1
|
Jiang X, Xu L, Xu B, Peng H, Yang T, Zhao Y, Wu N, Zhao YE. SH2B1 promotes apoptosis in diabetic cataract via p38 MAPK pathway. iScience 2025; 28:111735. [PMID: 39898036 PMCID: PMC11786761 DOI: 10.1016/j.isci.2024.111735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Patients with diabetes face an increased risk of developing cataracts, with unclear mechanisms. Our study illuminates these mechanisms by identifying differentially expressed proteins in the lens anterior capsule of patients with diabetic cataract (DC) and age-related cataract using quantitative proteomics. We found SH2 domain-containing adapter protein B1 (SH2B1) to be crucial in DC progression. Reduced SH2B1 expression was confirmed through PCR and western blotting in patient samples, diet-induced obese mice, and high-glucose (HG)-cultured human lens epithelial cells. Under HG conditions, cell proliferation decreased, while migration and apoptosis, alongside changes in Bcl2 and caspase-3 expression, increased. Overexpressing SH2B1 alleviated these changes and influenced the p38 mitogen-activated protein kinase (MAPK) signaling pathway. This suggests SH2B1 and the p38 MAPK pathway as significant in DC pathogenesis and potential therapeutic targets. Clinically, this could lead to therapies aimed at halting or slowing DC progression.
Collapse
Affiliation(s)
- Xiaohui Jiang
- Eye Hospital of Wenzhou Medical University at Hangzhou, 618 East Fengqi Road, Hangzhou 310000, Zhejiang, China
| | - Liming Xu
- Eye Hospital of Wenzhou Medical University at Hangzhou, 618 East Fengqi Road, Hangzhou 310000, Zhejiang, China
| | - Boyue Xu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Haotian Peng
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Tonghe Yang
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yinying Zhao
- Eye Hospital of Wenzhou Medical University at Hangzhou, 618 East Fengqi Road, Hangzhou 310000, Zhejiang, China
| | - Nanxin Wu
- State Key Laboratory of Ophthalmology, Optometry and Vision Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yun-e Zhao
- Eye Hospital of Wenzhou Medical University at Hangzhou, 618 East Fengqi Road, Hangzhou 310000, Zhejiang, China
| |
Collapse
|
2
|
Lin H, Qiao J, Li L, Zhou Y, Lu L, Zhang C, Cheng Y. A prediction model based on high serum SH2B1 in patients with non-small cell lung cancer. Asian J Surg 2024:S1015-9584(24)01462-3. [PMID: 39054150 DOI: 10.1016/j.asjsur.2024.07.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024] Open
Abstract
BACKGROUND Identifying a specific biomarker will facilitate the diagnosis and prediction of non-small cell lung cancer (NSCLC). The aim of this study was to investigate the serum SH2B1 in patients with NSCLC and healthy volunteers and establish a novel prediction model. METHODS A total 103 NSCLC patients and 108 healthy volunteers were selected from December 2019 to December 2020. Their serum and important clinical data were collected. Serum SH2B1 concentration was determined by ELISA. A novel prediction model for NSCLC was established according to these significant factors. RESULTS Multivariate logistic regression analysis indicated that the chronic pulmonary diseases; NLR ≥ 2.07; hemoglobin level ≥ 136.56 g/L; albumin level ≥ 42.59 g/L and serum SH2B1 concentration ≥615.28 pg/mL were considered as statistically significant difference (p < 0.05). A comprehensive nomogram was established based on serum SH2B1 concentration combined with significant clinical indicators to predict an individual's probability of NSCLC. CONCLUSION The serum SH2B1 concentration ≥ 615.28 pg/mL is a significant predictive factor for NSCLC. Significantly, the prediction model based on serum SH2B1 has good stability and accuracy, which provides new insights of prediction assessment for NSCLC.
