1
|
Yang Y, Li B. Effect of Oral Administration of Collagen Peptide OG-5 on Advanced Atherosclerosis Development in ApoE -/- Mice. Nutrients 2024; 16:3752. [PMID: 39519585 PMCID: PMC11547735 DOI: 10.3390/nu16213752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND/OBJECTIVES Atherosclerosis is a chronic inflammatory disease of the arterial wall, which involves multiple cell types. Peptide OG-5 is identified from collagen hydrolysates derived from Salmo salar and exhibits an inhibitory effect on early atherosclerosis. The primary objective of this study was to investigate the impact of OG-5 on advanced atherosclerotic lesions as well as its stability during absorption. METHODS In this study, the ApoE-/- mice were employed to establish advanced atherosclerosis model to investigate the treatment effect of peptide OG-5. RESULTS The results showed that oral administration of OG-5 at a dosage of 150 mg/kg bw resulted in a 30% reduction in the aortic plaque formation area in ApoE-/- mice with few bleeding risks. Specifically, intervention with a low dose of OG-5 (50 mg/kg bw), initiated in the early stage of atherosclerosis, continues to provide benefits into the middle and late stages without bleeding risks. Furthermore, treatment of OG-5 increased expression levels of contractile phenotype markers and reduced the accumulation of lipoprotein in VSMCs induced by ox-LDL. Peptide OG-5 could ensure transport across Caco-2 cell monolayers, exhibiting a Papp value of 1.80 × 10-5 cm/s, and exhibited a robust stability in plasma with remaining content >70% after 8 h incubation. In vivo studies revealed that OG-5 reached maximum concentration in blood after 120 min. CONCLUSION The present results demonstrate the potential efficacy of peptide OG-5 as a promising agent for intervention in anti-atherogenesis strategies.
Collapse
Affiliation(s)
- Yijie Yang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Functional Dairy, Ministry of Education, Beijing 100083, China
| |
Collapse
|
2
|
Yang Y, Liu H, Cui L, Liu Y, Fu L, Li B. A Collagen-Derived Oligopeptide from Salmo salar Collagen Hydrolysates Restrains Atherogenesis in ApoE -/- Mice via Targeting P 2 Y 12 Receptor. Mol Nutr Food Res 2022; 66:e2200166. [PMID: 35490399 DOI: 10.1002/mnfr.202200166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 11/06/2022]
Abstract
SCOPE Collagen hydrolysates have been reported with a variety of biological activities. The previous study has separated and identified a series of Hyp-Gly containing antiplatelet peptides from collagen hydrolysates from Salmo salar. But the target and underlying mechanism in platelets remains unknown. METHODS AND RESULTS In this study, peptide OGEFG (OG-5) inhibits platelet aggregation especially induced by 2MeS-ADP and attenuates tail thrombosis formation by 30% in a dose-dependent manner, via apparent antagonism effects on P2 Y12 receptors to regulate Gβγi-PI3K-Akt signaling and Gαi-cAMP-VASP signaling is demonstrated. The molecular docking results also reveal a strong binding energy with the P2 Y12 receptor of peptide OG-5 (-10.70 kcal mol-1 ). In vitro study suggests that OG-5 inhibited the release of inflammatory cytokines in endothelial cells and macrophage cells, migration of vascular smooth muscle cell induced by ADP, which is highly released in ApoE-/- mice. Long-term administration of OG-5 significantly reduces atherosclerotic plaque formation without side effects in ApoE-/- mice, exhibiting a comparable effect with aspirin. CONCLUSION These results reveal that collagen hydrolysates with OG-containing peptides have potential to be developed as an effective diet supplement to prevent the occurrence of atherogenesis and thrombotic disease.
Collapse
Affiliation(s)
- Yijie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hui Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liyuan Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yibo Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Lulu Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Bo Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.,Key Laboratory of Functional Dairy, Ministry of Education, Beijing, 100083, China
| |
Collapse
|
3
|
Strassheim D, Sullivan T, Irwin DC, Gerasimovskaya E, Lahm T, Klemm DJ, Dempsey EC, Stenmark KR, Karoor V. Metabolite G-Protein Coupled Receptors in Cardio-Metabolic Diseases. Cells 2021; 10:3347. [PMID: 34943862 PMCID: PMC8699532 DOI: 10.3390/cells10123347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
G protein-coupled receptors (GPCRs) have originally been described as a family of receptors activated by hormones, neurotransmitters, and other mediators. However, in recent years GPCRs have shown to bind endogenous metabolites, which serve functions other than as signaling mediators. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Derek Strassheim
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Timothy Sullivan
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - David C. Irwin
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Evgenia Gerasimovskaya
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Tim Lahm
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
| | - Dwight J. Klemm
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Edward C. Dempsey
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Rocky Mountain Regional VA Medical Center, Aurora, CO 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kurt R. Stenmark
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
| | - Vijaya Karoor
- Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Denver, CO 80204, USA; (D.S.); (T.S.); (D.C.I.); (E.G.); (D.J.K.); (E.C.D.); (K.R.S.)
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health Denver, Denver, CO 80206, USA;
- Division of Pulmonary Sciences and Critical Care Medicine, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
The pleiotropic effects of antithrombotic drugs in the metabolic-cardiovascular-neurodegenerative disease continuum: impact beyond reduced clotting. Clin Sci (Lond) 2021; 135:1015-1051. [PMID: 33881143 DOI: 10.1042/cs20201445] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 12/25/2022]
Abstract
Antithrombotic drugs are widely used for primary and secondary prevention, as well as treatment of many cardiovascular disorders. Over the past few decades, major advances in the pharmacology of these agents have been made with the introduction of new drug classes as novel therapeutic options. Accumulating evidence indicates that the beneficial outcomes of some of these antithrombotic agents are not solely related to their ability to reduce thrombosis. Here, we review the evidence supporting established and potential pleiotropic effects of four novel classes of antithrombotic drugs, adenosine diphosphate (ADP) P2Y12-receptor antagonists, Glycoprotein IIb/IIIa receptor Inhibitors, and Direct Oral Anticoagulants (DOACs), which include Direct Factor Xa (FXa) and Direct Thrombin Inhibitors. Specifically, we discuss the molecular evidence supporting such pleiotropic effects in the context of cardiovascular disease (CVD) including endothelial dysfunction (ED), atherosclerosis, cardiac injury, stroke, and arrhythmia. Importantly, we highlight the role of DOACs in mitigating metabolic dysfunction-associated cardiovascular derangements. We also postulate that DOACs modulate perivascular adipose tissue inflammation and thus, may reverse cardiovascular dysfunction early in the course of the metabolic syndrome. In this regard, we argue that some antithrombotic agents can reverse the neurovascular damage in Alzheimer's and Parkinson's brain and following traumatic brain injury (TBI). Overall, we attempt to provide an up-to-date comprehensive review of the less-recognized, beneficial molecular aspects of antithrombotic therapy beyond reduced thrombus formation. We also make a solid argument for the need of further mechanistic analysis of the pleiotropic effects of antithrombotic drugs in the future.
Collapse
|
5
|
Sriram K, Insel PA. Inflammation and thrombosis in COVID-19 pathophysiology: proteinase-activated and purinergic receptors as drivers and candidate therapeutic targets. Physiol Rev 2020; 101:545-567. [PMID: 33124941 PMCID: PMC8238137 DOI: 10.1152/physrev.00035.2020] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Evolving information has identified disease mechanisms and dysregulation of host biology that might be targeted therapeutically in coronavirus disease 2019 (COVID-19). Thrombosis and coagulopathy, associated with pulmonary injury and inflammation, are emerging clinical features of COVID-19. We present a framework for mechanisms of thrombosis in COVID-19 that initially derive from interaction of SARS-CoV-2 with ACE2, resulting in dysregulation of angiotensin signaling and subsequent inflammation and tissue injury. These responses result in increased signaling by thrombin (proteinase-activated) and purinergic receptors, which promote platelet activation and exert pathological effects on other cell types (e.g., endothelial cells, epithelial cells, and fibroblasts), further enhancing inflammation and injury. Inhibitors of thrombin and purinergic receptors may, thus, have therapeutic effects by blunting platelet-mediated thromboinflammation and dysfunction in other cell types. Such inhibitors include agents (e.g., anti-platelet drugs) approved for other indications, and that could be repurposed to treat, and potentially improve the outcome of, COVID-19 patients. COVID-19, caused by the SARS-CoV-2 virus, drives dysregulation of angiotensin signaling, which, in turn, increases thrombin-mediated and purinergic-mediated activation of platelets and increase in inflammation. This thromboinflammation impacts the lungs and can also have systemic effects. Inhibitors of receptors that drive platelet activation or inhibitors of the coagulation cascade provide opportunities to treat COVID-19 thromboinflammation.
Collapse
Affiliation(s)
- Krishna Sriram
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Paul A Insel
- Department of Pharmacology and Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
6
|
Eales JM, Maan AA, Xu X, Michoel T, Hallast P, Batini C, Zadik D, Prestes PR, Molina E, Denniff M, Schroeder J, Bjorkegren JLM, Thompson J, Maffia P, Guzik TJ, Keavney B, Jobling MA, Samani NJ, Charchar FJ, Tomaszewski M. Human Y Chromosome Exerts Pleiotropic Effects on Susceptibility to Atherosclerosis. Arterioscler Thromb Vasc Biol 2019; 39:2386-2401. [PMID: 31644355 PMCID: PMC6818981 DOI: 10.1161/atvbaha.119.312405] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Supplemental Digital Content is available in the text. The male-specific region of the Y chromosome (MSY) remains one of the most unexplored regions of the genome. We sought to examine how the genetic variants of the MSY influence male susceptibility to coronary artery disease (CAD) and atherosclerosis.
Collapse
Affiliation(s)
- James M Eales
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (J.M.E., A.A.M., X.X., B.K., M.T.)
| | - Akhlaq A Maan
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (J.M.E., A.A.M., X.X., B.K., M.T.)
| | - Xiaoguang Xu
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (J.M.E., A.A.M., X.X., B.K., M.T.)
| | - Tom Michoel
- The Roslin Institute, The University of Edinburgh, United Kingdom (T.M.).,Computational Biology Unit and Department of Informatics, University of Bergen, Norway (T.M.)
| | - Pille Hallast
- Institute of Biomedicine and Translational Medicine, University of Tartu, Estonia (P.H.)
| | - Chiara Batini
- Department of Health Sciences (C.B., J.T.), University of Leicester, United Kingdom
| | - Daniel Zadik
- Department of Genetics and Genome Biology (D.Z., M.A.J.), University of Leicester, United Kingdom
| | - Priscilla R Prestes
- School of Health and Life Sciences, Federation University Australia, Ballarat, Victoria (P.R.P., E.M., F.J.C.)
| | - Elsa Molina
- School of Health and Life Sciences, Federation University Australia, Ballarat, Victoria (P.R.P., E.M., F.J.C.)
| | - Matthew Denniff
- Department of Cardiovascular Sciences (M.D., N.J.S., F.J.C.), University of Leicester, United Kingdom
| | - Juliane Schroeder
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation (J.S., P.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Institute of Cardiovascular and Medical Sciences (J.S., P.M., T.J.G.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Johan L M Bjorkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY (J.L.M.B.)
| | - John Thompson
- Department of Health Sciences (C.B., J.T.), University of Leicester, United Kingdom
| | - Pasquale Maffia
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation (J.S., P.M.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Institute of Cardiovascular and Medical Sciences (J.S., P.M., T.J.G.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Italy (P.M.)
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences (J.S., P.M., T.J.G.), College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.,Jagiellonian University College of Medicine, Kraków, Poland (T.J.G.)
| | - Bernard Keavney
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (J.M.E., A.A.M., X.X., B.K., M.T.).,Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, United Kingdom (B.K., M.T.)
| | - Mark A Jobling
- Department of Genetics and Genome Biology (D.Z., M.A.J.), University of Leicester, United Kingdom
| | - Nilesh J Samani
- Department of Cardiovascular Sciences (M.D., N.J.S., F.J.C.), University of Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, United Kingdom (N.J.S.)
| | - Fadi J Charchar
- Department of Cardiovascular Sciences (M.D., N.J.S., F.J.C.), University of Leicester, United Kingdom.,School of Health and Life Sciences, Federation University Australia, Ballarat, Victoria (P.R.P., E.M., F.J.C.).,Department of Physiology, University of Melbourne, Parkville, Victoria, Australia (F.J.C.)
| | - Maciej Tomaszewski
- From the Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom (J.M.E., A.A.M., X.X., B.K., M.T.).,Division of Medicine, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, United Kingdom (B.K., M.T.)
| |
Collapse
|
7
|
Ganbaatar B, Fukuda D, Salim HM, Nishimoto S, Tanaka K, Higashikuni Y, Hirata Y, Yagi S, Soeki T, Sata M. Ticagrelor, a P2Y12 antagonist, attenuates vascular dysfunction and inhibits atherogenesis in apolipoprotein-E-deficient mice. Atherosclerosis 2018; 275:124-132. [PMID: 29902700 DOI: 10.1016/j.atherosclerosis.2018.05.053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Ticagrelor reduces cardiovascular events in patients with acute coronary syndrome (ACS). Recent studies demonstrated the expression of P2Y12 on vascular cells including endothelial cells, as well as platelets, and suggested its contribution to atherogenesis. We investigated whether ticagrelor attenuates vascular dysfunction and inhibits atherogenesis in apolipoprotein E-deficient (apoe-/-) mice. METHODS Eight-week-old male apoe-/- mice were fed a western-type diet (WTD) supplemented with 0.1% ticagrelor (approximately 120 mg/kg/day). Non-treated animals on WTD served as control. Atherosclerotic lesions were examined by en-face Sudan IV staining, histological analyses, quantitative RT-PCR analysis, and western blotting. Endothelial function was analyzed by acetylcholine-dependent vasodilation using aortic rings. Human umbilical vein endothelial cells (HUVEC) were used for in vitro experiments. RESULTS Ticagrelor treatment for 20 weeks attenuated atherosclerotic lesion progression in the aortic arch compared with control (p < 0.05). Ticagrelor administration for 8 weeks attenuated endothelial dysfunction (p < 0.01). Ticagrelor reduced the expression of inflammatory molecules such as vascular cell adhesion molecule-1, macrophage accumulation, and lipid deposition. Ticagrelor decreased the phosphorylation of JNK in the aorta compared with control (p < 0.05). Ticagrelor and a JNK inhibitor ameliorated impairment of endothelium-dependent vasodilation by adenosine diphosphate (ADP) in wild-type mouse aortic segments. Furthermore, ticagrelor inhibited the expression of inflammatory molecules which were promoted by ADP in HUVEC (p < 0.001). Ticagrelor also inhibited ADP-induced JNK activation in HUVEC (p < 0.05). CONCLUSIONS Ticagrelor attenuated vascular dysfunction and atherogenesis through the inhibition of inflammatory activation of endothelial cells. These effects might be a potential mechanism by which ticagrelor decreases cardiovascular events in patients with ACS.
Collapse
Affiliation(s)
- Byambasuren Ganbaatar
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Daiju Fukuda
- Department of Cardio-Diabetes Medicine, Institute of Biomedical Science, Tokushima University Graduate School, Tokushima, 770-8503, Japan.
| | - Hotimah Masdan Salim
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Sachiko Nishimoto
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Kimie Tanaka
- Division for Health Service Promotion, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yasutomi Higashikuni
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, 113-8655, Japan
| | - Yoichiro Hirata
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, 113-8655, Japan
| | - Shusuke Yagi
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Takeshi Soeki
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| | - Masataka Sata
- Department of Cardiovascular Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, 770-8503, Japan
| |
Collapse
|
8
|
Brazilek RJ, Tovar-Lopez FJ, Wong AKT, Tran H, Davis AS, McFadyen JD, Kaplan Z, Chunilal S, Jackson SP, Nandurkar H, Mitchell A, Nesbitt WS. Application of a strain rate gradient microfluidic device to von Willebrand's disease screening. LAB ON A CHIP 2017; 17:2595-2608. [PMID: 28660968 DOI: 10.1039/c7lc00498b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Von Willebrand's disease (VWD) is the most common inherited bleeding disorder caused by either quantitative or qualitative defects of von Willebrand factor (VWF). Current tests for VWD require relatively large blood volumes, have low throughput, are time-consuming, and do not incorporate the physiologically relevant effects of haemodynamic forces. We developed a microfluidic device incorporating micro-contractions that harnesses well-defined haemodynamic strain gradients to initiate platelet aggregation in citrated whole blood. The microchannel architecture has been specifically designed to allow for continuous real-time imaging of platelet aggregation dynamics. Subjects aged ≥18 years with previously diagnosed VWD or who presented for evaluation of a bleeding disorder, where the possible diagnosis included VWD, were tested. Samples were obtained for device characterization as well as for pathology-based testing. Platelet aggregation in the microfluidic device is independent of platelet amplification loops but dependent on low-level platelet activation, GPIb/IX/V and integrin αIIbβ3 engagement. Microfluidic output directly correlates with VWF antigen levels and is able to sensitively detect aggregation defects associated with VWD subtypes. Testing demonstrated a strong correlation with standard clinical laboratory-based tests. Head-to-head comparison with PFA100® demonstrated equivalent, if not improved, sensitivity for screening aggregation defects associated with VWD. This strain rate gradient microfluidic prototype has the potential to be a clinically useful, rapid and high throughput-screening tool for VWD as well as other strain-dependent platelet disorders. In addition, the microfluidic device represents a novel approach to examine the effects of high magnitude/short duration (ms) strain rate gradients on platelet function.
Collapse
Affiliation(s)
- Rose J Brazilek
- The Australian Centre for Blood Diseases, Monash University, Alfred Medical Research and Educational Precinct, Melbourne, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|