involved in cardiac E-C coupling and ICD-related cardiomyopathies. Both SLMAP and STRN are linked to cardiac conditions, including heart failure, and their role in cardiomyocyte function was elucidated in our laboratory. They interact together in a protein complex that holds therapeutic potentials for cardiac dysfunction. This review is the first of its kind to conceptualize the role of the SLMAP/STRN complex in cardiac function and failure. It provides in depth information on the signaling of these two proteins and projects their interaction as a novel therapeutic target for cardiac failure.
Collapse
Affiliation(s)
- Moni Nader
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, 11533, P.O. Box 50927, Saudi Arabia; Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
27
|
Zhang JJ, Wang LP, Li RC, Wang M, Huang ZH, Zhu M, Wang JX, Wang XJ, Wang SQ, Xu M. Abnormal expression of miR-331 leads to impaired heart function. Sci Bull (Beijing) 2019; 64:1011-1017. [PMID: 36659800 DOI: 10.1016/j.scib.2019.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/23/2019] [Accepted: 04/30/2019] [Indexed: 01/21/2023]
Abstract
MicroRNAs (miRNAs) play important roles in maintaining normal heart function. Abnormal expression of miR-331 has been observed in the hearts of patients with atrial fibrillation and Marfan syndrome. However, whether miR-331 regulates cardiac function under physiological and pathological conditions still remains unknown. In the present study, we investigated the function and underlying mechanisms of miR-331 in a pressure overload-induced heart failure model and miR-331 transgenic rat model. First, we found that the expression of miR-331-3p exhibited a 1.7-fold increase in hypertrophy compared with that in the sham group (P < 0.01), yet the expression of miR-331-5p remained unchanged. Furthermore, overexpression of miR-331 in cardiomyocytes and defective excitation-contraction (E-C) coupling efficiency were observed. Luciferase assays showed that miR-331-3p suppressed JPH2 expression by binding to the coding region of JPH2 mRNA. Finally, in the miR-331 transgenic rat model, JPH2 expression was suppressed at both the mRNA and protein levels in vivo, which resulted in impairment of both the E-C coupling efficiency of cardiomyocytes and systolic function of the heart. This finding mechanistically linked miR-331 to JPH2 downregulation and suggested an important role for the abnormal expression of miR-331 leading to the dysfunction of E-C coupling in heart failure.
Collapse
Affiliation(s)
- Jin-Jing Zhang
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Li-Peng Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Rong-Chang Li
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Meng Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zeng-Hui Huang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Zhu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Jia-Xing Wang
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xiu-Jie Wang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Qiang Wang
- State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China.
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China.
| |
Collapse
|
28
|
Brandenburg S, Pawlowitz J, Eikenbusch B, Peper J, Kohl T, Mitronova GY, Sossalla S, Hasenfuss G, Wehrens XH, Kohl P, Rog-Zielinska EA, Lehnart SE. Junctophilin-2 expression rescues atrial dysfunction through polyadic junctional membrane complex biogenesis. JCI Insight 2019; 4:127116. [PMID: 31217359 DOI: 10.1172/jci.insight.127116] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Atrial dysfunction is highly prevalent and associated with increased severity of heart failure. While rapid excitation-contraction coupling depends on axial junctions in atrial myocytes, the molecular basis of atrial loss of function remains unclear. We identified approximately 5-fold lower junctophilin-2 levels in atrial compared with ventricular tissue in mouse and human hearts. In atrial myocytes, this resulted in subcellular expression of large junctophilin-2 clusters at axial junctions, together with highly phosphorylated ryanodine receptor (RyR2) channels. To investigate the contribution of junctophilin-2 to atrial pathology in adult hearts, we developed a cardiomyocyte-selective junctophilin-2-knockdown model with 0 mortality. Junctophilin-2 knockdown in mice disrupted atrial RyR2 clustering and contractility without hypertrophy or interstitial fibrosis. In contrast, aortic pressure overload resulted in left atrial hypertrophy with decreased junctophilin-2 and RyR2 expression, disrupted axial junctions, and atrial fibrosis. Whereas pressure overload accrued atrial dysfunction and heart failure with 40% mortality, additional junctophilin-2 knockdown greatly exacerbated atrial dysfunction with 100% mortality. Strikingly, transgenic junctophilin-2 overexpression restored atrial contractility and survival through de novo biogenesis of polyadic junctional membrane complexes maintained after pressure overload. Our data show a central role of junctophilin-2 cluster disruption in atrial hypertrophy and identify transgenic augmentation of junctophilin-2 as a disease-mitigating rationale to improve atrial dysfunction and prevent heart failure deterioration.