Collapse
Affiliation(s)
- Hang Lin
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China; Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiangnan Qiao
- Emergency Department, Zhungeer Banner Dalu Hospital, Erdos, China
| | - Linfeng Li
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China; Human Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuxuan Zhou
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Liqing Lu
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China; Human Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China; Human Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, China; Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, China; Human Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
3
|
Guo B, Yu Y, Wang M, Li R, He X, Tang S, Liu Q, Mao Y. Targeting the JAK2/STAT3 signaling pathway with natural plants and phytochemical ingredients: A novel therapeutic method for combatting cardiovascular diseases. Biomed Pharmacother 2024; 172:116313. [PMID: 38377736 DOI: 10.1016/j.biopha.2024.116313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/22/2024] Open
Abstract
The aim of this article is to introduce the roles and mechanisms of the JAK2/STAT3 pathway in various cardiovascular diseases, such as myocardial fibrosis, cardiac hypertrophy, atherosclerosis, myocardial infarction, and myocardial ischemiareperfusion. In addition, the effects of phytochemical ingredients and different natural plants, mainly traditional Chinese medicines, on the regulation of different cardiovascular diseases via the JAK2/STAT3 pathway are discussed. Surprisingly, the JAK2 pathway has dual roles in different cardiovascular diseases. Future research should focus on the dual regulatory effects of different phytochemical ingredients and natural plants on JAK2 to pave the way for their use in clinical trials.
Collapse
Affiliation(s)
- Bing Guo
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Yunfeng Yu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Min Wang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Ronghui Li
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xuan He
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Siqin Tang
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China
| | - Qili Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Yilin Mao
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410005, China.
| |
Collapse
|
4
|
Liu B, Liu X, Hu S, Mao S, Yang M, Wu B, Wu G. Effect of SH2B1 on glucose metabolism during pressure overload-induced cardiac hypertrophy and cardiac dysfunction. Clin Exp Pharmacol Physiol 2023; 50:815-825. [PMID: 37401170 DOI: 10.1111/1440-1681.13807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/05/2023]
Abstract
This study mainly explored the effect and mechanism of Src homology 2 (SH2) B adaptor protein 1 (SH2B1) on cardiac glucose metabolism during pressure overload-induced cardiac hypertrophy and dysfunction. A pressure-overloaded cardiac hypertrophy model was constructed, and SH2B1-siRNA was injected through the tail vein. Haematoxylin and eosin (H&E) staining was used to detect myocardial morphology. ANP, BNP, β-MHC and the diameter of myocardial fibres were quantitatively measured to evaluate the degree of cardiac hypertrophy, respectively. GLUT1, GLUT4, and IR were detected to assess cardiac glucose metabolism. Cardiac function was determined by echocardiography. Then, glucose oxidation and uptake, glycolysis and fatty acid metabolism were assessed in Langendorff perfusion of hearts. Finally, PI3K/AKT activator was used to further explore the relevant mechanism. The results showed that during cardiac pressure overload, with the aggravation of cardiac hypertrophy and dysfunction, cardiac glucose metabolism and glycolysis increased, and fatty acid metabolism decreased. After SH2B1-siRNA transfection, cardiac SH2B1 expression was knocked down, and the degree of cardiac hypertrophy and dysfunction was alleviated compared with the Control-siRNA transfected group. Simultaneously, cardiac glucose metabolism and glycolysis were reduced, and fatty acid metabolism was enhanced. The SH2B1 expression knockdown mitigated the cardiac hypertrophy and dysfunction by reducing cardiac glucose metabolism. After using PI3K/AKT activator, the effect of SH2B1 expression knockdown on cardiac glucose metabolism was reversed during cardiac hypertrophy and dysfunction. Collectively, SH2B1 regulated cardiac glucose metabolism by activating the PI3K/AKT pathway during pressure overload-induced cardiac hypertrophy and cardiac dysfunction.
Collapse
Affiliation(s)
- Beilei Liu
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Xuguang Liu
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Shan Hu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Shuai Mao
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Manqi Yang
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Bin Wu
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
- Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
- Hubei Province Academy of Traditional Chinese Medicine, Wuhan, China
| | - Gang Wu
- Department of Cardiology, Hubei Key Laboratory of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
5
|
Jiang L, Ren L, Guo X, Zhao J, Zhang H, Chen S, Le S, Liu H, Ye P, Chen M, Xia J. Dual-specificity Phosphatase 9 protects against Cardiac Hypertrophy by targeting ASK1. Int J Biol Sci 2021; 17:2193-2204. [PMID: 34239349 PMCID: PMC8241718 DOI: 10.7150/ijbs.57130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/23/2021] [Indexed: 01/22/2023] Open
Abstract
The functions of dual-specificity phosphatase 9 (DUSP9) in hepatic steatosis and metabolic disturbance during nonalcoholic fatty liver disease were discussed in our prior study. However, its roles in the pathophysiology of pressure overload-induced cardiac hypertrophy remain to be illustrated. This study attempted to uncover the potential contributions and underpinning mechanisms of DUSP9 in cardiac hypertrophy. Utilizing the gain-and-loss-of-functional approaches of DUSP9 the cardiac phenotypes arising from the pathological, echocardiographic, and molecular analysis were quantified. The results showed increased levels of DUSP9 in hypertrophic mice heart and angiotensin II treated cardiomyocytes. In accordance with the results of cellular hypertrophy in response to angiotensin II, cardiac hypertrophy exaggeration, fibrosis, and malfunction triggered by pressure overload was evident in the case of cardiac-specific conditional knockout of DUSP9. In contrast, transgenic mice hearts with DUSP9 overexpression portrayed restoration of the hypertrophic phenotypes. Further explorations of molecular mechanisms indicated the direct interaction of DUSP9 with ASK1, which further repressed p38 and JNK signaling pathways. Moreover, blocking ASK1 with ASK1-specific inhibitor compensated the pro-hypertrophic effects induced by DUSP9 deficiency in cardiomyocytes. The main findings of this study suggest the potential of DUSP9 in alleviating cardiac hypertrophy at least partially by repressing ASK1, thereby looks promising as a prospective target against cardiac hypertrophy.
Collapse
Affiliation(s)
- Lang Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyun Ren
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| | - Xin Guo
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Le
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Liu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Manhua Chen
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Liu K, Chen Y, Ai F, Li YQ, Zhang K, Zhang WT. PHLDA3 inhibition attenuates endoplasmic reticulum stress-induced apoptosis in myocardial hypoxia/reoxygenation injury by activating the PI3K/AKT signaling pathway. Exp Ther Med 2021; 21:613. [PMID: 33936270 PMCID: PMC8082641 DOI: 10.3892/etm.2021.10045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum stress (ERS)-induced apoptosis serves a crucial role in the pathogenesis of myocardial ischemia/reperfusion injury (MIRI). Previous studies have confirmed that pleckstrin homology-like domain family A member 3 (PHLDA3) is an important mediator in ERS-associated apoptosis. The aim of the current study focused on whether PHLDA3 served protective effects on hypoxia/reoxygenation (H/R)-injured cardiomyocytes by inhibiting ERS-induced apoptosis. Furthermore, the molecular mechanisms associated with the PI3K/AKT signaling pathway were investigated. Primary neonatal rat cardiomyocytes were isolated and randomized into four groups: i) Control + adenovirus encoding scrambled short hairpin RNA (AdshRNA); ii) control + adenoviral vectors encoding PHLDA3 shRNA (AdshPHLDA3); iii) H/R+ AdshRNA and iv) H/R+AdshPHLDA3. AdshPHLDA3 was used to knock down PHLDA3. An H/R injury model was constructed by treatment with hypoxia for 4 h followed by reoxygenation for 6 h. A PI3K/AKT inhibitor, LY294002, was supplemented in mechanistic studies. Cell viability and LDH/CK releases were detected to evaluate myocardial damage. Flow cytometry assays were used to assess apoptotic response. Western blotting assays were used to detect protein expression. The results demonstrated that H/R induced myocardial damage and increased PHLDA3 expression. ERS-induced apoptosis was significantly increased following H/R injury, as indicated by increased apoptotic rates and ERS-associated protein expression, including those of CHOP, 78 kDa glucose-regulated protein and caspase-12. However, PHLDA3 inhibition following AdshPHLDA3 transfection reversed cell damage and ERS-associated apoptosis on H/R injury. Studies for molecular mechanisms concluded that the apoptosis-inhibition effects and cardioprotective roles of PHLDA3 inhibition were induced partly by the activation of the PI3K/AKT pathway, which was verified by LY294002 treatment. In conclusion, in the process of H/R injury, PHLDA3 inhibition reduced ERS-induced apoptosis and H/R injury by activating the PI3K/AKT pathway. PHLDA3 may be a therapeutic target for the treatment of MIRI.
Collapse
Affiliation(s)
- Kai Liu
- Department of Geriatric Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Ying Chen
- Department of Geriatric Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, Hubei 430000, P.R. China
| | - Yun-Qian Li
- Department of Geriatric Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Kun Zhang
- Department of Geriatric Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| | - Wei-Tong Zhang
- Department of General Surgery, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570311, P.R. China
| |
Collapse
|
7
|
Wang S, Wang H, Su X, Liu B, Wang L, Yan H, Mao S, Huang H, Huang C, Cheng M, Wu G. β-adrenergic activation may promote myosin light chain kinase degradation through calpain in pressure overload-induced cardiac hypertrophy: β-adrenergic activation results in MLCK degradation. Biomed Pharmacother 2020; 129:110438. [PMID: 32768940 DOI: 10.1016/j.biopha.2020.110438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/13/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND β-adrenergic activation is able to exacerbate cardiac hypertrophy. Myosin light chain kinase (MLCK) and its phosphorylated substrate, phospho-myosin light chain 2 (p-MLC2), play vital roles in regulating cardiac hypertrophy. However, it is not yet clear whether there is a relationship between β-adrenergic activation and MLCK in the progression of cardiac hypertrophy. Therefore, we explored this relationship and the underlying mechanisms in this work. METHODS Cardiac hypertrophy and cardiomyocyte hypertrophy were induced by pressure overload and isoproterenol (ISO) stimulation, respectively. Echocardiography, histological analysis, immunofluorescence and qRT-PCR were used to confirm the successful establishment of the models. A β-blocker (metoprolol) and a calpain inhibitor (calpeptin) were administered to inhibit β-adrenergic activity in rats and calpain in cardiomyocytes, respectively. The protein expression levels of MLCK, myosin light chain 2 (MLC2), p-MLC2, myosin phosphatase 2 (MYPT2), calmodulin (CaM) and calpain were measured using western blotting. A cleavage assay was performed to assess the degradation of recombinant human MLCK by recombinant human calpain. RESULTS The β-blocker alleviated cardiac hypertrophy and dysfunction, increased MLCK and MLC2 phosphorylation and decreased calpain expression in pressure overload-induced cardiac hypertrophy. Additionally, the calpain inhibitor calpeptin attenuated cardiomyocyte hypertrophy, upregulated MLCK and p-MLC2 and reduced MLCK degradation in ISO-induced cardiomyocyte hypertrophy. Recombinant human calpain degraded recombinant human MLCK in vitro in concentration- and time-dependent manners, and this degradation was inhibited by the calpain inhibitor calpeptin. CONCLUSION Our study suggested that β-adrenergic activation may promote the degradation of MLCK through calpain in pressure overload-induced cardiac hypertrophy.
Collapse
Affiliation(s)
- Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Haixiong Wang
- Department of Cardiology, Shanxi Cardiovascular Hospital, Taiyuan, 030001, China
| | - Xiaoling Su
- Department of Cardiology, Qinghai Provincial People's Hospital, Xining, 810007, China
| | - Beilei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Le Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Hui Yan
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Shuai Mao
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Hubei Key Laboratory of Cardiology, Wuhan, 430060, China; Department of Cardiology, Ezhou Hospital, Renmin Hospital of Wuhan University, Ezhou, 436000, China.
| |
Collapse
|
8
|
Xin G, Xu-Yong L, Shan H, Gang W, Zhen C, Ji-Jun L, Ping Y, Man-Hua C. SH2B1 protects cardiomyocytes from ischemia/reperfusion injury via the activation of the PI3K/AKT pathway. Int Immunopharmacol 2020; 83:105910. [PMID: 32222636 DOI: 10.1016/j.intimp.2019.105910] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/27/2019] [Accepted: 09/08/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Apoptosis, reactive oxidative stress (ROS) and inflammation act as the pivotal pathogenesis of myocardial ischemia/reperfusion (I/R) injury (MIRI). Our prior study and other investigation have demonstrated the participations of src homology 2 (SH2) B adaptor protein 1 (SH2B1) in ischemic injury and cardiac hypertrophy; whereas, the involvements of SH2B1 in MIRI and underlying mechanisms are completely unknown. METHOD In present study, MIRI model in vivo was induced by 30 min of ligation of LAD coronary artery and 24 h of reperfusion, and primary cultured cardiomyocytes were challenged with 2 h of hypoxia followed by 4 h of reoxygenation (H/R) to mimic MIRI in vitro. Adenovirus encoding for SH2B1 or GFP were pre-transfected into myocardium prior to MIRI both in vivo and in vitro. The myocardial damage, cardiac function, apoptosis, ROS and inflammation were evaluated systematically. Immunofluorescence staining and western blotting were alternatively performed to detect protein expression. RESULTS The results exhibited that H/R or I/R significantly reduced SH2B1 in cardiomyocytes, followed by impaired cell survival and function, which were strongly reversed after the adenovirus-mediated SH2B1 up-regulation. Meanwhile, I/R- and H/R-elevated inflammation, apoptosis and ROS were also alleviated by SH2B1 up-regulation. A mechanistic study suggested that the protective contributions of SH2B1 on H/R-suffered cardiomyocytes were based on the activation of the PI3K/AKT pathway. The abolishment of the PI3K/AKT via a pharmacological inhibitor (LY294002) repressed anti-H/R capabilities of SH2B1. CONCLUSION Therefore, SH2B1 prevents cardiomyocytes from inflammation, apoptosis and ROS in MIRI partially through the PI3K/AKT-dependent avenues. It may provide a novel therapeutic target for the treatment of MIRI.
Collapse
Affiliation(s)
- Guo Xin
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Li Xu-Yong
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Hu Shan
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Wu Gang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chen Zhen
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Liu Ji-Jun
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China
| | - Ye Ping
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China.
| | - Chen Man-Hua
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei Province, China.
| |
Collapse
|
9
|
Zhang YJ, Huang H, Liu Y, Kong B, Wang G. MD-1 Deficiency Accelerates Myocardial Inflammation and Apoptosis in Doxorubicin-Induced Cardiotoxicity by Activating the TLR4/MAPKs/Nuclear Factor kappa B (NF-κB) Signaling Pathway. Med Sci Monit 2019; 25:7898-7907. [PMID: 31636246 PMCID: PMC6820359 DOI: 10.12659/msm.919861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Myocardial apoptosis and inflammation play important roles in doxorubicin (DOX)-caused cardiotoxicity. Our prior studies have characterized the effects of myeloid differentiation protein 1(MD-1) in pathological cardiac remodeling and myocardial ischemia/reperfusion (I/R) injury, but its participations and potential molecular mechanisms in DOX-caused cardiotoxicity remain unknown. MATERIAL AND METHODS In the present study, MD-1 knockout mice were generated, and a single intraperitoneal injection of DOX (15 mg/kg) was performed to elicit DOX-induced cardiotoxicity. