1
|
Kong C, Guo Z, Liu F, Tang N, Wang M, Yang D, Li C, Yang Z, Ma Y, Wang P, Tang Q. Triad3A-Mediated K48-Linked ubiquitination and degradation of TLR9 impairs mitochondrial bioenergetics and exacerbates diabetic cardiomyopathy. J Adv Res 2024; 61:65-81. [PMID: 37625569 PMCID: PMC11258663 DOI: 10.1016/j.jare.2023.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/02/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023] Open
Abstract
INTRODUCTION Targeted protein degradation represents a promising therapeutic approach, while diabetic cardiomyopathy (DCM) arises as a consequence of aberrant insulin secretion and impaired glucose and lipid metabolism in the heart.. OBJECTIVES Considering that the Toll-like receptor 9 (TLR9) signaling pathway plays a pivotal role in regulating energy metabolism, safeguarding cardiomyocytes, and influencing glucose uptake, the primary objective of this study was to investigate the impact of TLR9 on diabetic cardiomyopathy (DCM) and elucidate its underlying mechanism. METHODS Mouse model of DCM was established using intraperitoneal injection of STZ, and mice were transfected with adeno-associated virus serotype 9-TLR9 (AAV9-TLR9) to assess the role of TLR9 in DCM. To explore the mechanism of TLR9 in regulating DCM disease progression, we conducted interactome analysis and employed multiple molecular approaches. RESULTS Our study revealed a significant correlation between TLR9 expression and mouse DCM. TLR9 overexpression markedly mitigated cardiac dysfunction, myocardial fibrosis, oxidative stress, and apoptosis in DCM, while inflammation levels remained relatively unaffected. Mechanistically, TLR9 overexpression positively modulated mitochondrial bioenergetics and activated the AMPK-PGC1a signaling pathway. Furthermore, we identified Triad3A as an interacting protein that facilitated TLR9's proteasomal degradation through K48-linked ubiquitination. Inhibiting Triad3A expression improved cardiac function and pathological changes in DCM by enhancing TLR9 activity. CONCLUSIONS The findings of this study highlight the critical role of TLR9 in maintaining cardiac function and mitigating pathological alterations in diabetic cardiomyopathy. Triad3A-mediated regulation of TLR9 expression and function has significant implications for understanding the pathogenesis of DCM. Targeting TLR9 and its interactions with Triad3A may hold promise for the development of novel therapeutic strategies for diabetic cardiomyopathy. Further research is warranted to fully explore the therapeutic potential of TLR9 modulation in the context of cardiovascular diseases.
Collapse
Affiliation(s)
- Chunyan Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Zhen Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Fangyuan Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Nan Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Mingyu Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Dan Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Chenfei Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Zheng Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Yulan Ma
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Pan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Qizhu Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| |
Collapse
|
2
|
Li L, Du J, Liu S, Yang R, Xu X, Yang Y, Ma X, Li G, Liu S, Li G, Liang S. The potential role of CpG oligodeoxynucleotides on diabetic cardiac autonomic neuropathy mediated by P2Y12 receptor in rat stellate ganglia. Int Immunopharmacol 2023; 119:110044. [PMID: 37264553 DOI: 10.1016/j.intimp.2023.110044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/11/2023] [Accepted: 03/13/2023] [Indexed: 06/03/2023]
Abstract
Cardiac autonomic neuropathy has a high prevalence in type 2 diabetes, which increases the risk of cardiovascular system disorders. CpG oligodeoxynucleotide (CpG-ODN), a Toll-like receptor 9 (TLR9) ligand, has been shown to have cardioprotection and cellular protection. Our previous work showed that P2Y12 in stellate ganglia (SG) is involved in the process of diabetic cardiac autonomic neuropathy (DCAN). Here, we aim to investigate whether CpG-ODN 1826 plays a protective role in DCAN and whether this beneficial protection involves regulation of the P2Y12-mediated cardiac sympathetic injury. Our results revealed that CpG-ODN 1826 activated TLR9 receptor, improved the abnormal blood pressure (BP), heart rate (HR), heart rate variability (HRV) and sympathetic nerve discharge (SND) activity in diabetic rats and reduced the up-regulated NF-κB, P2Y12 receptor, TNF-α and IL-1β in SG. Meanwhile, CpG-ODN 1826 significantly decreased the elevated ATP, nuclear receptor coactivator 4 (NCOA4), iron, ROS and MDA levels and increased GPX4 and GSH levels. In addition, CpG-ODN 1826 contributes to maintain normalization of mitochondrial structure in SG. Overall, CpG-ODN 1826 alleviates the sympathetic excitation and abnormal neuron-glial signal communication via activating TLR9 receptors to achieve a balance of autonomic activity and relieve the DCAN in rats. The mechanism may involve the regulation of P2Y12 receptor in SG by reducing ATP release and NF-κB expression, which counteract neuroinflammation and ferroptosis mediated by activated P2Y12 in SG.
Collapse
Affiliation(s)
- Lin Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Junpei Du
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Shipan Liu
- Undergraduate Student at Class 2103, First Clinical Medical College of Nanchang University, Nanchang 330006, PR China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Yuxin Yang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Xiaoqian Ma
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Guilin Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Shuangmei Liu
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Guodong Li
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Medical School of Nanchang University, Nanchang 330006, PR China; Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
3
|
ElKhatib MAW, Isse FA, El-Kadi AOS. Effect of inflammation on cytochrome P450-mediated arachidonic acid metabolism and the consequences on cardiac hypertrophy. Drug Metab Rev 2022; 55:50-74. [PMID: 36573379 DOI: 10.1080/03602532.2022.2162075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The incidence of heart failure (HF) is generally preceded by cardiac hypertrophy (CH), which is the enlargement of cardiac myocytes in response to stress. During CH, the metabolism of arachidonic acid (AA), which is present in the cell membrane phospholipids, is modulated. Metabolism of AA gives rise to hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) via cytochrome P450 (CYP) ω-hydroxylases and CYP epoxygenases, respectively. A plethora of studies demonstrated the involvement of CYP-mediated AA metabolites in the pathogenesis of CH. Also, inflammation is known to be a characteristic hallmark of CH. In this review, our aim is to highlight the impact of inflammation on CYP-derived AA metabolites and CH. Inflammation is shown to modulate the expression of various CYP ω-hydroxylases and CYP epoxygenases and their respective metabolites in the heart. In general, HETEs such as 20-HETE and mid-chain HETEs are pro-inflammatory, while EETs are characterized by their anti-inflammatory and cardioprotective properties. Several mechanisms are implicated in inflammation-induced CH, including the modulation of NF-κB and MAPK. This review demonstrated the inflammatory modulation of cardiac CYPs and their metabolites in the context of CH and the anti-inflammatory strategies that can be employed in the treatment of CH and HF.
Collapse
Affiliation(s)
| | - Fadumo Ahmed Isse
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
4
|
Potential effect of novel thiadiazole derivatives against radiation induced inflammation with low cardiovascular risk in rats. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02948-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractThe aim of the present study is to explore new selective anti-inflammatory compounds with low cardiovascular risk. Twelve thiadiazole derivatives incorporating different amino acid moieties were newly synthesized (4–15) as potential anti-inflammatory agents with low cardiovascular risks through dual COX-2/MPO inhibition. Compounds were initially screened for their anti-inflammatory effect by assay of COX-2, the most potent (4–6, 8) were further tested for COX-1 inhibition, myeloperoxidase MPO activity as well as total nitric oxide content NO in heart of irradiated rats. Cardiac toxicity potential was evaluated by assay of creatine kinase-MB (CK-MB), troponin-I (Tn-I) and lactate dehydrogenase (LDH). Celcoxcib was used as reference drug. S-(5-((4-Methoxybenzylidene)amino)-2,3-dihydro-1,3,4-thiadiazol-2-yl)2-amino propanethioate (5) was the most potent anti-inflammatory with the least cardiotoxicity effect. It exhibited IC50 0.09 µM on COX-2 inhibition with very low activity on COX-1. Troponin I was elevated by 11% using compound 5 in non-irradiated rats. Moreover, compound (5) showed 73% reduction in MPO level. Results were supported by molecular docking into the active sites of COX-2 and MPO enzymes to have more insights about the possible dual inhibition of compound 5 of both enzymes.
Collapse
|
5
|
Saber MM, Monir N, Awad AS, Elsherbiny ME, Zaki HF. TLR9: A friend or a foe. Life Sci 2022; 307:120874. [PMID: 35963302 DOI: 10.1016/j.lfs.2022.120874] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
The innate immune system is a primary protective line in our body. It confers its protection through different pattern recognition receptors (PRRs), especially toll like receptors (TLRs). Toll like receptor 9 (TLR9) is an intracellular TLR, expressed in different immunological and non-immunological cells. Release of cellular components, such as proteins, nucleotides, and DNA confers a beneficial inflammatory response and maintains homeostasis for removing cellular debris during normal physiological conditions. However, during pathological cellular damage and stress signals, engagement between mtDNA and TLR9 acts as an alarm for starting inflammatory and autoimmune disorders. The controversial role of TLR9 in different diseases baffled scientists if it has a protective or deleterious effect after activation during insults. Targeting the immune system, especially the TLR9 needs further investigation to provide a therapeutic strategy to control inflammation and autoimmune disorders.
Collapse
Affiliation(s)
- Mona M Saber
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt.
| | - Nada Monir
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Azza S Awad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Marwa E Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Nemska S, Gassmann M, Bang ML, Frossard N, Tavakoli R. Antagonizing the CX3CR1 Receptor Markedly Reduces Development of Cardiac Hypertrophy After Transverse Aortic Constriction in Mice. J Cardiovasc Pharmacol 2021; 78:792-801. [PMID: 34882111 DOI: 10.1097/fjc.0000000000001130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
ABSTRACT Left-ventricular hypertrophy, characterized by cardiomyocyte hypertrophy, interstitial cell proliferation, and immune cell infiltration, is a high risk factor for heart failure and death. Chemokines interacting with G protein-coupled chemokine receptors probably play a role in left-ventricular hypertrophy development by promoting recruitment of activated leukocytes and modulating left-ventricular remodeling. Using the minimally invasive model of transverse aortic constriction in mice, we demonstrated that a variety of chemokine and chemokine receptor messenger Ribonucleic Acid are overexpressed in the early and late phase of hypertrophy progression. Among the chemokine receptors, Cx3cr1 and Ccr2 were most strongly overexpressed and were significantly upregulated at 3, 7, and 14 days after transverse aortic constriction. Ligands of CX3CR1 (Cx3cl1) and CCR2 (Ccl2, Ccl7, Ccl12) were significantly overexpressed in the left ventricle at the early stages after mechanical pressure overload. Pharmacological inhibition of CX3CR1 signaling using the antagonist AZD8797 led to a significant reduction of hypertrophy, whereas inhibition of CCR2 with the RS504393 antagonist did not show any effect. Furthermore, AZD8797 treatment reduced the expression of the hypertrophic marker genes Nppa and Nppb as well as the profibrotic genes Tgfb1 and Col1a1 at 14 days after transverse aortic constriction. These findings strongly suggest the involvement of the CX3CR1/CX3CL1 pathway in the pathogenesis of left-ventricular hypertrophy.