Collapse
Affiliation(s)
- Sören Brandenburg
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan Pawlowitz
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Benjamin Eikenbusch
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Jonas Peper
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Tobias Kohl
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Gyuzel Y Mitronova
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samuel Sossalla
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Gerd Hasenfuss
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany
| | - Xander Ht Wehrens
- Cardiovascular Research Institute - Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Peter Kohl
- University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Eva A Rog-Zielinska
- University Heart Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Stephan E Lehnart
- Heart Research Center Göttingen, Department of Cardiology & Pneumology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Göttingen, Germany.,BioMET, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
29
|
Jiang J, Tang M, Huang Z, Chen L. Junctophilins emerge as novel therapeutic targets. J Cell Physiol 2019; 234:16933-16943. [DOI: 10.1002/jcp.28405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/25/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Jinyong Jiang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Mingzhu Tang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Zhen Huang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drugs Study University of South China Hengyang China
| |
Collapse
|
30
|
Jones PP, MacQuaide N, Louch WE. Dyadic Plasticity in Cardiomyocytes. Front Physiol 2018; 9:1773. [PMID: 30618792 PMCID: PMC6298195 DOI: 10.3389/fphys.2018.01773] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/23/2018] [Indexed: 11/13/2022] Open
Abstract
Contraction of cardiomyocytes is dependent on sub-cellular structures called dyads, where invaginations of the surface membrane (t-tubules) form functional junctions with the sarcoplasmic reticulum (SR). Within each dyad, Ca2+ entry through t-tubular L-type Ca2+ channels (LTCCs) elicits Ca2+ release from closely apposed Ryanodine Receptors (RyRs) in the SR membrane. The efficiency of this process is dependent on the density and macroscale arrangement of dyads, but also on the nanoscale organization of LTCCs and RyRs within them. We presently review accumulating data demonstrating the remarkable plasticity of these structures. Dyads are known to form gradually during development, with progressive assembly of both t-tubules and junctional SR terminals, and precise trafficking of LTCCs and RyRs. While dyads can exhibit compensatory remodeling when required, dyadic degradation is believed to promote impaired contractility and arrythmogenesis in cardiac disease. Recent data indicate that this plasticity of dyadic structure/function is dependent on the regulatory proteins junctophilin-2, amphiphysin-2 (BIN1), and caveolin-3, which critically arrange dyadic membranes while stabilizing the position and activity of LTCCs and RyRs. Indeed, emerging evidence indicates that clustering of both channels enables "coupled gating", implying that nanoscale localization and function are intimately linked, and may allow fine-tuning of LTCC-RyR crosstalk. We anticipate that improved understanding of dyadic plasticity will provide greater insight into the processes of cardiac compensation and decompensation, and new opportunities to target the basic mechanisms underlying heart disease.
Collapse
Affiliation(s)
- Peter P. Jones
- Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- HeartOtago, University of Otago, Dunedin, New Zealand
| | - Niall MacQuaide
- Institute of Cardiovascular Sciences, University of Glasgow, Glasgow, United Kingdom
- Clyde Biosciences, Glasgow, United Kingdom
| | - William E. Louch
- Institute for Experimental Medical Research, Oslo University Hospital, University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Guo A, Wang Y, Chen B, Wang Y, Yuan J, Zhang L, Hall D, Wu J, Shi Y, Zhu Q, Chen C, Thiel WH, Zhan X, Weiss RM, Zhan F, Musselman CA, Pufall M, Zhu W, Au KF, Hong J, Anderson ME, Grueter CE, Song LS. E-C coupling structural protein junctophilin-2 encodes a stress-adaptive transcription regulator. Science 2018; 362:science.aan3303. [PMID: 30409805 DOI: 10.1126/science.aan3303] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 05/10/2018] [Accepted: 10/24/2018] [Indexed: 11/02/2022]
Abstract
Junctophilin-2 (JP2) is a structural protein required for normal excitation-contraction (E-C) coupling. After cardiac stress, JP2 is cleaved by the calcium ion-dependent protease calpain, which disrupts the E-C coupling ultrastructural machinery and drives heart failure progression. We found that stress-induced proteolysis of JP2 liberates an N-terminal fragment (JP2NT) that translocates to the nucleus, binds to genomic DNA, and controls expression of a spectrum of genes in cardiomyocytes. Transgenic overexpression of JP2NT in mice modifies the transcriptional profile, resulting in attenuated pathological remodeling in response to cardiac stress. Conversely, loss of nuclear JP2NT function accelerates stress-induced development of hypertrophy and heart failure in mutant mice. These data reveal a self-protective mechanism in failing cardiomyocytes that transduce mechanical information (E-C uncoupling) into salutary transcriptional reprogramming in the stressed heart.
Collapse
Affiliation(s)
- Ang Guo
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yihui Wang
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,Department of Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Biyi Chen
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yunhao Wang
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jinxiang Yuan
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Liyang Zhang
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Duane Hall
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jennifer Wu
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yun Shi
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Qi Zhu
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Cheng Chen
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,Department of Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - William H Thiel
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Xin Zhan
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Robert M Weiss
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Fenghuang Zhan
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Miles Pufall
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Weizhong Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Kin Fai Au
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jiang Hong
- Department of Emergency Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Mark E Anderson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Chad E Grueter
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Long-Sheng Song
- Department of Internal Medicine, Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA. .,Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.,Iowa City Veterans Affairs Medical Center, Iowa City, IA 52242, USA
| |
Collapse
|
32
|
Galice S, Xie Y, Yang Y, Sato D, Bers DM. Size Matters: Ryanodine Receptor Cluster Size Affects Arrhythmogenic Sarcoplasmic Reticulum Calcium Release. J Am Heart Assoc 2018; 7:e008724. [PMID: 29929992 PMCID: PMC6064922 DOI: 10.1161/jaha.118.008724] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/16/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Ryanodine receptors (RyR) mediate sarcoplasmic reticulum calcium (Ca2+) release and influence myocyte Ca2+ homeostasis and arrhythmias. In cardiac myocytes, RyRs are found in clusters of various sizes and shapes, and RyR cluster size may critically influence normal and arrhythmogenic Ca2+ spark and wave formation. However, the actual RyR cluster sizes at specific Ca2+ spark sites have never been measured in the physiological setting. METHODS AND RESULTS Here we measured RyR cluster size and Ca2+ sparks simultaneously to assess how RyR cluster size influences Ca2+ sparks and sarcoplasmic reticulum Ca2+ leak. For small RyR cluster sizes (<50), Ca2+ spark frequency is very low but then increases dramatically at larger cluster sizes. In contrast, Ca2+ spark amplitude is nearly maximal even at relatively small RyR cluster size (≈10) and changes little at larger cluster size. These properties agreed with computational simulations of RyR gating within clusters. CONCLUSIONS Our study explains how this combination of properties may limit arrhythmogenic Ca2+ sparks and wave propagation (at many junctions) while preserving the efficacy and spatial synchronization of Ca2+-induced Ca2+-release during normal excitation-contraction coupling. However, variations in RyR cluster size among individual junctions and RyR sensitivity could exacerbate heterogeneity of local sarcoplasmic reticulum Ca2+ release and arrhythmogenesis under pathological conditions.
Collapse
Affiliation(s)
- Samuel Galice
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Yuanfang Xie
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Yi Yang
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Daisuke Sato
- Department of Pharmacology, University of California Davis, Davis, CA
| | - Donald M Bers
- Department of Pharmacology, University of California Davis, Davis, CA
| |
Collapse
|
33
|
Schobesberger S, Wright P, Tokar S, Bhargava A, Mansfield C, Glukhov AV, Poulet C, Buzuk A, Monszpart A, Sikkel M, Harding SE, Nikolaev VO, Lyon AR, Gorelik J. T-tubule remodelling disturbs localized β2-adrenergic signalling in rat ventricular myocytes during the progression of heart failure. Cardiovasc Res 2018; 113:770-782. [PMID: 28505272 PMCID: PMC5437368 DOI: 10.1093/cvr/cvx074] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/11/2017] [Indexed: 11/12/2022] Open
Abstract
Aims Cardiomyocyte β2-adrenergic receptor (β2AR) cyclic adenosine monophosphate (cAMP) signalling is regulated by the receptors' subcellular location within transverse tubules (T-tubules), via interaction with structural and regulatory proteins, which form a signalosome. In chronic heart failure (HF), β2ARs redistribute from T-tubules to the cell surface, which disrupts functional signalosomes and leads to diffuse cAMP signalling. However, the functional consequences of structural changes upon β2AR-cAMP signalling during progression from hypertrophy to advanced HF are unknown. Methods and results Rat left ventricular myocytes were isolated at 4-, 8-, and 16-week post-myocardial infarction (MI), β2ARs were stimulated either via whole-cell perfusion or locally through the nanopipette of the scanning ion conductance microscope. cAMP release was measured via a Förster Resonance Energy Transfer-based sensor Epac2-camps. Confocal imaging of di-8-ANNEPS-stained cells and immunoblotting were used to determine structural alterations. At 4-week post-MI, T-tubule regularity, density and junctophilin-2 (JPH2) expression were significantly decreased. The amplitude of local β2AR-mediated cAMP in T-tubules was reduced and cAMP diffused throughout the cytosol instead of being locally confined. This was accompanied by partial caveolin-3 (Cav-3) dissociation from the membrane. At 8-week post-MI, the β2AR-mediated cAMP response was observed at the T-tubules and the sarcolemma (crest). Finally, at 16-week post-MI, the whole cell β2AR-mediated cAMP signal was depressed due to adenylate cyclase dysfunction, while overall Cav-3 levels were significantly increased and a substantial portion of Cav-3 dissociated into the cytosol. Overexpression of JPH2 in failing cells in vitro or AAV9.SERCA2a gene therapy in vivo did not improve β2AR-mediated signal compartmentation or reduce cAMP diffusion. Conclusion Although changes in T-tubule structure and β2AR-mediated cAMP signalling are significant even at 4-week post-MI, progression to the HF phenotype is not linear. At 8-week post-MI the loss of β2AR-mediated cAMP is temporarily reversed. Complete disorganization of β2AR-mediated cAMP signalling due to changes in functional receptor localization and cellular structure occurs at 16-week post-MI.
Collapse
Affiliation(s)
- Sophie Schobesberger
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12 0NN, UK.,Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistraße, Hamburg D-20246, Germany
| | - Peter Wright
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Sergiy Tokar
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Anamika Bhargava
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12 0NN, UK.,Department of Biotechnology, Indian Institute of Technology Hyderabad, Ordnance Factory Estate, Yeddumailaram, 502205 Telangana, India
| | - Catherine Mansfield
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Alexey V Glukhov
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Claire Poulet
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Andrey Buzuk
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Aron Monszpart
- Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
| | - Markus Sikkel
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Sian E Harding
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Martinistraße, Hamburg D-20246, Germany
| | - Alexander R Lyon
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12 0NN, UK.,NIHR Cardiovascular Biomedical Research Unit, Department of Cardiology, Royal Brompton Hospital, Sydney Street, London SW3 6NP, UK
| | - Julia Gorelik
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College, Du Cane Road, London W12?0NN, UK
| |
Collapse
|
34
|
Highly variable contractile performance correlates with myocyte content in trabeculae from failing human hearts. Sci Rep 2018; 8:2957. [PMID: 29440728 PMCID: PMC5811450 DOI: 10.1038/s41598-018-21199-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is defined by compromised contractile function and is associated with changes in excitation-contraction (EC) coupling and cardiomyocyte organisation. Tissue level changes often include fibrosis, while changes within cardiomyocytes often affect structures critical to EC coupling, including the ryanodine receptor (RyR), the associated protein junctophilin-2 (JPH2) and the transverse tubular system architecture. Using a novel approach, we aimed to directly correlate the influence of structural alterations with force development in ventricular trabeculae from failing human hearts. Trabeculae were excised from explanted human hearts in end-stage failure and immediately subjected to force measurements. Following functional experiments, each trabecula was fixed, sectioned and immuno-stained for structural investigations. Peak stress was highly variable between trabeculae from both within and between failing hearts and was strongly correlated with the cross-sectional area occupied by myocytes (MCSA), rather than total trabecula cross-sectional area. At the cellular level, myocytes exhibited extensive microtubule densification which was linked via JPH2 to time-to-peak stress. Trabeculae fractional MCSA variability was much higher than that in adjacent free wall samples. Together, these findings identify several structural parameters implicated in functional impairment in human HF and highlight the structural variability of ventricular trabeculae which should be considered when interpreting functional data.
Collapse
|
35
|
Walker MA, Gurev V, Rice JJ, Greenstein JL, Winslow RL. Estimating the probabilities of rare arrhythmic events in multiscale computational models of cardiac cells and tissue. PLoS Comput Biol 2017; 13:e1005783. [PMID: 29145393 PMCID: PMC5689829 DOI: 10.1371/journal.pcbi.1005783] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/18/2017] [Indexed: 11/24/2022] Open
Abstract
Ectopic heartbeats can trigger reentrant arrhythmias, leading to ventricular fibrillation and sudden cardiac death. Such events have been attributed to perturbed Ca2+ handling in cardiac myocytes leading to spontaneous Ca2+ release and delayed afterdepolarizations (DADs). However, the ways in which perturbation of specific molecular mechanisms alters the probability of ectopic beats is not understood. We present a multiscale model of cardiac tissue incorporating a biophysically detailed three-dimensional model of the ventricular myocyte. This model reproduces realistic Ca2+ waves and DADs driven by stochastic Ca2+ release channel (RyR) gating and is used to study mechanisms of DAD variability. In agreement with previous experimental and modeling studies, key factors influencing the distribution of DAD amplitude and timing include cytosolic and sarcoplasmic reticulum Ca2+ concentrations, inwardly rectifying potassium current (IK1) density, and gap junction conductance. The cardiac tissue model is used to investigate how random RyR gating gives rise to probabilistic triggered activity in a one-dimensional myocyte tissue model. A novel spatial-average filtering method for estimating the probability of extreme (i.e. rare, high-amplitude) stochastic events from a limited set of spontaneous Ca2+ release profiles is presented. These events occur when randomly organized clusters of cells exhibit synchronized, high amplitude Ca2+ release flux. It is shown how reduced IK1 density and gap junction coupling, as observed in heart failure, increase the probability of extreme DADs by multiple orders of magnitude. This method enables prediction of arrhythmia likelihood and its modulation by alterations of other cellular mechanisms.
Collapse
Affiliation(s)
- Mark A. Walker
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Viatcheslav Gurev
- TJ Watson Research Center, IBM, Yorktown Heights, NY, United States of America
| | - John J. Rice
- TJ Watson Research Center, IBM, Yorktown Heights, NY, United States of America
| | - Joseph L. Greenstein
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Raimond L. Winslow
- Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
36
|
Munro ML, Jayasinghe I, Wang Q, Quick A, Wang W, Baddeley D, Wehrens XHT, Soeller C. Junctophilin-2 in the nanoscale organisation and functional signalling of ryanodine receptor clusters in cardiomyocytes. J Cell Sci 2016; 129:4388-4398. [PMID: 27802169 PMCID: PMC5201013 DOI: 10.1242/jcs.196873] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/14/2016] [Indexed: 11/20/2022] Open
Abstract
Signalling nanodomains requiring close contact between the plasma membrane and internal compartments, known as 'junctions', are fast communication hubs within excitable cells such as neurones and muscle. Here, we have examined two transgenic murine models probing the role of junctophilin-2, a membrane-tethering protein crucial for the formation and molecular organisation of sub-microscopic junctions in ventricular muscle cells of the heart. Quantitative single-molecule localisation microscopy showed that junctions in animals producing above-normal levels of junctophilin-2 were enlarged, allowing the re-organisation of the primary functional protein within it, the ryanodine receptor (RyR; in this paper, we use RyR to refer to the myocardial isoform RyR2). Although this change was associated with much enlarged RyR clusters that, due to their size, should be more excitable, functionally it caused a mild inhibition in the Ca2+ signalling output of the junctions (Ca2+ sparks). Analysis of the single-molecule densities of both RyR and junctophilin-2 revealed an ∼3-fold increase in the junctophilin-2 to RyR ratio. This molecular rearrangement is compatible with direct inhibition of RyR opening by junctophilin-2 to intrinsically stabilise the Ca2+ signalling properties of the junction and thus the contractile function of the cell.
Collapse
Affiliation(s)
- Michelle L Munro
- Department of Physiology, School of Medical Sciences, University of Auckland, 1023, New Zealand
| | - Izzy Jayasinghe
- School of Physics, University of Exeter, Exeter EX4 4QL, UK
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Qiongling Wang
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), and Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Ann Quick
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), and Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Wang
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), and Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - David Baddeley
- Department of Cell Biology, Yale University, New Haven, CT 06520, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Departments of Molecular Physiology and Biophysics, Medicine (Cardiology), and Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX 77030, USA
| | - Christian Soeller
- Department of Physiology, School of Medical Sciences, University of Auckland, 1023, New Zealand
- School of Physics, University of Exeter, Exeter EX4 4QL, UK
| |
Collapse
|
37
|
Zhou K, Hong T. Cardiac BIN1 (cBIN1) is a regulator of cardiac contractile function and an emerging biomarker of heart muscle health. SCIENCE CHINA-LIFE SCIENCES 2016; 60:257-263. [DOI: 10.1007/s11427-016-0249-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/06/2016] [Indexed: 12/01/2022]
|
38
|
Reynolds JO, Quick AP, Wang Q, Beavers DL, Philippen LE, Showell J, Barreto-Torres G, Thuerauf DJ, Doroudgar S, Glembotski CC, Wehrens XHT. Junctophilin-2 gene therapy rescues heart failure by normalizing RyR2-mediated Ca 2+ release. Int J Cardiol 2016; 225:371-380. [PMID: 27760414 DOI: 10.1016/j.ijcard.2016.10.021] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 11/27/2022]
Abstract
BACKGROUND Junctophilin-2 (JPH2) is the primary structural protein for the coupling of transverse (T)-tubule associated cardiac L-type Ca channels and type-2 ryanodine receptors on the sarcoplasmic reticulum within junctional membrane complexes (JMCs) in cardiomyocytes. Effective signaling between these channels ensures adequate Ca-induced Ca release required for normal cardiac contractility. Disruption of JMC subcellular domains, a common feature of failing hearts, has been attributed to JPH2 downregulation. Here, we tested the hypothesis that adeno-associated virus type 9 (AAV9) mediated overexpression of JPH2 could halt the development of heart failure in a mouse model of transverse aortic constriction (TAC). METHODS AND RESULTS Following TAC, a progressive decrease in ejection fraction was paralleled by a progressive decrease of cardiac JPH2 levels. AAV9-mediated expression of JPH2 rescued cardiac contractility in mice subjected to TAC. AAV9-JPH2 also preserved T-tubule structure. Moreover, the Ca2+ spark frequency was reduced and the Ca2+ transient amplitude was increased in AAV9-JPH2 mice following TAC, consistent with JPH2-mediated normalization of SR Ca2+ handling. CONCLUSIONS This study demonstrates that AAV9-mediated JPH2 gene therapy maintained cardiac function in mice with early stage heart failure. Moreover, restoration of JPH2 levels prevented loss of T-tubules and suppressed abnormal SR Ca2+ leak associated with contractile failure following TAC. These findings suggest that targeting JPH2 might be an attractive therapeutic approach for treating pathological cardiac remodeling during heart failure.
Collapse
Affiliation(s)
- Julia O Reynolds
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Dept. of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ann P Quick
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Dept. of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qiongling Wang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Dept. of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - David L Beavers
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Leonne E Philippen
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Dept. of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jordan Showell
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Dept. of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Giselle Barreto-Torres
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Dept. of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna J Thuerauf
- San Diego State University Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Shirin Doroudgar
- Department of Cardiology, Angiology, and Pneumology, University Hospital Heidelberg, Innere Medizin III, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, 69120, Heidelberg, Germany
| | - Christopher C Glembotski
- San Diego State University Heart Institute and Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Dept. of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX 77030, USA; Dept. of Medicine/Cardiology, Baylor College of Medicine, Houston, TX 77030, USA; Dept. of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
39
|
Walker MA, Williams GSB, Kohl T, Lehnart SE, Jafri MS, Greenstein JL, Lederer WJ, Winslow RL. Superresolution modeling of calcium release in the heart. Biophys J 2016; 107:3018-3029. [PMID: 25517166 PMCID: PMC4269784 DOI: 10.1016/j.bpj.2014.11.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/20/2014] [Accepted: 11/04/2014] [Indexed: 12/29/2022] Open
Abstract
Stable calcium-induced calcium release (CICR) is critical for maintaining normal cellular contraction during cardiac excitation-contraction coupling. The fundamental element of CICR in the heart is the calcium (Ca2+) spark, which arises from a cluster of ryanodine receptors (RyR). Opening of these RyR clusters is triggered to produce a local, regenerative release of Ca2+ from the sarcoplasmic reticulum (SR). The Ca2+ leak out of the SR is an important process for cellular Ca2+ management, and it is critically influenced by spark fidelity, i.e., the probability that a spontaneous RyR opening triggers a Ca2+ spark. Here, we present a detailed, three-dimensional model of a cardiac Ca2+ release unit that incorporates diffusion, intracellular buffering systems, and stochastically gated ion channels. The model exhibits realistic Ca2+ sparks and robust Ca2+ spark termination across a wide range of geometries and conditions. Furthermore, the model captures the details of Ca2+ spark and nonspark-based SR Ca2+ leak, and it produces normal excitation-contraction coupling gain. We show that SR luminal Ca2+-dependent regulation of the RyR is not critical for spark termination, but it can explain the exponential rise in the SR Ca2+ leak-load relationship demonstrated in previous experimental work. Perturbations to subspace dimensions, which have been observed in experimental models of disease, strongly alter Ca2+ spark dynamics. In addition, we find that the structure of RyR clusters also influences Ca2+ release properties due to variations in inter-RyR coupling via local subspace Ca2+ concentration ([Ca2+]ss). These results are illustrated for RyR clusters based on super-resolution stimulated emission depletion microscopy. Finally, we present a believed-novel approach by which the spark fidelity of a RyR cluster can be predicted from structural information of the cluster using the maximum eigenvalue of its adjacency matrix. These results provide critical insights into CICR dynamics in heart, under normal and pathological conditions.
Collapse
Affiliation(s)
- Mark A Walker
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - George S B Williams
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Tobias Kohl
- Heart Research Center Goettingen, Clinic of Cardiology and Pulmonology, University Medical Center Goettingen, Goettingen, Germany
| | - Stephan E Lehnart
- Heart Research Center Goettingen, Clinic of Cardiology and Pulmonology, University Medical Center Goettingen, Goettingen, Germany
| | - M Saleet Jafri
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia
| | - Joseph L Greenstein
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - W J Lederer
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Raimond L Winslow
- Institute for Computational Medicine, Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland.
| |
Collapse
|
40
|
Roe AT, Frisk M, Louch WE. Targeting cardiomyocyte Ca2+ homeostasis in heart failure. Curr Pharm Des 2015; 21:431-48. [PMID: 25483944 PMCID: PMC4475738 DOI: 10.2174/138161282104141204124129] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 08/06/2014] [Indexed: 12/19/2022]
Abstract
Improved treatments for heart failure patients will require the development of novel therapeutic strategies that target basal disease
mechanisms. Disrupted cardiomyocyte Ca2+ homeostasis is recognized as a major contributor to the heart failure phenotype, as it
plays a key role in systolic and diastolic dysfunction, arrhythmogenesis, and hypertrophy and apoptosis signaling. In this review, we outline
existing knowledge of the involvement of Ca2+ homeostasis in these deficits, and identify four promising targets for therapeutic intervention:
the sarcoplasmic reticulum Ca2+ ATPase, the Na+-Ca2+ exchanger, the ryanodine receptor, and t-tubule structure. We discuss
experimental data indicating the applicability of these targets that has led to recent and ongoing clinical trials, and suggest future therapeutic
approaches.
Collapse
Affiliation(s)
| | | | - William E Louch
- Institute for Experimental Medical Research, Kirkeveien 166, 4.etg. Bygg 7, Oslo University Hospital Ullevål, 0407 Oslo, Norway.
| |
Collapse
|
41
|
Li H, Lichter JG, Seidel T, Tomaselli GF, Bridge JHB, Sachse FB. Cardiac Resynchronization Therapy Reduces Subcellular Heterogeneity of Ryanodine Receptors, T-Tubules, and Ca2+ Sparks Produced by Dyssynchronous Heart Failure. Circ Heart Fail 2015; 8:1105-14. [PMID: 26294422 DOI: 10.1161/circheartfailure.115.002352] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/17/2015] [Indexed: 11/16/2022]
Abstract
BACKGROUND Cardiac resynchronization therapy (CRT) is a major advance for treatment of patients with dyssynchronous heart failure (DHF). However, our understanding of DHF-associated remodeling of subcellular structure and function and their restoration after CRT remains incomplete. METHODS AND RESULTS We investigated subcellular heterogeneity of remodeling of structures and proteins associated with excitation-contraction coupling in cardiomyocytes in DHF and after CRT. Three-dimensional confocal microscopy revealed subcellular heterogeneity of ryanodine receptor (RyR) density and the transverse tubular system (t-system) in a canine model of DHF. RyR density at the ends of lateral left ventricular cardiomyocytes was higher than that in cell centers, whereas the t-system was depleted at cell ends. In anterior left ventricular cardiomyocytes, however, we found a similar degree of heterogeneous RyR remodeling, despite preserved t-system. Synchronous heart failure was associated with marginal heterogeneity of RyR density. We used rapid scanning confocal microscopy to investigate effects of heterogeneous structural remodeling on calcium signaling. In DHF, diastolic Ca(2+) spark density was smaller at cell ends versus centers. After CRT, subcellular heterogeneity of structures and function was reduced. CONCLUSIONS RyR density exhibits remarkable subcellular heterogeneity in DHF. RyR remodeling occurred in lateral and anterior cardiomyocytes, but remodeling of t-system was confined to lateral myocytes. These findings indicate that different mechanisms underlie remodeling of RyRs and t-system. Furthermore, we suggest that ventricular dyssynchrony exacerbates subcellular remodeling in heart failure. CRT efficiently reduced subcellular heterogeneity. These results will help to explain remodeling of excitation-contraction coupling in disease and restoration after CRT.
Collapse
Affiliation(s)
- Hui Li
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute (H.L., J.G.L., T.S., J.H.B., F.B.S.), and Department of Bioengineering (J.G.L., F.B.S.), University of Utah, Salt Lake City; and Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (G.F.T.)
| | - Justin G Lichter
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute (H.L., J.G.L., T.S., J.H.B., F.B.S.), and Department of Bioengineering (J.G.L., F.B.S.), University of Utah, Salt Lake City; and Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (G.F.T.)
| | - Thomas Seidel
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute (H.L., J.G.L., T.S., J.H.B., F.B.S.), and Department of Bioengineering (J.G.L., F.B.S.), University of Utah, Salt Lake City; and Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (G.F.T.)
| | - Gordon F Tomaselli
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute (H.L., J.G.L., T.S., J.H.B., F.B.S.), and Department of Bioengineering (J.G.L., F.B.S.), University of Utah, Salt Lake City; and Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (G.F.T.)
| | - John H B Bridge
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute (H.L., J.G.L., T.S., J.H.B., F.B.S.), and Department of Bioengineering (J.G.L., F.B.S.), University of Utah, Salt Lake City; and Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (G.F.T.)
| | - Frank B Sachse
- From the Nora Eccles Harrison Cardiovascular Research and Training Institute (H.L., J.G.L., T.S., J.H.B., F.B.S.), and Department of Bioengineering (J.G.L., F.B.S.), University of Utah, Salt Lake City; and Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD (G.F.T.).
| |
Collapse
|
42
|
Chen B, Zhang C, Guo A, Song LS. In situ single photon confocal imaging of cardiomyocyte T-tubule system from Langendorff-perfused hearts. Front Physiol 2015; 6:134. [PMID: 25999861 PMCID: PMC4422017 DOI: 10.3389/fphys.2015.00134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/15/2015] [Indexed: 12/24/2022] Open
Abstract
Transverse tubules (T-tubules) are orderly invaginations of the sarcolemma in mammalian cardiomyocytes. The integrity of T-tubule architecture is critical for cardiac excitation–contraction coupling function. T-tubule remodeling is recognized as a key player in cardiac dysfunction. Early studies on T-tubule structure were based on electron microscopy, which uncovered important information about the T-tubule architecture. The advent of fluorescent membrane probes allowed the application of confocal microscopy to investigations of T-tubule structure. Studies have now been extended beyond single cardiomyocytes to examine the T-tubule network in intact hearts through in situ confocal imaging of Langendorff-perfused hearts. This technique has allowed visualization of T-tubule organization in their natural habitat, avoiding the damage induced by isolation of cardiomyocytes. Additionally, it is possible to obtain T-tubule images in different subepicardial regions in a single intact heart. We review how this state-of-the-art imaging technique has provided important mechanistic insights into maturation of T-tubules in developing hearts and defined the role of T-tubule remodeling in development and progression of heart failure.
Collapse
Affiliation(s)
- Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - Caimei Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - Ang Guo
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| | - Long-Sheng Song
- Division of Cardiovascular Medicine, Department of Internal Medicine, Francois M. Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
43
|
Takeshima H, Hoshijima M, Song LS. Ca²⁺ microdomains organized by junctophilins. Cell Calcium 2015; 58:349-56. [PMID: 25659516 PMCID: PMC5159448 DOI: 10.1016/j.ceca.2015.01.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/15/2015] [Accepted: 01/16/2015] [Indexed: 11/21/2022]
Abstract
Excitable cells typically possess junctional membrane complexes (JMCs) constructed by the plasma membrane and the endo/sarcoplasmic reticulum (ER/SR) for channel crosstalk. These JMCs are termed triads in skeletal muscle, dyads in cardiac muscle, peripheral couplings in smooth and developing striated muscles, and subsurface cisterns in neurons. Junctophilin subtypes contribute to the formation and maintenance of JMCs by serving as a physical bridge between the plasma membrane and ER/SR membrane in different cell types. In muscle cells, junctophilin deficiency prevents JMC formation and functional crosstalk between cell-surface Ca2+ channels and ER/SR Ca2+ release channels. Human genetic mutations in junctophilin subtypes are linked to congenital hypertrophic cardiomyopathy and neurodegenerative diseases. Furthermore, growing evidence suggests that dysregulation of junctophilins induces pathological alterations in skeletal and cardiac muscle.
Collapse
Affiliation(s)
- Hiroshi Takeshima
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| | - Masahiko Hoshijima
- Department of Medicine and Center for Research in Biological Systems, University of California, San Diego, CA 92093, USA.
| | - Long-Sheng Song
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
44
|
Gal D, Vandevelde W, Cheng H, Sipido KR. Cardiovascular research as a forum for publications from China: present, past, and future. Cardiovasc Res 2014; 104:383-7. [PMID: 25388663 DOI: 10.1093/cvr/cvu238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Diane Gal
- Department of Cardiovascular Sciences, Division of Experimental Cardiology, KU Leuven, Campus Gasthuisberg O/N1 704, Herestraat 49, Leuven B-3000, Belgium
| | - Wouter Vandevelde
- Department of Cardiovascular Sciences, Division of Experimental Cardiology, KU Leuven, Campus Gasthuisberg O/N1 704, Herestraat 49, Leuven B-3000, Belgium
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Karin R Sipido
- Department of Cardiovascular Sciences, Division of Experimental Cardiology, KU Leuven, Campus Gasthuisberg O/N1 704, Herestraat 49, Leuven B-3000, Belgium
| |
Collapse
|
45
|
Pinali C, Kitmitto A. Serial block face scanning electron microscopy for the study of cardiac muscle ultrastructure at nanoscale resolutions. J Mol Cell Cardiol 2014; 76:1-11. [PMID: 25149127 DOI: 10.1016/j.yjmcc.2014.08.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/31/2014] [Accepted: 08/12/2014] [Indexed: 12/28/2022]
Abstract
Electron microscopy techniques have made a significant contribution towards understanding muscle physiology since the 1950s. Subsequent advances in hardware and software have led to major breakthroughs in terms of image resolution as well as the ability to generate three-dimensional (3D) data essential for linking structure to function and dysfunction. In this methodological review we consider the application of a relatively new technique, serial block face scanning electron microscopy (SBF-SEM), for the study of cardiac muscle morphology. Employing SBF-SEM we have generated 3D data for cardiac myocytes within the myocardium with a voxel size of ~15 nm in the X-Y plane and 50 nm in the Z-direction. We describe how SBF-SEM can be used in conjunction with selective staining techniques to reveal the 3D cellular organisation and the relationship between the t-tubule (t-t) and sarcoplasmic reticulum (SR) networks. These methods describe how SBF-SEM can be used to provide qualitative data to investigate the organisation of the dyad, a specialised calcium microdomain formed between the t-ts and the junctional portion of the SR (jSR). We further describe how image analysis methods may be applied to interrogate the 3D volumes to provide quantitative data such as the volume of the cell occupied by the t-t and SR membranes and the volumes and surface area of jSR patches. We consider the strengths and weaknesses of the SBF-SEM technique, pitfalls in sample preparation together with tips and methods for image analysis. By providing a 'big picture' view at high resolutions, in comparison to conventional confocal microscopy, SBF-SEM represents a paradigm shift for imaging cellular networks in their native environment.
Collapse
Affiliation(s)
- Christian Pinali
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK
| | - Ashraf Kitmitto
- Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, M13 9NT, UK.
| |
Collapse
|
46
|
Overexpression of junctophilin-2 does not enhance baseline function but attenuates heart failure development after cardiac stress. Proc Natl Acad Sci U S A 2014; 111:12240-5. [PMID: 25092313 DOI: 10.1073/pnas.1412729111] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Heart failure is accompanied by a loss of the orderly disposition of transverse (T)-tubules and a decrease of their associations with the junctional sarcoplasmic reticulum (jSR). Junctophilin-2 (JP2) is a structural protein responsible for jSR/T-tubule docking. Animal models of cardiac stresses demonstrate that down-regulation of JP2 contributes to T-tubule disorganization, loss of excitation-contraction coupling, and heart failure development. Our objective was to determine whether JP2 overexpression attenuates stress-induced T-tubule disorganization and protects against heart failure progression. We therefore generated transgenic mice with cardiac-specific JP2 overexpression (JP2-OE). Baseline cardiac function and Ca(2+) handling properties were similar between JP2-OE and control mice. However, JP2-OE mice displayed a significant increase in the junctional coupling area between T-tubules and the SR and an elevated expression of the Na(+)/Ca(2+) exchanger, although other excitation-contraction coupling protein levels were not significantly changed. Despite similar cardiac function at baseline, overexpression of JP2 provided significantly protective benefits after pressure overload. This was accompanied by a decreased percentage of surviving mice that developed heart failure, as well as preservation of T-tubule network integrity in both the left and right ventricles. Taken together, these data suggest that strategies to maintain JP2 levels can prevent the progression from hypertrophy to heart failure.
Collapse
|
47
|
Beavers DL, Landstrom AP, Chiang DY, Wehrens XHT. Emerging roles of junctophilin-2 in the heart and implications for cardiac diseases. Cardiovasc Res 2014; 103:198-205. [PMID: 24935431 DOI: 10.1093/cvr/cvu151] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiomyocytes rely on a highly specialized subcellular architecture to maintain normal cardiac function. In a little over a decade, junctophilin-2 (JPH2) has become recognized as a cardiac structural protein critical in forming junctional membrane complexes (JMCs), which are subcellular domains essential for excitation-contraction coupling within the heart. While initial studies described the structure of JPH2 and its role in anchoring junctional sarcoplasmic reticulum and transverse-tubule (T-tubule) membrane invaginations, recent research has an expanded role of JPH2 in JMC structure and function. For example, JPH2 is necessary for the development of postnatal T-tubule in mammals. It is also critical for the maintenance of the complex JMC architecture and stabilization of local ion channels in mature cardiomyocytes. Loss of this function by mutations or down-regulation of protein expression has been linked to hypertrophic cardiomyopathy, arrhythmias, and progression of disease in failing hearts. In this review, we summarize current views on the roles of JPH2 within the heart and how JPH2 dysregulation may contribute to a variety of cardiac diseases.
Collapse
Affiliation(s)
- David L Beavers
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA
| | - Andrew P Landstrom
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - David Y Chiang
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA
| | - Xander H T Wehrens
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA Deptartment of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
48
|
Landstrom AP, Beavers DL, Wehrens XHT. The junctophilin family of proteins: from bench to bedside. Trends Mol Med 2014; 20:353-62. [PMID: 24636942 PMCID: PMC4041816 DOI: 10.1016/j.molmed.2014.02.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/10/2014] [Accepted: 02/14/2014] [Indexed: 12/25/2022]
Abstract
Excitable tissues rely on junctional membrane complexes to couple cell surface signals to intracellular channels. The junctophilins have emerged as a family of proteins critical in coordinating the maturation and maintenance of this cellular ultrastructure. Within skeletal and cardiac muscle, junctophilin 1 and junctophilin 2, respectively, couple sarcolemmal and intracellular calcium channels. In neuronal tissue, junctophilin 3 and junctophilin 4 may have an emerging role in coupling membrane neurotransmitter receptors and intracellular calcium channels. These important physiological roles are highlighted by the pathophysiology which results when these proteins are perturbed, and a growing body of literature has associated junctophilins with the pathogenesis of human disease.
Collapse
Affiliation(s)
- Andrew P Landstrom
- Department of Pediatrics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - David L Beavers
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA; Department of Medicine (Cardiology), Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
49
|
Chen B, Guo A, Zhang C, Chen R, Zhu Y, Hong J, Kutschke W, Zimmerman K, Weiss RM, Zingman L, Anderson ME, Wehrens XHT, Song LS. Critical roles of junctophilin-2 in T-tubule and excitation-contraction coupling maturation during postnatal development. Cardiovasc Res 2013; 100:54-62. [PMID: 23860812 DOI: 10.1093/cvr/cvt180] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
AIMS Emerging evidence indicates a critical role for junctophilin-2 (JP2) in T-tubule integrity and assembly of cardiac dyads in adult ventricular myocytes. In the postnatal stage, one of the critical features of myocyte maturation is development of the T-tubule system, though the mechanisms remain poorly understood. In this study, we aim to determine whether JP2 is required for normal cardiac T-tubule maturation. METHODS AND RESULTS Using in situ confocal imaging of intact murine hearts, we found T-tubules were absent in both left- and right-ventricular myocytes at postnatal Day 8 and did not appear until Day 10. Quantification of T-tubule structural integrity using the T-tubule power (TT(power)) index revealed a progressive increase in TT(power) between postnatal Days 10 and 19. By postnatal Day 19, TT(power) was similar to that in adult murine cardiomyocytes, indicative of a nearly matured T-tubule network. JP2 levels increased dramatically during development, reaching levels observed in adult hearts by postnatal Day 14. Deficiency of JP2, using a mouse model in which a JP2-specific shRNA is expressed during embryonic development, severely impaired T-tubule maturation, with equivalent decreases in the left- and right-ventricular TT(power). We also detected a gradual increase in the density of transverse but not longitudinal tubules during development, and JP2 deficiency abolished the increase in the density of transverse elements. Alterations in T-tubules caused significant reduction in Ca(2+) transient amplitude and marked increase in Ca(2+) release dyssynchrony, Ca(2+) alternans, and spontaneous Ca(2+) waves, leading to contractile failure. CONCLUSION Our data identify a critical role for JP2 in T-tubule and excitation-contraction coupling maturation during development.
Collapse
Affiliation(s)
- Biyi Chen
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Iowa Carver, College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Morphogenesis of T-tubules in heart cells: the role of junctophilin-2. SCIENCE CHINA-LIFE SCIENCES 2013; 56:647-52. [PMID: 23749380 DOI: 10.1007/s11427-013-4490-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 04/28/2013] [Indexed: 11/27/2022]
Abstract
The T-tubule (TT) system forms the structural basis for excitation-contraction coupling in heart and muscle cells. The morphogenesis of the TT system is a key step in the maturation of heart cells because it does not exist in neonatal cardiomyocytes. In the present study, we quantified the morphological changes in TTs during heart cell maturation and investigated the role of junctophilin-2 (JP2), a protein known to anchor the sarcoplasmic reticulum (SR) to TT, in changes to TT morphological parameters. Analysis of confocal images showed that the transverse elements of TTs increased, while longitudinal elements decreased during the maturation of TTs. Fourier transform analysis showed that the power of ∼2 μm spatial components increased with cardiomyocytes maturation. These changes were preceded by increased expression of JP2, and were reversed by JP2 knockdown. These findings indicate that JP2 is required for the morphogenesis of TTs during heart development.
Collapse
|