Collapse
MESH Headings
- Animals
- Aorta/physiopathology
- Aorta/surgery
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- CX3C Chemokine Receptor 1/antagonists & inhibitors
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Chemokine CX3CL1/genetics
- Chemokine CX3CL1/metabolism
- Collagen Type I, alpha 1 Chain/genetics
- Collagen Type I, alpha 1 Chain/metabolism
- Constriction
- Disease Models, Animal
- Fibrosis
- Hypertrophy, Left Ventricular/etiology
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/physiopathology
- Hypertrophy, Left Ventricular/prevention & control
- Male
- Mice, Inbred C57BL
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Pyrimidines/pharmacology
- Signal Transduction
- Thiazoles/pharmacology
- Time Factors
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
- Mice
Collapse
Affiliation(s)
- Simona Nemska
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Max Gassmann
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Marie-Louise Bang
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy; and
- Institute of Genetic and Biomedical Research (IRGB) - National Research Council (CNR), Milan Unit, Milan, Italy
| | - Nelly Frossard
- Laboratoire d'Innovation Thérapeutique UMR 7200, LabEx Medalis, CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Reza Tavakoli
- Institute of Veterinary Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Matsuura R, Yamashita T, Hayase N, Hamasaki Y, Noiri E, Numata G, Takimoto E, Nangaku M, Doi K. Preexisting heart failure with reduced ejection fraction attenuates renal fibrosis after ischemia reperfusion via sympathetic activation. Sci Rep 2021; 11:15091. [PMID: 34302012 PMCID: PMC8302613 DOI: 10.1038/s41598-021-94617-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Although chronic heart failure is clinically associated with acute kidney injury (AKI), the precise mechanism that connects kidney and heart remains unknown. Here, we elucidate the effect of pre-existing heart failure with reduced ejection fraction (HFrEF) on kidney via sympathetic activity, using the combining models of transverse aortic constriction (TAC) and unilateral renal ischemia reperfusion (IR). The evaluation of acute (24 h) and chronic (2 weeks) phases of renal injury following IR 8 weeks after TAC in C57BL/6 mice revealed that the development of renal fibrosis in chronic phase was significantly attenuated in TAC mice, but not in non-TAC mice, whereas no impact of pre-existing heart failure was observed in acute phase of renal IR. Expression of transforming growth factor-β, monocyte chemoattractant protein-1, and macrophage infiltration were significantly reduced in TAC mice. Lastly, to investigate the effect of sympathetic nerve activity, we performed renal sympathetic denervation two days prior to renal IR, which abrogated attenuation of renal fibrosis in TAC mice. Collectively, we demonstrate the protective effect of pre-existing HFrEF on long-term renal ischemic injury. Renal sympathetic nerve may contribute to this protection; however, further studies are needed to fully clarify the comprehensive mechanisms associated with attenuated renal fibrosis and pre-existing HFrEF.
Collapse
Affiliation(s)
- Ryo Matsuura
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tetsushi Yamashita
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoki Hayase
- Department of Acute Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan
| | - Yoshifumi Hamasaki
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eisei Noiri
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Genri Numata
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Department of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kent Doi
- Department of Acute Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
8
|
Weisheit CK, Kleiner JL, Rodrigo MB, Niepmann ST, Zimmer S, Duerr GD, Coburn M, Kurts C, Frede S, Eichhorn L. CX3CR1 is a prerequisite for the development of cardiac hypertrophy and left ventricular dysfunction in mice upon transverse aortic constriction. PLoS One 2021; 16:e0243788. [PMID: 33411754 PMCID: PMC7790399 DOI: 10.1371/journal.pone.0243788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/25/2020] [Indexed: 12/19/2022] Open
Abstract
The CX3CL1/CX3CR1 axis mediates recruitment and extravasation of CX3CR1-expressing subsets of leukocytes and plays a pivotal role in the inflammation-driven pathology of cardiovascular disease. The cardiac immune response differs depending on the underlying causes. This suggests that for the development of successful immunomodulatory therapy in heart failure due to chronic pressure overload induced left ventricular (LV) hypertrophy, the underlying immune patterns must be examined. Here, the authors demonstrate that Fraktalkine-receptor CX3CR1 is a prerequisite for the development of cardiac hypertrophy and left ventricular dysfunction in a mouse model of transverse aortic constriction (TAC). The comparison of C57BL/6 mice with CX3CR1 deficient mice displayed reduced LV hypertrophy and preserved cardiac function in response to pressure overload in mice lacking CX3CR1. Moreover, the normal immune response following TAC induced pressure overload which is dominated by Ly6Clow macrophages changed to an early pro-inflammatory immune response driven by neutrophils, Ly6Chigh macrophages and altered cytokine expression pattern in CX3CR1 deficient mice. In this early inflammatory phase of LV hypertrophy Ly6Chigh monocytes infiltrated the heart in response to a C-C chemokine ligand 2 burst. CX3CR1 expression impacts the immune response in the development of LV hypertrophy and its absence has clear cardioprotective effects. Hence, suppression of CX3CR1 may be an important immunomodulatory therapeutic target to ameliorate pressure-overload induced heart failure.
Collapse
Affiliation(s)
| | - Jan Lukas Kleiner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Maria Belen Rodrigo
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sven Thomas Niepmann
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Sebastian Zimmer
- Heart Center Bonn, Clinic for Internal Medicine II, University Hospital Bonn, Bonn, Germany
| | - Georg Daniel Duerr
- Department of Cardiac Surgery, University Clinical Centre Bonn, Bonn, Germany
| | - Mark Coburn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Lars Eichhorn
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
9
|
Toko H, Morita H, Katakura M, Hashimoto M, Ko T, Bujo S, Adachi Y, Ueda K, Murakami H, Ishizuka M, Guo J, Zhao C, Fujiwara T, Hara H, Takeda N, Takimoto E, Shido O, Harada M, Komuro I. Omega-3 fatty acid prevents the development of heart failure by changing fatty acid composition in the heart. Sci Rep 2020; 10:15553. [PMID: 32968201 PMCID: PMC7512019 DOI: 10.1038/s41598-020-72686-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/04/2020] [Indexed: 12/22/2022] Open
Abstract
Some clinical trials showed that omega-3 fatty acid (FA) reduced cardiovascular events, but it remains unknown whether omega-3 FA supplementation changes the composition of FAs and their metabolites in the heart and how the changes, if any, exert beneficial effects on cardiac structure and function. To clarify these issues, we supplied omega-3 FA to mice exposed to pressure overload, and examined cardiac structure and function by echocardiography and a proportion of FAs and their metabolites by gas chromatography and liquid chromatography-tandem mass spectrometry, respectively. Pressure overload induced cardiac hypertrophy and dysfunction, and reduced concentration of all FAs’ components and increased free form arachidonic acid and its metabolites, precursors of pro-inflammatory mediators in the heart. Omega-3 FA supplementation increased both total and free form of eicosapentaenoic acid, a precursor of pro-resolution mediators and reduced free form arachidonic acid in the heart. Omega-3 FA supplementation suppressed expressions of pro-inflammatory cytokines and the infiltration of inflammatory cells into the heart and ameliorated cardiac dysfunction and fibrosis. These results suggest that omega-3 FA-induced changes of FAs composition in the heart have beneficial effects on cardiac function via regulating inflammation.
Collapse
Affiliation(s)
- Haruhiro Toko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan. .,Department of Advanced Translational Research and Medicine in Management of Pulmonary Hypertension, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masanori Katakura
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, 89-1 Enyacho, Izumo, Shimane, 693-8501, Japan.,Laboratory of Nutritional Physiology, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Michio Hashimoto
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, 89-1 Enyacho, Izumo, Shimane, 693-8501, Japan
| | - Toshiyuki Ko
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Satoshi Bujo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yusuke Adachi
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kazutaka Ueda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Haruka Murakami
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masato Ishizuka
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Jiaxi Guo
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Chunxia Zhao
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Takayuki Fujiwara
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hironori Hara
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Osamu Shido
- Department of Environmental Physiology, Faculty of Medicine, Shimane University, 89-1 Enyacho, Izumo, Shimane, 693-8501, Japan
| | - Mutsuo Harada
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.,Department of Advanced Clinical Science and Therapeutics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
10
|
Duerr GD, Wu S, Schneider ML, Marggraf V, Weisheit CK, Velten M, Verfuerth L, Frede S, Boehm O, Treede H, Dewald O, Baumgarten G, Kim SC. CpG postconditioning after reperfused myocardial infarction is associated with modulated inflammation, less apoptosis, and better left ventricular function. Am J Physiol Heart Circ Physiol 2020; 319:H995-H1007. [PMID: 32857588 DOI: 10.1152/ajpheart.00269.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Postconditioning attenuates inflammation and fibrosis in myocardial infarction (MI). The aim of this study was to investigate whether postconditioning with the cytosine-phosphate-guanine (CpG)-containing Toll-like receptor-9 (TLR9) ligand 1668-thioate (CpG) can modulate inflammation and remodeling in reperfused murine MI. Thirty minutes of left descending coronary artery (LAD) occlusion was conducted in 12-wk-old C57BL/6 mice. Mice were treated with CpG intraperitoneally 5 min before reperfusion. The control group received PBS; the sham group did not undergo ischemia. M-mode echocardiography (3, 7, and 28 days) and Millar left ventricular (LV) catheterization were performed (7 and 28 days) before the hearts were excised and harvested for immunohistochemical (6 h, 24 h, 3 days, 7 days, and 28 days), gene expression (6 h, 24 h, and 3 days; Taqman RT-qPCR), protein, and FACS analysis (24 h and 3 days). Mice treated with CpG showed significantly better LV function after 7 and 28 days of reperfusion. Protein and mRNA expressions of proinflammatory and anti-inflammatory cytokines were significantly induced after CpG treatment. Histology revealed fewer macrophages in CpG mice after 24 h, confirmed by FACS analysis with a decrease in both classically M1- and alternative M2a-monocytes. CpG treatment reduced apoptosis and cardiomyocyte loss and was associated with induction of adaptive mechanisms, e.g., of heme-oxigenase-1 and β-/α-myosin heavy chain (MHC) ratio. Profibrotic markers collagen type Iα (Col-Ια) and Col-III induction was abrogated in CpG mice, accompanied by fewer myofibroblasts. This led to the formation of a smaller scar. Differential matrix metalloproteinase (MMP)/tissue inhibitor of metalloproteinase (TIMP) expression contributed to attenuated remodeling in CpG, resulting in preserved cardiac function in a Toll-like receptor 1- and TLR9-dependent manner. Our study suggests a cardioprotective mechanism of CpG postconditioning, involving Toll-like receptor-driven modulation of inflammation. This is followed by attenuated remodeling and preserved LV function.NEW & NOTEWORTHY Cytosine-phosphate-guanine (CpG) postconditioning seems to mediate inflammation via Toll-like receptor-1 and Toll-like receptor-9 signaling. Enhanced cytokine and chemokine expressions are partly attenuated by IL-10 and matrix metalloproteinase-8 (MMP8) induction, being associated with lower macrophage infiltration and M1-monocyte differentiation. Furthermore, switch from α- to β-MHC and balanced MMP/TIMP expression led to lesser cardiomyocyte apoptosis, smaller scar size, and preserved cardiac function. Data of pharmacological postconditioning have been widely disappointing to date. Our study suggests a new pathway promoting myocardial postconditioning via Toll-like receptor activation.
Collapse
Affiliation(s)
- Georg Daniel Duerr
- Department of Cardiac Surgery, University Clinical Centre Bonn, Bonn, Germany
| | - Shuijing Wu
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Max Lukas Schneider
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Vanessa Marggraf
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | | | - Markus Velten
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Luise Verfuerth
- Department of Cardiac Surgery, University Clinical Centre Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Olaf Boehm
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| | - Hendrik Treede
- Department of Cardiac Surgery, University Clinical Centre Bonn, Bonn, Germany
| | - Oliver Dewald
- Department of Cardiac Surgery, University Hospital of Oldenburg, Oldenburg, Germany
| | - Georg Baumgarten
- Department of Anaesthesiology, Johanniter-Krankenhaus Bonn, Bonn, Germany
| | - Se-Chan Kim
- Department of Anaesthesiology, University Clinical Centre Bonn, Bonn, Germany
| |
Collapse
|
11
|
DHA Supplementation Attenuates MI-Induced LV Matrix Remodeling and Dysfunction in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7606938. [PMID: 32832005 PMCID: PMC7424392 DOI: 10.1155/2020/7606938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/24/2020] [Accepted: 04/07/2020] [Indexed: 01/12/2023]
Abstract
Objective Myocardial ischemia and reperfusion (I/R) injury is associated with oxidative stress and inflammation, leading to scar development and malfunction. The marine omega-3 fatty acids (ω-3 FA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) are mediating cardioprotection and improving clinical outcomes in patients with heart disease. Therefore, we tested the hypothesis that docosahexaenoic acid (DHA) supplementation prior to LAD occlusion-induced myocardial injury (MI) confers cardioprotection in mice. Methods C57BL/6N mice were placed on DHA or control diets (CD) beginning 7 d prior to 60 min LAD occlusion-induced MI or sham surgery. The expression of inflammatory mediators was measured via RT-qPCR. Besides FACS analysis for macrophage quantification and subtype evaluation, macrophage accumulation as well as collagen deposition was quantified in histological sections. Cardiac function was assessed using a pressure-volume catheter for up to 14 d. Results DHA supplementation significantly attenuated the induction of peroxisome proliferator-activated receptor-α (PPAR-α) (2.3 ± 0.4 CD vs. 1.4 ± 0.3 DHA) after LAD occlusion. Furthermore, TNF-α (4.0 ± 0.6 CD vs. 1.5 ± 0.2 DHA), IL-1β (60.7 ± 7.0 CD vs. 11.6 ± 1.9 DHA), and IL-10 (223.8 ± 62.1 CD vs. 135.5 ± 38.5 DHA) mRNA expression increase was diminished in DHA-supplemented mice after 72 h reperfusion. These changes were accompanied by a less prominent switch in α/β myosin heavy chain isoforms. Chemokine mRNA expression was stronger initiated (CCL2 6 h: 32.8 ± 11.5 CD vs. 78.8 ± 13.6 DHA) but terminated earlier (CCL2 72 h: 39.5 ± 7.8 CD vs. 8.2 ± 1.9 DHA; CCL3 72 h: 794.3 ± 270.9 CD vs. 258.2 ± 57.8 DHA) in DHA supplementation compared to CD mice after LAD occlusion. Correspondingly, DHA supplementation was associated with a stronger increase of predominantly alternatively activated Ly6C-positive macrophage phenotype, being associated with less collagen deposition and better LV function (EF 14 d: 17.6 ± 2.6 CD vs. 31.4 ± 1.5 DHA). Conclusion Our data indicate that DHA supplementation mediates cardioprotection from MI via modulation of the inflammatory response with timely and attenuated remodeling. DHA seems to attenuate MI-induced cardiomyocyte injury partly by transient PPAR-α downregulation, diminishing the need for antioxidant mechanisms including mitochondrial function, or α- to β-MHC isoform switch.
Collapse
|
12
|
Targeted anti-inflammatory therapy is a new insight for reducing cardiovascular events: A review from physiology to the clinic. Life Sci 2020; 253:117720. [PMID: 32360620 DOI: 10.1016/j.lfs.2020.117720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022]
Abstract
Despite considerable progressions, cardiovascular disease (CVD) is still one of the major causes of mortality around the world, indicates an important and unmet clinical need. Recently, extensive studies have been performed on the role of inflammatory factors as either a major or surrogate factor in the pathophysiology of CVD. Epidemiological observations suggest the theory of the role of inflammatory mediators in the development of cardiovascular events. This may support the idea that targeted anti-inflammatory therapies, on the background of traditional validated medical therapies, can play a significant role in prevention and even reduction of cardiovascular disorders. Many randomized controlled trials have shown that drugs commonly useful for primary and secondary prevention of CVD have an anti-inflammatory mechanism. Further, many anti-inflammatory drugs are being examined because of their potential to reduce the risk of cardiovascular problems. In this study, we review the process of inflammation in the development of cardiovascular events, both in vivo and clinical evidence in immunotherapy for CVD.
Collapse
|
13
|
Wang X, Chen L, Zhao X, Xiao L, Yi S, Kong Y, Jiang Y, Zhang J. A cathelicidin-related antimicrobial peptide suppresses cardiac hypertrophy induced by pressure overload by regulating IGFR1/PI3K/AKT and TLR9/AMPKα. Cell Death Dis 2020; 11:96. [PMID: 32029708 PMCID: PMC7005284 DOI: 10.1038/s41419-020-2296-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 11/27/2022]
Abstract
Cathelicidin-related antimicrobial peptide (CRAMP), an antimicrobial peptide, was reported to protect against myocardial ischemia/reperfusion injury. However, the effect of CRAMP on pressure overload-induced cardiac hypertrophy was unknown. This study explored the role of CRAMP on cardiac hypertrophy. A cardiac hypertrophy mouse model was induced by aortic banding surgery. Seven days after surgery, mice were given mCRAMP by intraperitoneal injection (8 mg/kg/d) for 7 weeks. Cardiac hypertrophy was evaluated by the hypertrophic response and fibrosis level as well as cardiac function. Mice were also injected with AAV9-shCRAMP to knockdown CRAMP in the mouse heart. CRAMP levels first increased and then reduced in the remodeling heart, as well as in angiotensin II-stimulated endothelial cells but not in cardiomyocytes and fibroblasts. mCRAMP protected against the pressure overload-induced cardiac remodeling process, while CRAMP knockdown accelerated this process. mCRAMP reduced the inflammatory response and oxidative stress in the hypertrophic heart, while mCRAMP deficiency deteriorated the pressure overload-induced inflammatory response and oxidative stress. mCRAMP inhibited the angiotensin II-stimulated hypertrophic response and oxidative stress in neonatal rat cardiomyocytes, but mCRAMP did not help the angiotensin II-induced inflammatory response and oxidative stress in endothelial cells. Mechanistically, we found that mCRAMP suppressed the cardiac hypertrophic response by activating the IGFR1/PI3K/AKT pathway via directly binding to IGFR1. AKT knockout mice completely reversed the anti-hypertrophic effect of mCRAMP but not its anti-oxidative effect. We also found that mCRAMP ameliorated cardiac oxidative stress by activating the TLR9/AMPKa pathway. This was confirmed by a TLR9 knockout mouse experiment, in which a TLR9 knockout partly reversed the anti-hypertrophic effect of mCRAMP and completely counteracted the anti-oxidative effect of mCRAMP. In summary, mCRAMP protected against pressure overload-induced cardiac hypertrophy by activating both the IGFR1/PI3K/AKT and TLR9/AMPKa pathways in cardiomyocytes.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linlin Chen
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyan Zhao
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lili Xiao
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shanting Yi
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yawei Kong
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan Jiang
- Department of Neurology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Jinying Zhang
- Department of Cardiology, the First Afliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
14
|
Suetomi T, Miyamoto S, Brown JH. Inflammation in nonischemic heart disease: initiation by cardiomyocyte CaMKII and NLRP3 inflammasome signaling. Am J Physiol Heart Circ Physiol 2019; 317:H877-H890. [PMID: 31441689 PMCID: PMC6879920 DOI: 10.1152/ajpheart.00223.2019] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 12/14/2022]
Abstract
There is substantial evidence that chronic heart failure in humans and in animal models is associated with inflammation. Ischemic interventions such as myocardial infarction lead to necrotic cell death and release of damage associated molecular patterns, factors that signal cell damage and induce expression of proinflammatory chemokines and cytokines. It has recently become evident that nonischemic interventions are also associated with increases in inflammatory genes and immune cell accumulation in the heart and that these contribute to fibrosis and ventricular dysfunction. How proinflammatory responses are elicited in nonischemic heart disease which is not, at least initially, associated with cell death is a critical unanswered question. In this review we provide evidence supporting the hypothesis that cardiomyocytes are an initiating site of inflammatory gene expression in response to nonischemic stress. Furthermore we discuss the role of the multifunctional Ca2+/calmodulin-regulated kinase, CaMKIIδ, as a transducer of stress signals to nuclear factor-κB activation, expression of proinflammatory cytokines and chemokines, and priming and activation of the NOD-like pyrin domain-containing protein 3 (NLRP3) inflammasome in cardiomyocytes. We summarize recent evidence that subsequent macrophage recruitment, fibrosis and contractile dysfunction induced by angiotensin II infusion or transverse aortic constriction are ameliorated by blockade of CaMKII, of monocyte chemoattractant protein-1/C-C chemokine receptor type 2 signaling, or of NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Takeshi Suetomi
- Division of Cardiology, Department of Medicine and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Shigeki Miyamoto
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Joan Heller Brown
- Department of Pharmacology, University of California San Diego, La Jolla, California
| |
Collapse
|
15
|
Rhee AJ, Lavine KJ. New Approaches to Target Inflammation in Heart Failure: Harnessing Insights from Studies of Immune Cell Diversity. Annu Rev Physiol 2019; 82:1-20. [PMID: 31658002 DOI: 10.1146/annurev-physiol-021119-034412] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite mounting evidence implicating inflammation in cardiovascular diseases, attempts at clinical translation have shown mixed results. Recent preclinical studies have reenergized this field and provided new insights into how to favorably modulate cardiac macrophage function in the context of acute myocardial injury and chronic disease. In this review, we discuss the origins and roles of cardiac macrophage populations in the steady-state and diseased heart, focusing on the human heart and mouse models of ischemia, hypertensive heart disease, and aortic stenosis. Specific attention is given to delineating the roles of tissue-resident and recruited monocyte-derived macrophage subsets. We also highlight emerging concepts of monocyte plasticity and heterogeneity among monocyte-derived macrophages, describe possible mechanisms by which infiltrating monocytes acquire unique macrophage fates, and discuss the putative impact of these populations on cardiac remodeling. Finally, we discuss strategies to target inflammatory macrophage populations.
Collapse
Affiliation(s)
- Aaron J Rhee
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Kory J Lavine
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA; .,Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.,Department of Immunology and Pathology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
16
|
Duerr GD, Heinemann JC, Kley J, Eichhorn L, Frede S, Weisheit C, Wehner S, Bindila L, Lutz B, Zimmer A, Dewald O. Myocardial maladaptation to pressure overload in CB2 receptor-deficient mice. J Mol Cell Cardiol 2019; 133:86-98. [DOI: 10.1016/j.yjmcc.2019.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 12/31/2022]
|
17
|
Recent advances in understanding the roles of T cells in pressure overload-induced cardiac hypertrophy and remodeling. J Mol Cell Cardiol 2019; 129:293-302. [DOI: 10.1016/j.yjmcc.2019.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 12/15/2022]
|
18
|
Sydykov A, Mamazhakypov A, Petrovic A, Kosanovic D, Sarybaev AS, Weissmann N, Ghofrani HA, Schermuly RT. Inflammatory Mediators Drive Adverse Right Ventricular Remodeling and Dysfunction and Serve as Potential Biomarkers. Front Physiol 2018; 9:609. [PMID: 29875701 PMCID: PMC5974151 DOI: 10.3389/fphys.2018.00609] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/04/2018] [Indexed: 01/07/2023] Open
Abstract
Adverse right ventricular (RV) remodeling leads to ventricular dysfunction and failure that represents an important determinant of outcome in patients with pulmonary hypertension (PH). Recent evidence indicates that inflammatory activation contributes to the pathogenesis of adverse RV remodeling and dysfunction. It has been shown that accumulation of inflammatory cells such as macrophages and mast cells in the right ventricle is associated with maladaptive RV remodeling. In addition, inhibition of inflammation in animal models of RV failure ameliorated RV structural and functional impairment. Furthermore, a number of circulating inflammatory mediators have been demonstrated to be associated with RV performance. This work reviews the role of inflammation in RV remodeling and dysfunction and discusses anti-inflammatory strategies that may attenuate adverse structural alterations while promoting improvement of RV function.
Collapse
Affiliation(s)
- Akylbek Sydykov
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany.,Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Argen Mamazhakypov
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Aleksandar Petrovic
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Akpay S Sarybaev
- Department of Mountain and Sleep Medicine and Pulmonary Hypertension, National Center of Cardiology and Internal Medicine, Bishkek, Kyrgyzstan
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Hossein A Ghofrani
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-Pulmonary System, Universities of Giessen and Marburg Lung Center, German Center for Lung Research, Justus Liebig University of Giessen, Giessen, Germany
| |
Collapse
|
19
|
Overexpression of Cx43 in cells of the myocardial scar: Correction of post-infarct arrhythmias through heterotypic cell-cell coupling. Sci Rep 2018; 8:7145. [PMID: 29739982 PMCID: PMC5940892 DOI: 10.1038/s41598-018-25147-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 04/06/2018] [Indexed: 12/16/2022] Open
Abstract
Ventricular tachycardia (VT) is the most common and potentially lethal complication following myocardial infarction (MI). Biological correction of the conduction inhomogeneity that underlies re-entry could be a major advance in infarction therapy. As minimal increases in conduction of infarcted tissue markedly influence VT susceptibility, we reasoned that enhanced propagation of the electrical signal between non-excitable cells within a resolving infarct might comprise a simple means to decrease post-infarction arrhythmia risk. We therefore tested lentivirus-mediated delivery of the gap-junction protein Connexin 43 (Cx43) into acute myocardial lesions. Cx43 was expressed in (myo)fibroblasts and CD45+ cells within the scar and provided prominent and long lasting arrhythmia protection in vivo. Optical mapping of Cx43 injected hearts revealed enhanced conduction velocity within the scar, indicating Cx43-mediated electrical coupling between myocytes and (myo)fibroblasts. Thus, Cx43 gene therapy, by direct in vivo transduction of non-cardiomyocytes, comprises a simple and clinically applicable biological therapy that markedly reduces post-infarction VT.
Collapse
|
20
|
Hilbert T, Markowski P, Frede S, Boehm O, Knuefermann P, Baumgarten G, Hoeft A, Klaschik S. Synthetic CpG oligonucleotides induce a genetic profile ameliorating murine myocardial I/R injury. J Cell Mol Med 2018; 22:3397-3407. [PMID: 29671939 PMCID: PMC6010716 DOI: 10.1111/jcmm.13616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
We previously demonstrated that pre‐conditioning with CpG oligonucleotide (ODN) 1668 induces quick up‐regulation of gene expression 3 hours post‐murine myocardial ischaemia/reperfusion (I/R) injury, terminating inflammatory processes that sustain I/R injury. Now, performing comprehensive microarray and biocomputational analyses, we sought to further enlighten the “black box” beyond these first 3 hours. C57BL/6 mice were pretreated with either CpG 1668 or with control ODN 1612, respectively. Sixteen hours later, myocardial ischaemia was induced for 1 hour in a closed‐chest model, followed by reperfusion for 24 hours. RNA was extracted from hearts, and labelled cDNA was hybridized to gene microarrays. Data analysis was performed with BRB ArrayTools and Ingenuity Pathway Analysis. Functional groups mediating restoration of cellular integrity were among the top up‐regulated categories. Genes known to influence cardiomyocyte survival were strongly induced 24 hours post‐I/R. In contrast, proinflammatory pathways were down‐regulated. Interleukin‐10, an upstream regulator, suppressed specifically selected proinflammatory target genes at 24 hours compared to 3 hours post‐I/R. The IL1 complex is supposed to be one regulator of a network increasing cardiovascular angiogenesis. The up‐regulation of numerous protective pathways and the suppression of proinflammatory activity are supposed to be the genetic correlate of the cardioprotective effects of CpG 1668 pre‐conditioning.
Collapse
Affiliation(s)
- Tobias Hilbert
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Paul Markowski
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Olaf Boehm
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Pascal Knuefermann
- Department of Anesthesiology and Intensive Care Medicine, Gemeinschaftskrankenhaus Bonn St. Elisabeth - St. Petrus - St. Johannes gGmbH, Bonn, Germany
| | - Georg Baumgarten
- Department of Anesthesiology and Intensive Care Medicine, Johanniter Hospital Bonn, Bonn, Germany
| | - Andreas Hoeft
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Sven Klaschik
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
21
|
Yu L, Feng Z. The Role of Toll-Like Receptor Signaling in the Progression of Heart Failure. Mediators Inflamm 2018; 2018:9874109. [PMID: 29576748 PMCID: PMC5822798 DOI: 10.1155/2018/9874109] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/28/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Medical systems worldwide are being faced with a growing need to understand mechanisms behind the pathogenesis of heart failure (HF) that is considered as a leading cause of morbidity and mortality around the world. Elevated levels of inflammatory mediators have been identified in patients with HF, which are primarily manifestations of innate immune responses mediated by pattern recognition receptors (PRRs). Toll-like receptors (TLRs), which belong to PRRs, are subjected to the release of pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) to generate innate immune responses. More and more emerging data indicate that TLR signaling pathway molecules are involved in the progression of HF. Herein, we present new data with regard to the activation of TLRs in the failing heart, focusing on TLR2, TLR3, TLR4, and TLR9, and suggest the potential use of TLRs in target therapy.
Collapse
Affiliation(s)
- Lili Yu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
- Henan Key Laboratory of immunology and Targeted Drugs, Xinxiang, Henan 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan 453003, China
| | - Zhiwei Feng
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| |
Collapse
|
22
|
Cates C, Rousselle T, Wang J, Quan N, Wang L, Chen X, Yang L, Rezaie AR, Li J. Activated protein C protects against pressure overload-induced hypertrophy through AMPK signaling. Biochem Biophys Res Commun 2017; 495:2584-2594. [PMID: 29287725 DOI: 10.1016/j.bbrc.2017.12.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/21/2017] [Indexed: 02/09/2023]
Abstract
We found that the anticoagulant plasma protease, activated protein C (APC), stimulates the energy sensor kinase, AMPK, in the stressed heart by activating protease-activated receptor 1 (PAR1) on cardiomyocytes. Wild-type (WT) and AMPK-kinase dead (KD) transgenic mice were subjected to transverse aortic constriction (TAC) surgery. The results demonstrated that while no phenotypic differences can be observed between WT and AMPK-KD mice under normal physiological conditions, AMPK-KD mice exhibit significantly larger hearts after 4 weeks of TAC surgery. Analysis by echocardiography suggested that the impairment in the cardiac function of AMPK-KD hearts is significantly greater than that of WT hearts. Immunohistochemical staining revealed increased macrophage infiltration and ROS generation in AMPK-KD hearts after 4 weeks of TAC surgery. Immunoblotting results demonstrated that the redox markers, pShc66, 4-hydroxynonenal and ERK, were all up-regulated at a higher extent in AMPK-KD hearts after 4 weeks of TAC surgery. Administration of APC-WT and the signaling selective APC-2Cys mutant, but not the anticoagulant selective APC-E170A mutant, significantly attenuated pressure overload-induced hypertrophy and fibrosis. Macrophage infiltration and pShc66 activation caused by pressure overload were also inhibited by APC and APC-2Cys but not by APC-E170A. Therefore, the cardiac AMPK protects against pressure overload-induced hypertrophy and the signaling selective APC-2Cys may have therapeutic potential for treating hypertension-related hypertrophy without increasing the risk of bleeding.
Collapse
Affiliation(s)
- Courtney Cates
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Thomas Rousselle
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jinli Wang
- Department of Pharmacology and Toxicology, SUNY Buffalo, Buffalo, NY 14214, USA
| | - Nanhu Quan
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; The First Affiliated Hospital, Jilin University, Changchun 130012, China
| | - Lin Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; The First Affiliated Hospital, Jilin University, Changchun 130012, China
| | - Xu Chen
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Likui Yang
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| |
Collapse
|
23
|
Zhou DC, Su YH, Jiang FQ, Xia JB, Wu HY, Chang ZS, Peng WT, Song GH, Park KS, Kim SK, Cai DQ, Zheng L, Qi XF. CpG oligodeoxynucleotide preconditioning improves cardiac function after myocardial infarction via modulation of energy metabolism and angiogenesis. J Cell Physiol 2017; 233:4245-4257. [PMID: 29057537 DOI: 10.1002/jcp.26243] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 10/13/2017] [Indexed: 12/18/2022]
Abstract
Unmethylated CpG oligodeoxynucleotide (CpG-ODN), a Toll-like receptor 9 (TLR9) ligand, has been shown to protect against myocardial ischemia/reperfusion injury. However, the potential effects of CpG-ODN on myocardial infarction (MI) induced by persistent ischemia remains unclear. Here, we investigated whether and how CpG-ODN preconditioning protects against MI in mice. C57BL/6 mice were treated with CpG-ODN by i.p. injection 2 hr prior to MI induction, and cardiac function, and histology were analyzed 2 weeks after MI. Both 1826-CpG and KSK-CpG preconditioning significantly improved the left ventricular (LV) ejection fraction (LVEF) and LV fractional shortening (LVFS) when compared with non-CpG controls. Histological analysis further confirmed the cardioprotection of CpG-ODN preconditioning. In vitro studies further demonstrated that CpG-ODN preconditioning increases cardiomyocyte survival under hypoxic/ischemic conditions by enhancing stress tolerance through TLR9-mediated inhibition of the SERCA2/ATP and activation of AMPK pathways. Moreover, CpG-ODN preconditioning significantly increased angiogenesis in the infarcted myocardium compared with non-CpG. However, persistent TLR9 activation mediated by lentiviral infection failed to improve cardiac function after MI. Although CpG-ODN preconditioning increased angiogenesis in vitro, both the persistent stimulation of CpG-ODN and stable overexpression of TLR9 suppressed the tube formation of cardiac microvascular endothelial cells. CpG-ODN preconditioning significantly protects cardiac function against MI by suppressing the energy metabolism of cardiomyocytes and promoting angiogenesis. Our data also indicate that CpG-ODN preconditioning may be useful in MI therapy.
Collapse
Affiliation(s)
- Deng-Cheng Zhou
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Yong-Hui Su
- Department of General Surgery, The 5th Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Fu-Qing Jiang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Jing-Bo Xia
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Hai-Yan Wu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Zao-Shang Chang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Wen-Tao Peng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Guo-Hua Song
- Institute of Atherosclerosis, TaiShan Medical University, Tai'an, China
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon, Korea
| | - Soo-Ki Kim
- Department of Microbiology, Yonsei University Wonju College of Medicine, Wonju, Gangwon, Korea
| | - Dong-Qing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| | - Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, China
| | - Xu-Feng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental and Regenerative Biology, Jinan University, Guangzhou, China
| |
Collapse
|
24
|
Cellular interplay via cytokine hierarchy causes pathological cardiac hypertrophy in RAF1-mutant Noonan syndrome. Nat Commun 2017; 8:15518. [PMID: 28548091 PMCID: PMC5458545 DOI: 10.1038/ncomms15518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/05/2017] [Indexed: 01/08/2023] Open
Abstract
Noonan syndrome (NS) is caused by mutations in RAS/ERK pathway genes, and is characterized by craniofacial, growth, cognitive and cardiac defects. NS patients with kinase-activating RAF1 alleles typically develop pathological left ventricular hypertrophy (LVH), which is reproduced in Raf1L613V/+ knock-in mice. Here, using inducible Raf1L613V expression, we show that LVH results from the interplay of cardiac cell types. Cardiomyocyte Raf1L613V enhances Ca2+ sensitivity and cardiac contractility without causing hypertrophy. Raf1L613V expression in cardiomyocytes or activated fibroblasts exacerbates pressure overload-evoked fibrosis. Endothelial/endocardial (EC) Raf1L613V causes cardiac hypertrophy without affecting contractility. Co-culture and neutralizing antibody experiments reveal a cytokine (TNF/IL6) hierarchy in Raf1L613V-expressing ECs that drives cardiomyocyte hypertrophy in vitro. Furthermore, postnatal TNF inhibition normalizes the increased wall thickness and cardiomyocyte hypertrophy in vivo. We conclude that NS-cardiomyopathy involves cardiomyocytes, ECs and fibroblasts, TNF/IL6 signalling components represent potential therapeutic targets, and abnormal EC signalling might contribute to other forms of LVH. The human congenital disorder Noonan Syndrome (NS) is caused by germ-line mutations that hyperactivate the RAS/ERK signalling pathway, and can feature pathologic cardiac enlargement. Here, the authors find that a complex cellular and molecular interplay involving a cytokine hierarchy underlies cardiac hypertrophy caused by a NS-associated Raf allele.
Collapse
|
25
|
Toll-Like Receptor 9 Promotes Survival in SERCA2a KO Heart Failure Mice. Mediators Inflamm 2017; 2017:9450439. [PMID: 28490840 PMCID: PMC5405589 DOI: 10.1155/2017/9450439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 02/24/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022] Open
Abstract
Aim. Inflammation is important in heart failure (HF). The role of the immune receptor toll-like receptor 9 (TLR9) in HF is not understood and not investigated in diastolic HF. We investigated the role of TLR9 in a murine diastolic HF model caused by cardiomyocyte SERCA2a excision. Methods and Results. We crossed SERCA2a KO and TLR9 KO mice to generate four mouse lines. Tamoxifen-induced cardiomyocyte SERCA2a gene excision was carried out in mice, causing diastolic HF. After 7.6 weeks, cardiac functions and dimensions were analyzed by echocardiography and heart tissues were processed. HF mice depleted of TLR9 demonstrated reduced survival compared to SERC2a KO mice, with a median life expectancy of 58 days compared to 63 days. Both HF groups displayed increased left atrium size, lung weight, fetal gene expressions, monocyte/macrophage infiltration, and fibrosis. However, there were no significant differences between the groups. Conclusion. In mice with SERCA2a KO-induced diastolic HF, the absence of TLR9 reduced median life expectancy. The cause remains elusive, as all investigated HF parameters were unaltered. Still, these findings support a salutary role of TLR9 in some subsets of HF conditions and underline the importance for future studies on the mechanisms of TLR9 in diastolic HF.
Collapse
|
26
|
Nemska S, Monassier L, Gassmann M, Frossard N, Tavakoli R. Kinetic mRNA Profiling in a Rat Model of Left-Ventricular Hypertrophy Reveals Early Expression of Chemokines and Their Receptors. PLoS One 2016; 11:e0161273. [PMID: 27525724 PMCID: PMC4985150 DOI: 10.1371/journal.pone.0161273] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/28/2016] [Indexed: 11/29/2022] Open
Abstract
Left-ventricular hypertrophy (LVH), a risk factor for heart failure and death, is characterized by cardiomyocyte hypertrophy, interstitial cell proliferation, and leukocyte infiltration. Chemokines interacting with G protein-coupled chemokine receptors may play a role in LVH development by promoting recruitment of activated leukocytes or modulating left-ventricular remodeling. Using a pressure overload-induced kinetic model of LVH in rats, we examined during 14 days the expression over time of chemokine and chemokine receptor mRNAs in left ventricles from aortic-banded vs sham-operated animals. Two phases were clearly distinguished: an inflammatory phase (D3-D5) with overexpression of inflammatory genes such as il-1ß, tnfa, nlrp3, and the rela subunit of nf-kb, and a hypertrophic phase (D7-D14) where anp overexpression was accompanied by a heart weight/body weight ratio that increased by more than 20% at D14. No cardiac dysfunction was detectable by echocardiography at the latter time point. Of the 36 chemokines and 20 chemokine receptors analyzed by a Taqman Low Density Array panel, we identified at D3 (the early inflammatory phase) overexpression of mRNAs for the monocyte chemotactic proteins CCL2 (12-fold increase), CCL7 (7-fold increase), and CCL12 (3-fold increase), for the macrophage inflammatory proteins CCL3 (4-fold increase), CCL4 (2-fold increase), and CCL9 (2-fold increase), for their receptors CCR2 (4-fold increase), CCR1 (3-fold increase), and CCR5 (3-fold increase), and for CXCL1 (8-fold increase) and CXCL16 (2-fold increase). During the hypertrophic phase mRNA expression of chemokines and receptors returned to the baseline levels observed at D0. Hence, this first exhaustive study of chemokine and chemokine receptor mRNA expression kinetics reports early expression of monocyte/macrophage-related chemokines and their receptors during the development of LVH in rats, followed by regulation of inflammation as LVH progresses.
Collapse
Affiliation(s)
- Simona Nemska
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Laboratoire d’Innovation Thérapeutique, UMR7200, Université de Strasbourg—CNRS, Strasbourg, France
| | - Laurent Monassier
- Laboratoire de Neurobiologie et Pharmacologie Cardiovasculaire EA7296, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Max Gassmann
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Nelly Frossard
- Laboratoire d’Innovation Thérapeutique, UMR7200, Université de Strasbourg—CNRS, Strasbourg, France
- * E-mail: (RT); (NF)
| | - Reza Tavakoli
- Institute of Veterinary Physiology and Zurich Center of Integrative Human Physiology, University of Zurich, Zurich, Switzerland
- Department of Cardiac Surgery, Canton Hospital Lucerne, Lucerne, Switzerland
- * E-mail: (RT); (NF)
| |
Collapse
|
27
|
Samak M, Fatullayev J, Sabashnikov A, Zeriouh M, Schmack B, Farag M, Popov AF, Dohmen PM, Choi YH, Wahlers T, Weymann A. Cardiac Hypertrophy: An Introduction to Molecular and Cellular Basis. Med Sci Monit Basic Res 2016; 22:75-9. [PMID: 27450399 PMCID: PMC4976758 DOI: 10.12659/msmbr.900437] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ventricular hypertrophy is an ominous escalation of hemodynamically stressful conditions such as hypertension and valve disease. The pathophysiology of hypertrophy is complex and multifactorial, as it touches on several cellular and molecular systems. Understanding the molecular background of cardiac hypertrophy is essential in order to protect the myocardium from pathological remodeling, or slow down the destined progression to heart failure. In this review we highlight the most important molecular aspects of cardiac hypertrophic growth in light of the currently available published research data.
Collapse
Affiliation(s)
- Mostafa Samak
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, United Kingdom
| | - Javid Fatullayev
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, United Kingdom
| | - Anton Sabashnikov
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, United Kingdom
| | - Mohamed Zeriouh
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, United Kingdom
| | - Bastian Schmack
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, United Kingdom
| | - Mina Farag
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| | - Aron-Frederik Popov
- Department of Cardiothoracic Surgery, Royal Brompton and Harefield NHS Foundation Trust, Harefield, Middlesex, London, United Kingdom
| | - Pascal M Dohmen
- Department of Cardiovascular Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yeong-Hoon Choi
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Thorsten Wahlers
- Department of Cardiothoracic Surgery, Heart Center, University of Cologne, Cologne, Germany
| | - Alexander Weymann
- Department of Cardiac Surgery, Heart and Marfan Center - University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Dhondup Y, Ueland T, Dahl CP, Askevold ET, Sandanger Ø, Fiane A, Ohm IK, Sjaastad I, Finsen AV, Wæhre A, Gullestad L, Aukrust P, Yndestad A, Vinge LE. Low Circulating Levels of Mitochondrial and High Levels of Nuclear DNA Predict Mortality in Chronic Heart Failure. J Card Fail 2016; 22:823-8. [PMID: 27349571 DOI: 10.1016/j.cardfail.2016.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 06/08/2016] [Accepted: 06/23/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) and possibly nuclear DNA (nDNA) are released as danger-associated molecular patterns during cardiac stress, and may activate several innate immune receptors. The purpose of this study was to investigate the regulation of these danger-associated molecular patterns during human heart failure (HF). METHODS AND RESULTS Plasma levels of mtDNA and nDNA from HF patients (n = 84) were analyzed by reverse transcriptase-polymerase chain reaction and compared with controls (n = 72). Increased levels of mtDNA were found in New York Heart Association (NYHA) I-II and NYHA III-IV. There was evidence of increased nDNA in NYHA III-IV compared with controls and NYHA I-II. Kaplan-Meier analysis revealed higher mortality in patients with high nDNA levels, whereas high levels of mtDNA were associated with survival. CONCLUSIONS Plasma levels of mtDNA and nDNA are elevated in human HF associated with increased and decreased mortality, respectively. This study may suggest a rationale for exploring interventions within inflammatory signaling pathways activated by nucleic acids as novel targets in treatment of HF.
Collapse
Affiliation(s)
- Yangchen Dhondup
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Center for Heart failure Research, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway.
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Christen Peder Dahl
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Center for Heart failure Research, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Erik Tandberg Askevold
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Center for Heart failure Research, University of Oslo, Oslo, Norway
| | - Øystein Sandanger
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Center for Heart failure Research, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Arnt Fiane
- Faculty of Medicine, University of Oslo, Norway; Department of Cardiothoracic Surgery, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Ingrid Kristine Ohm
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Center for Heart failure Research, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Ivar Sjaastad
- Center for Heart failure Research, University of Oslo, Oslo, Norway; Institute for Experimental Research, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Alexandra Vanessa Finsen
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Center for Heart failure Research, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Anne Wæhre
- Center for Heart failure Research, University of Oslo, Oslo, Norway; Institute for Experimental Research, Oslo University Hospital, Ullevål, Oslo, Norway
| | - Lars Gullestad
- Center for Heart failure Research, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway; Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; K.G. Jebsen Cardiovascular Research Center, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway; Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Center for Heart failure Research, University of Oslo, Oslo, Norway; K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway
| | - Leif Erik Vinge
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Center for Heart failure Research, University of Oslo, Oslo, Norway; Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Department of Internal Medicine, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
29
|
Metallothioneins 1 and 2 Modulate Inflammation and Support Remodeling in Ischemic Cardiomyopathy in Mice. Mediators Inflamm 2016; 2016:7174127. [PMID: 27403038 PMCID: PMC4923606 DOI: 10.1155/2016/7174127] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/04/2016] [Indexed: 12/25/2022] Open
Abstract
Aims. Repetitive brief ischemia and reperfusion (I/R) is associated with left ventricular dysfunction during development of ischemic cardiomyopathy. We investigated the role of zinc-donor proteins metallothionein MT1 and MT2 in a closed-chest murine model of I/R. Methods. Daily 15-minute LAD-occlusion was performed for 1, 3, and 7 days in SV129 (WT)- and MT1/2 knockout (MT(-/-))-mice (n = 8-10/group). Hearts were examined with M-mode echocardiography and processed for histological and mRNA studies. Results. Expression of MT1/2 mRNA was transiently induced during repetitive I/R in WT-mice, accompanied by a transient inflammation, leading to interstitial fibrosis with left ventricular dysfunction without infarction. In contrast, MT(-/-)-hearts presented with enhanced apoptosis and small infarctions leading to impaired global and regional pump function. Molecular analysis revealed maladaptation of myosin heavy chain isoforms and antioxidative enzymes in MT1/2(-/-)-hearts. Despite their postponed chemokine induction we found a higher total neutrophil density and macrophage infiltration in small infarctions in MT(-/-)-hearts. Subsequently, higher expression of osteopontin 1 and tenascin C was associated with increased myofibroblast density resulting in predominately nonreversible fibrosis and adverse remodeling in MT1/2(-/-)-hearts. Conclusion. Cardioprotective effects of MT1/2 seem to be exerted via modulation of contractile elements, antioxidative enzymes, inflammatory response, and myocardial remodeling.
Collapse
|
30
|
Extracellular mtDNA activates NF-κB via toll-like receptor 9 and induces cell death in cardiomyocytes. Basic Res Cardiol 2016; 111:42. [PMID: 27164906 DOI: 10.1007/s00395-016-0553-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/05/2016] [Indexed: 12/31/2022]
Abstract
Acute myocardial infarction (AMI) causes sterile inflammation, which exacerbates tissue injury. Elevated levels of circulating mitochondrial DNA (mtDNA) have been associated with AMI. We hypothesized that mtDNA triggers an innate immune response via TLR9 and NF-κB activation, causing cardiomyocyte injury. Murine cardiomyocytes express TLR9 mRNA and protein and were able to internalize fluorescently labeled mouse mtDNA. Incubation of human embryonic kidney cells with serum from AMI patients containing naturally elevated levels of mtDNA induced TLR9-dependent NF-κB activity. This effect was mimicked by isolated mtDNA. mtDNA activated NF-κB in reporter mice both in vivo and in isolated cardiomyocytes. Moreover, incubation of isolated cardiomyocytes with mtDNA induced cell death after 4 and 24 h. Laser confocal microscopy showed that incubation of cardiomyocytes with mtDNA accelerated mitochondrial depolarization induced by reactive oxygen species. In contrast to mtDNA, isolated total DNA did not activate NF-κB nor induce cell death. In conclusion, mtDNA can induce TLR9-dependent NF-κB activation in reporter cells and activate NF-κB in cardiomyocytes. In cardiomyocytes, mtDNA causes mitochondrial dysfunction and death. Endogenous mtDNA in the extracellular space is a danger signal with direct detrimental effects on cardiomyocytes.
Collapse
|
31
|
Bualeong T, Kebir S, Hof D, Goelz L, Graewe M, Ehrentraut SF, Knuefermann P, Baumgarten G, Meyer R, Ehrentraut H. Tlr2 deficiency does not limit the development of left ventricular hypertrophy in a model of transverse aortic constriction induced pressure overload. J Negat Results Biomed 2016; 15:9. [PMID: 27109115 PMCID: PMC4843197 DOI: 10.1186/s12952-016-0050-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/30/2016] [Indexed: 01/04/2023] Open
Abstract
Background Toll-like receptors (TLRs) are involved in a variety of cardiovascular disorders, including septic cardiomyopathy, ischemia/reperfusion, heart failure, and cardiac hypertrophy. Previous research revealed that TLR4 promotes cardiac hypertrophy in vivo. Therefore, we investigated whether TLR2 is also involved in the development of cardiac hypertrophy. Methods Tlr2 deficient and wild type mice were subjected to transverse aortic constriction (TAC) or sham operation procedure. Left ventricular, heart and lung weights as well as hemodynamic parameters were determined after 3, 14 or 28 days. Real-time RT PCR was used to evaluate left ventricular gene expression. Protein content was determined via ELISA. Results TAC increased systolic left ventricular pressure, contraction and relaxations velocities as well as the heart weight in both genotypes. Tlr2 deficiency significantly enhanced cardiac hypertrophy after 14 and 28 days of TAC. Left ventricular end-diastolic pressure and heart rate increased in Tlr2−/− TAC mice only. Fourteen days of TAC led to a significant elevation of ANP, BNP, TGFβ and TLR4 mRNA levels in Tlr2−/− left ventricular tissue. Conclusion These data suggest that Tlr2 deficiency may promote the development of cardiac hypertrophy and ventricular remodeling after transverse aortic constriction.
Collapse
Affiliation(s)
- Tippaporn Bualeong
- Physiology Department, Medical Science Faculty, Naresuan University, Phitsanulok, 65000, Thailand.,Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Sied Kebir
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115, Bonn, Germany.,Department of Neurology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53127, Bonn, Germany
| | - Dorothea Hof
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Lina Goelz
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115, Bonn, Germany.,Polyclinic of Orthodontics, University of Bonn, Welschnonnenstraße 17, 53111, Bonn, Germany
| | - Mathias Graewe
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Stefan Felix Ehrentraut
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Pascal Knuefermann
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Georg Baumgarten
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | - Rainer Meyer
- Institute of Physiology II, University Hospital Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Heidi Ehrentraut
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany.
| |
Collapse
|
32
|
Krogmann AO, Lüsebrink E, Steinmetz M, Asdonk T, Lahrmann C, Lütjohann D, Nickenig G, Zimmer S. Proinflammatory Stimulation of Toll-Like Receptor 9 with High Dose CpG ODN 1826 Impairs Endothelial Regeneration and Promotes Atherosclerosis in Mice. PLoS One 2016; 11:e0146326. [PMID: 26751387 PMCID: PMC4709087 DOI: 10.1371/journal.pone.0146326] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022] Open
Abstract
Background Toll-like receptors (TLR) of the innate immune system have been closely linked with the development of atherosclerotic lesions. TLR9 is activated by unmethylated CpG motifs within ssDNA, but also by CpG motifs in nucleic acids released during vascular apoptosis and necrosis. The role of TLR9 in vascular disease remains controversial and we sought to investigate the effects of a proinflammatory TLR9 stimulation in mice. Methods and Findings TLR9-stimulation with high dose CpG ODN at concentrations between 6.25nM to 30nM induced a significant proinflammatory cytokine response in mice. This was associated with impaired reendothelialization upon acute denudation of the carotid and increased numbers of circulating endothelial microparticles, as a marker for amplified endothelial damage. Chronic TLR9 agonism in apolipoprotein E-deficient (ApoE-/-) mice fed a cholesterol-rich diet increased aortic production of reactive oxygen species, the number of circulating endothelial microparticles, circulating sca-1/flk-1 positive cells, and most importantly augmented atherosclerotic plaque formation when compared to vehicle treated animals. Importantly, high concentrations of CpG ODN are required for these proatherogenic effects. Conclusions Systemic stimulation of TLR9 with high dose CpG ODN impaired reendothelialization upon acute vascular injury and increased atherosclerotic plaque development in ApoE-/- mice. Further studies are necessary to fully decipher the contradictory finding of TLR9 agonism in vascular biology.
Collapse
Affiliation(s)
- Alexander O. Krogmann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
- * E-mail:
| | - Enzo Lüsebrink
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
| | - Martin Steinmetz
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
| | - Tobias Asdonk
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
| | - Catharina Lahrmann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
| | - Dieter Lütjohann
- Institut für klinische Chemie und klinische Pharmakologie, Universität Bonn, 53125, Bonn, Germany
| | - Georg Nickenig
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
| | - Sebastian Zimmer
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Bonn, 53105, Bonn, Germany
| |
Collapse
|
33
|
Dhondup Y, Sjaastad I, Scott H, Sandanger Ø, Zhang L, Haugstad SB, Aronsen JM, Ranheim T, Holmen SD, Alfsnes K, Ahmed MS, Attramadal H, Gullestad L, Aukrust P, Christensen G, Yndestad A, Vinge LE. Sustained Toll-Like Receptor 9 Activation Promotes Systemic and Cardiac Inflammation, and Aggravates Diastolic Heart Failure in SERCA2a KO Mice. PLoS One 2015; 10:e0139715. [PMID: 26461521 PMCID: PMC4604200 DOI: 10.1371/journal.pone.0139715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/15/2015] [Indexed: 12/18/2022] Open
Abstract
AIM Cardiac inflammation is important in the pathogenesis of heart failure. However, the consequence of systemic inflammation on concomitant established heart failure, and in particular diastolic heart failure, is less explored. Here we investigated the impact of systemic inflammation, caused by sustained Toll-like receptor 9 activation, on established diastolic heart failure. METHODS AND RESULTS Diastolic heart failure was established in 8-10 week old cardiomyocyte specific, inducible SERCA2a knock out (i.e., SERCA2a KO) C57Bl/6J mice. Four weeks after conditional KO, mice were randomized to receive Toll-like receptor 9 agonist (CpG B; 2μg/g body weight) or PBS every third day. After additional four weeks, echocardiography, phase contrast magnetic resonance imaging, histology, flow cytometry, and cardiac RNA analyses were performed. A subgroup was followed, registering morbidity and death. Non-heart failure control groups treated with CpG B or PBS served as controls. Our main findings were: (i) Toll-like receptor 9 activation (CpG B) reduced life expectancy in SERCA2a KO mice compared to PBS treated SERCA2a KO mice. (ii) Diastolic function was lower in SERCA2a KO mice with Toll-like receptor 9 activation. (iii) Toll-like receptor 9 stimulated SERCA2a KO mice also had increased cardiac and systemic inflammation. CONCLUSION Sustained activation of Toll-like receptor 9 causes cardiac and systemic inflammation, and deterioration of SERCA2a depletion-mediated diastolic heart failure.
Collapse
MESH Headings
- Animals
- Chromatography, High Pressure Liquid
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Diastole
- Fibrosis
- Gene Expression Regulation
- Heart Failure, Diastolic/diagnostic imaging
- Heart Failure, Diastolic/metabolism
- Heart Failure, Diastolic/pathology
- Heart Failure, Diastolic/physiopathology
- Hydroxyproline/metabolism
- Inflammation/complications
- Inflammation/pathology
- Magnetic Resonance Imaging
- Mice, Inbred C57BL
- Mice, Knockout
- Mortality, Premature
- Myocardium/enzymology
- Myocardium/pathology
- Organ Size
- Polymerase Chain Reaction
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/deficiency
- Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
- Toll-Like Receptor 9/metabolism
- Ultrasonography
Collapse
Affiliation(s)
- Yangchen Dhondup
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
- * E-mail:
| | - Ivar Sjaastad
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- Institute for Experimental Medical Research, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Helge Scott
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
- Department of Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Øystein Sandanger
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Lili Zhang
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- Institute for Experimental Medical Research, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Solveig Bjærum Haugstad
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- Institute for Experimental Medical Research, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Jan Magnus Aronsen
- Institute for Experimental Medical Research, Oslo University Hospital, Ullevaal, Oslo, Norway
- Bjørknes college, Oslo, Norway
| | - Trine Ranheim
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Sigve Dhondup Holmen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Imported and Tropical Diseases, Department of Infectious Diseases, Oslo University Hospital, Ulleval, Oslo, Norway
| | - Katrine Alfsnes
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
| | - Muhammad Shakil Ahmed
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Håvard Attramadal
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Institute for Surgical Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Lars Gullestad
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Geir Christensen
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- Institute for Experimental Medical Research, Oslo University Hospital, Ullevaal, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammation Research Center, University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Leif Erik Vinge
- Research Institute of Internal medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Center for Heart failure Research, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Department of Internal Medicine, Diakonhjemmet Hospital, Oslo, Norway
| |
Collapse
|
34
|
Bhattacharyya S, Varga J. Emerging roles of innate immune signaling and toll-like receptors in fibrosis and systemic sclerosis. Curr Rheumatol Rep 2015; 17:474. [PMID: 25604573 DOI: 10.1007/s11926-014-0474-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pathological fibrosis is a distinguishing hallmark of systemic sclerosis (SSc) as well as a number of more common conditions. Fibrosis is a complex and dynamic process associated with immune dysregulation, vasculopathy, and uncontrolled extracellular matrix production leading to intractable scar formation in the skin and internal organs. Persistent or recurrent chemical, infectious, mechanical, or autoimmune injury in genetically predisposed individuals causes sustained fibroblasts activation. Innate immune signaling via toll-like receptors (TLRs) is increasingly recognized as a key player driving the persistent fibrotic response in SSc. In particular, expression of TLR4 as well as its endogenous ligands are elevated in lesional tissue from patients with SSc. Ligand-induced TLR4 activation elicits potent stimulatory effects on fibrotic gene expression and myofibroblast differentiation. Furthermore, TLR4 appears to sensitize fibroblasts to the profibrotic stimulatory effect of transforming growth factor-β. This review highlights recent advances and emerging paradigms for understanding the regulation, complex functional roles, and therapeutic potential of TLRs in SSc pathogenesis.
Collapse
Affiliation(s)
- Swati Bhattacharyya
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, 240 E. Huron St., Chicago, IL, 60611, USA,
| | | |
Collapse
|
35
|
Bai X, Qi Z, Song G, Zhao X, Zhao H, Meng X, Liu C, Bing W, Bi Y. Effects of Monocyte Chemotactic Protein-1 and Nuclear Factor of Kappa B Pathway in Rejection of Cardiac Allograft in Rat. Transplant Proc 2015; 47:2010-6. [DOI: 10.1016/j.transproceed.2015.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/26/2015] [Accepted: 05/14/2015] [Indexed: 01/04/2023]
|
36
|
p53-Induced inflammation exacerbates cardiac dysfunction during pressure overload. J Mol Cell Cardiol 2015; 85:183-98. [PMID: 26055447 DOI: 10.1016/j.yjmcc.2015.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/19/2015] [Accepted: 06/01/2015] [Indexed: 02/07/2023]
Abstract
The rates of death and disability caused by severe heart failure are still unacceptably high. There is evidence that the sterile inflammatory response has a critical role in the progression of cardiac remodeling in the failing heart. The p53 signaling pathway has been implicated in heart failure, but the pathological link between p53 and inflammation in the failing heart is largely unknown. Here we demonstrate a critical role of p53-induced inflammation in heart failure. Expression of p53 was increased in cardiac endothelial cells and bone marrow cells in response to pressure overload, leading to up-regulation of intercellular adhesion molecule-1 (ICAM1) expression by endothelial cells and integrin expression by bone marrow cells. Deletion of p53 from endothelial cells or bone marrow cells significantly reduced ICAM1 or integrin expression, respectively, as well as decreasing cardiac inflammation and ameliorating systolic dysfunction during pressure overload. Conversely, overexpression of p53 in bone marrow cells led to an increase of integrin expression and cardiac inflammation that reduced systolic function. Norepinephrine markedly increased p53 expression in endothelial cells and macrophages. Reducing β2-adrenergic receptor expression in endothelial cells or bone marrow cells attenuated cardiac inflammation and improved systolic dysfunction during pressure overload. These results suggest that activation of the sympathetic nervous system promotes cardiac inflammation by up-regulating ICAM1 and integrin expression via p53 signaling to exacerbate cardiac dysfunction. Inhibition of p53-induced inflammation may be a novel therapeutic strategy for heart failure.
Collapse
|
37
|
Weisheit C, Zhang Y, Faron A, Köpke O, Weisheit G, Steinsträsser A, Frede S, Meyer R, Boehm O, Hoeft A, Kurts C, Baumgarten G. Ly6C(low) and not Ly6C(high) macrophages accumulate first in the heart in a model of murine pressure-overload. PLoS One 2014; 9:e112710. [PMID: 25415601 PMCID: PMC4240580 DOI: 10.1371/journal.pone.0112710] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/14/2014] [Indexed: 01/13/2023] Open
Abstract
Cardiac tissue remodeling in the course of chronic left ventricular hypertrophy requires phagocytes which degrade cellular debris, initiate and maintain tissue inflammation and reorganization. The dynamics of phagocytes in left ventricular hypertrophy have not been systematically studied. Here, we characterized the temporal accumulation of leukocytes in the cardiac immune response by flow cytometry and fluorescence microscopy at day 3, 6 and 21 following transverse aortic constriction (TAC). Cardiac hypertrophy due to chronic pressure overload causes cardiac immune response and inflammation represented by an increase of immune cells at all three time points among which neutrophils reached their maximum at day 3 and macrophages at day 6. The cardiac macrophage population consisted of both Ly6Clow and Ly6Chigh macrophages. Ly6Clow macrophages were more abundant peaking at day 6 in response to pressure overload. During the development of cardiac hypertrophy the expression pattern of adhesion molecules was investigated by qRT-PCR and flow cytometry. CD11b, CX3CR1 and ICAM-1 determined by qRT-PCR in whole cardiac tissue were up-regulated in response to pressure overload at day 3 and 6. CD11b and CX3CR1 were significantly increased by TAC on the surface of Ly6Clow but not on Ly6Chigh macrophages. Furthermore, ICAM-1 was up-regulated on cardiac endothelial cells. In fluorescence microscopy Ly6Clow macrophages could be observed attached to the intra- and extra-vascular vessel-wall. Taken together, TAC induced the expression of adhesion molecules, which may explain the accumulation of Ly6Clow macrophages in the cardiac tissue, where these cells might contribute to cardiac inflammation and remodeling in response to pressure overload.
Collapse
Affiliation(s)
- Christina Weisheit
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
- * E-mail:
| | - Yunyang Zhang
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Anton Faron
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Odilia Köpke
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Gunnar Weisheit
- Geschwister-Scholl-Gymnasium, Academic High School Daun, Daun, Germany
| | - Arne Steinsträsser
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Stilla Frede
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Rainer Meyer
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | - Olaf Boehm
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Andreas Hoeft
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Christian Kurts
- Institute of Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Georg Baumgarten
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
38
|
Gorr MW, Velten M, Nelin TD, Youtz DJ, Sun Q, Wold LE. Early life exposure to air pollution induces adult cardiac dysfunction. Am J Physiol Heart Circ Physiol 2014; 307:H1353-60. [PMID: 25172901 DOI: 10.1152/ajpheart.00526.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Exposure to ambient air pollution contributes to the progression of cardiovascular disease, particularly in susceptible populations. The objective of the present study was to determine whether early life exposure to air pollution causes persistent cardiovascular consequences measured at adulthood. Pregnant FVB mice were exposed to filtered (FA) or concentrated ambient particulate matter (PM2.5) during gestation and nursing. Mice were exposed to PM2.5 at an average concentration of 51.69 μg/m(3) from the Columbus, OH region for 6 h/day, 7 days/wk in utero until weaning at 3 wk of age. Birth weight was reduced in PM2.5 pups compared with FA (1.36 ± 0.12 g FA, n = 42 mice; 1.30 ± 0.15 g PM2.5, n = 67 P = 0.012). At adulthood, mice exposed to perinatal PM2.5 had reduced left ventricular fractional shortening compared with FA-exposed mice (43.6 ± 2.1% FA, 33.2 ± 1.6% PM2.5, P = 0.001) with greater left ventricular end systolic diameter. Pressure-volume loops showed reduced ejection fraction (79.1 ± 3.5% FA, 35.5 ± 9.5% PM2.5, P = 0.005), increased end-systolic volume (10.4 ± 2.5 μl FA, 39.5 ± 3.8 μl PM2.5, P = 0.001), and reduced dP/dt maximum (11,605 ± 200 μl/s FA, 9,569 ± 800 μl/s PM2.5, P = 0.05) and minimum (-9,203 ± 235 μl/s FA, -7,045 ± 189 μl/s PM2.5, P = 0.0005) in PM2.5-exposed mice. Isolated cardiomyocytes from the hearts of PM2.5-exposed mice had reduced peak shortening (%PS, 8.53 ± 2.82% FA, 6.82 ± 2.04% PM2.5, P = 0.003), slower calcium reuptake (τ, 0.22 ± 0.09 s FA, 0.26 ± 0.07 s PM2.5, P = 0.048), and reduced response to β-adrenergic stimulation compared with cardiomyocytes isolated from mice that were exposed to FA. Histological analyses revealed greater picro-sirius red-positive-stained areas in the PM2.5 vs. FA group, indicative of increased collagen deposition. We concluded that these data demonstrate the detrimental role of early life exposure to ambient particulate air pollution in programming of adult cardiovascular diseases and the potential for PM2.5 to induce persistent cardiac dysfunction at adulthood.
Collapse
Affiliation(s)
- Matthew W Gorr
- College of Medicine and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, Rheinische Friedrich-Wilhelms-University, University Medical Center, Bonn, Germany
| | - Timothy D Nelin
- College of Medicine and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Dane J Youtz
- College of Medicine and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Qinghua Sun
- College of Medicine and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; College of Public Health, The Ohio State University, Columbus, Ohio
| | - Loren E Wold
- College of Medicine and the Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; College of Nursing, The Ohio State University, Columbus, Ohio
| |
Collapse
|
39
|
Ohm IK, Alfsnes K, Belland Olsen M, Ranheim T, Sandanger Ø, Dahl TB, Aukrust P, Finsen AV, Yndestad A, Vinge LE. Toll-like receptor 9 mediated responses in cardiac fibroblasts. PLoS One 2014; 9:e104398. [PMID: 25126740 PMCID: PMC4134207 DOI: 10.1371/journal.pone.0104398] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/14/2014] [Indexed: 01/11/2023] Open
Abstract
Altered cardiac Toll-like receptor 9 (TLR9) signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C) and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/β). Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088) or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions) corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.
Collapse
Affiliation(s)
- Ingrid Kristine Ohm
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- * E-mail:
| | - Katrine Alfsnes
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Trine Ranheim
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Øystein Sandanger
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
| | - Tuva Børresdatter Dahl
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Alexandra Vanessa Finsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Arne Yndestad
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- K.G. Jebsen Inflammatory Research Center, University of Oslo, Oslo, Norway
| | - Leif Erik Vinge
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Center for Heart Failure Research, University of Oslo, Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Oslo, Norway
- K.G. Jebsen Cardiac Research Center, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Duerr GD, Heinemann JC, Arnoldi V, Feisst A, Kley J, Ghanem A, Welz A, Dewald O. Cardiomyocyte specific peroxisome proliferator-activated receptor-α overexpression leads to irreversible damage in ischemic murine heart. Life Sci 2014; 102:88-97. [DOI: 10.1016/j.lfs.2014.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Revised: 03/01/2014] [Accepted: 03/10/2014] [Indexed: 01/01/2023]
|
41
|
Kamal FA, Mickelsen DM, Wegman KM, Travers JG, Moalem J, Hammes SR, Smrcka AV, Blaxall BC. Simultaneous adrenal and cardiac g-protein-coupled receptor-gβγ inhibition halts heart failure progression. J Am Coll Cardiol 2014; 63:2549-2557. [PMID: 24703913 DOI: 10.1016/j.jacc.2014.02.587] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/10/2014] [Accepted: 02/25/2014] [Indexed: 12/29/2022]
Abstract
OBJECTIVES The authors propose simultaneous inhibition of Gβγ signaling in the heart and the adrenal gland as a novel therapeutic approach for heart failure (HF). BACKGROUND Elevated sympathetic nervous system activity is a salient characteristic of HF progression. It causes pathologic desensitization of β-adrenergic receptors (β-AR), facilitated predominantly through Gβγ-mediated signaling. The adrenal glands are key contributors to the chronically elevated plasma catecholamine levels observed in HF, where adrenal α2-AR feedback inhibitory function is impaired also through Gβγ-mediated signaling. METHODS We investigated the efficacy of a small molecule Gβγ inhibitor, gallein, in a clinically relevant, pressure-overload model of HF. RESULTS Daily gallein treatment (10 mg/kg/day), initiated 4 weeks after transverse aortic constriction, improved survival and cardiac function and attenuated cardiac remodeling. Mechanistically, gallein restored β-AR membrane density in cardiomyocytes, attenuated Gβγ-mediated G-protein-coupled receptor kinase 2-phosphoinositide 3-kinase γ membrane recruitment, and reduced Akt (protein kinase B) and glycogen synthase kinase 3β phosphorylation. Gallein also reduced circulating plasma catecholamine levels and catecholamine production in isolated mouse adrenal glands by restoring adrenal α2-AR feedback inhibition. In human adrenal endocrine tumors (pheochromocytoma), gallein attenuated catecholamine secretion, as well as G-protein-coupled receptor kinase 2 expression and membrane translocation. CONCLUSIONS These data suggest small molecule Gβγ inhibition as a systemic pharmacologic therapy for HF by simultaneously normalizing pathologic adrenergic/Gβγ signaling in both the heart and the adrenal gland. Our data also suggest important endocrine/cardiovascular interactions and a possible role for small molecule Gβγ inhibition in treating endocrine tumors such as pheochromocytoma, in addition to HF.
Collapse
Affiliation(s)
- Fadia A Kamal
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Deanne M Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Katherine M Wegman
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Joshua G Travers
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jacob Moalem
- Department of Surgery, University of Rochester Medical Center, Rochester, New York; Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Stephen R Hammes
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Alan V Smrcka
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Burns C Blaxall
- The Heart Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.
| |
Collapse
|
42
|
Ghigo A, Franco I, Morello F, Hirsch E. Myocyte signalling in leucocyte recruitment to the heart. Cardiovasc Res 2014; 102:270-80. [PMID: 24501328 DOI: 10.1093/cvr/cvu030] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Myocardial damage, by different noxious causes, triggers an inflammatory reaction driving post-injury repair mechanisms and chronic remodelling processes that are largely detrimental to cardiac function. Cardiomyocytes have recently emerged as key players in orchestrating this inflammatory response. Injured cardiomyocytes release damage-associated molecular pattern molecules, such as high-mobility group box 1 (HMGB1), DNA fragments, heat shock proteins, and matricellular proteins, which instruct surrounding healthy cadiomyocytes to produce inflammatory mediators. These mediators, mainly interleukin (IL)-1β, IL-6, macrophage chemoattractant protein (MCP)-1, and tumour necrosis factor α (TNF-α), in turn activate versatile signalling networks within surviving cardiomyocytes and trigger leucocyte activation and recruitment. In this review, we will focus on recently characterized signalling pathways activated in cardiomyocytes that mediate inflammatory responses during myocardial infarction, hypertensive heart disease, and myocarditis.
Collapse
Affiliation(s)
- Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, Torino, Italy
| | | | | | | |
Collapse
|
43
|
Reliability of electrocardiographic surrogates of left ventricular mass in patients with chronic kidney disease. J Hypertens 2014; 32:439-45. [DOI: 10.1097/hjh.0000000000000026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Sakane KK, Monteiro CJ, Silva W, Silva AR, Santos PM, Lima KF, Moraes KCM. Cellular and molecular studies of the effects of a selective COX-2 inhibitor celecoxib in the cardiac cell line H9c2 and their correlation with death mechanisms. ACTA ACUST UNITED AC 2013; 47:50-9. [PMID: 24519091 PMCID: PMC3932973 DOI: 10.1590/1414-431x20133028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 08/26/2013] [Indexed: 11/23/2022]
Abstract
Cardiovascular disease is one of the leading causes of death worldwide, and evidence
indicates a correlation between the inflammatory process and cardiac dysfunction.
Selective inhibitors of cyclooxygenase-2 (COX-2) enzyme are not recommended for
long-term use because of potentially severe side effects to the heart. Considering
this and the frequent prescribing of commercial celecoxib, the present study analyzed
cellular and molecular effects of 1 and 10 µM celecoxib in a cell culture model.
After a 24-h incubation, celecoxib reduced cell viability in a dose-dependent manner
as also demonstrated in MTT assays. Furthermore, reverse transcription-polymerase
chain reaction analysis showed that the drug modulated the expression level of genes
related to death pathways, and Western blot analyses demonstrated a modulatory effect
of the drug on COX-2 protein levels in cardiac cells. In addition, the results
demonstrated a downregulation of prostaglandin E2 production by the cardiac cells
incubated with celecoxib, in a dose-specific manner. These results are consistent
with the decrease in cell viability and the presence of necrotic processes shown by
Fourier transform infrared analysis, suggesting a direct correlation of prostanoids
in cellular homeostasis and survival.
Collapse
Affiliation(s)
- K K Sakane
- Universidade do Vale do Paraíba, Instituto de Pesquisa e Desenvolvimento, São José dos CamposSP, Brasil, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brasil
| | - C J Monteiro
- Universidade Federal de Ouro Preto, Núcleo de Pesquisa em Ciências Biológicas, Ouro PretoMG, Brasil, Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - W Silva
- Universidade Federal de Ouro Preto, Núcleo de Pesquisa em Ciências Biológicas, Ouro PretoMG, Brasil, Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - A R Silva
- Universidade Federal de Ouro Preto, Núcleo de Pesquisa em Ciências Biológicas, Ouro PretoMG, Brasil, Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - P M Santos
- Universidade do Vale do Paraíba, Instituto de Pesquisa e Desenvolvimento, São José dos CamposSP, Brasil, Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, São José dos Campos, SP, Brasil
| | - K F Lima
- Universidade Federal de Ouro Preto, Núcleo de Pesquisa em Ciências Biológicas, Ouro PretoMG, Brasil, Núcleo de Pesquisa em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brasil
| | - K C M Moraes
- Universidade Estadual Paulista "Júlio de Mesquita Filho", Departamento de Biologia, Instituto de Biociências, Rio ClaroSP, Brasil, Instituto de Biociências, Departamento de Biologia, Universidade Estadual Paulista ''Júlio de Mesquita Filho'', Rio Claro, SP, Brasil
| |
Collapse
|
45
|
Markowski P, Boehm O, Goelz L, Haesner AL, Ehrentraut H, Bauerfeld K, Tran N, Zacharowski K, Weisheit C, Langhoff P, Schwederski M, Hilbert T, Klaschik S, Hoeft A, Baumgarten G, Meyer R, Knuefermann P. Pre-conditioning with synthetic CpG-oligonucleotides attenuates myocardial ischemia/reperfusion injury via IL-10 up-regulation. Basic Res Cardiol 2013; 108:376. [PMID: 23929312 PMCID: PMC3778842 DOI: 10.1007/s00395-013-0376-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 07/18/2013] [Accepted: 07/26/2013] [Indexed: 01/26/2023]
Abstract
The aim of the study was to investigate whether pre-conditioning with CpG-oligodeoxynucleotides (CpG-ODN) may change cardiac ischemia/reperfusion (I/R)-dependent inflammation and modulates infarct size and cardiac performance. WT and TLR9-deficient mice were pre-treated with 1668-, 1612- and H154-thioate or D-Gal as control. Priming with 1668-thioate significantly induced inflammatory mediators in the serum and a concomitant increase of immune cells in the blood and spleen of WT mice. Furthermore, it induced myocardial pattern recognition receptors and pro-inflammatory cytokines peaking 2 h after priming and a continuous increase of IL-10. 16 h after pre-conditioning, myocardial ischemia was induced for 1 h. Infarct size determined after 24 h of I/R was reduced by 75 % due to pre-conditioning with 1668-thioate but not in the other groups. During reperfusion, cytokine expression in 1668-thioate primed mice increased further with IL-10 exceeding the other mediators by far. These changes were observed neither in animals pre-treated with 1612- or H154-thioate nor in TLR9-deficient mice. The 1668-thioate-dependent increase of IL-10 was further supported by results of a micro-array analysis 3 h after begin of reperfusion. Block of IL-10 signaling increased I/R size and prevented influence of priming. In the group pre-treated with 1668-thioate, cardiac function was preserved 24 h, 14 days and 28 days after I/R, whereas animals without pre-conditioning exhibited impaired heart function 24 h and 14 days after I/R. The excessive 1668-thioate-dependent IL-10 up-regulation during pre-conditioning and after I/R seems to be the key factor for reducing infarct size and improving cardiac function. This is in agreement with the finding that IL-10 block prevents cardioprotection by pre-conditioning.
Collapse
Affiliation(s)
- P Markowski
- Department of Anaesthesiology and Intensive Care Medicine, University Hospital Bonn, Sigmund-Freud-Straße 25, 53127, Bonn, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang Y, Wu Y, Chen J, Zhao S, Li H. Pirfenidone attenuates cardiac fibrosis in a mouse model of TAC-induced left ventricular remodeling by suppressing NLRP3 inflammasome formation. Cardiology 2013; 126:1-11. [PMID: 23839341 DOI: 10.1159/000351179] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 04/04/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Left ventricular remodeling is a frequent complication of hypertension with no therapeutic treatment available for the subsequent onset of myocardial fibrosis. Pirfenidone is an antifibrotic small-molecular-size drug with anti-inflammatory properties that is used as a treatment for fibrotic diseases, but its effects on hypertension-induced myocardial fibrosis are unknown. Therefore, we tested whether pirfenidone could ameliorate hypertension-induced left ventricular remodeling and whether hypertension-induced NLRP3 (Nod-like receptor pyrin domain containing 3), a critical protein in NLRP3 inflammasome formation, is involved in the therapeutic mechanism. METHODS A TAC-induced mouse model of hypertension and left ventricular hypertrophy was treated with pirfenidone, and survival, collagen deposition by histopathologic examination, heart function by echocardiography, concentrations of fibrosis-related inflammatory cytokines TGF-β1, IL-1β in heart homogenate and in vitro cell cultures by ELISA, levels of ROS and inflammatory cells by flow cytometry, and levels of NLRP3 by Western blotting and immunohistochemistry were measured. RESULTS Pirfenidone increased the survival rate and attenuated myocardial fibrosis and inflammatory mediators in the TAC-induced hypertension-complicated left ventricular remodeling mouse model. The inhibition of NLRP3 expression by pirfenidone attenuated the expression of IL-1β and IL-1β-induced inflammatory and profibrotic responses. CONCLUSIONS Pirfenidone may be useful in the treatment of hypertension-induced myocardial fibrosis by inhibiting NLRP3-induced inflammation and fibrosis.
Collapse
Affiliation(s)
- Yongliang Wang
- Department of Cardiology, Beijing Friendship Hospital Affiliated to the Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
47
|
In vivo TLR9 inhibition attenuates CpG-induced myocardial dysfunction. Mediators Inflamm 2013; 2013:217297. [PMID: 23690658 PMCID: PMC3649709 DOI: 10.1155/2013/217297] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 03/11/2013] [Indexed: 12/25/2022] Open
Abstract
The involvement of toll-like receptor 9 (TLR9), a receptor for bacterial DNA, in septic cardiac depression has not been clarified in vivo. Thus, the aim of the study was to test possible TLR9 inhibitors (H154-thioate, IRS954-thioate, and chloroquine) for their ability to protect the cardiovascular system in a murine model of CpG oligodeoxynucleotide- (ODN-) dependent systemic inflammation. Sepsis was induced by i.p. application of the TLR9 agonist 1668-thioate in C57BL/6 wild type (WT) and TLR9-deficient (TLR9-D) mice. Thirty minutes after stimulation TLR9 antagonists were applied i.v. Survival was monitored up to 18 h after stimulation. Cardiac mRNA expression of inflammatory mediators was analyzed 2 h and 6 h after stimulation with 1668-thioate and hemodynamic parameters were monitored at the later time point. Stimulation with 1668-thioate induced a severe sepsis-like state with significant drop of body temperature and significantly increased mortality in WT animals. Additionally, there was a time-dependent increase of inflammatory mediators in the heart accompanied by development of septic heart failure. These effects were not observed in TLR9-D mice. Inhibition of TLR9 by the suppressive ODN H154-thioate significantly ameliorated cardiac inflammation, preserved cardiac function, and improved survival. This suppressive ODN was the most efficient inhibitor of the tested substances.
Collapse
|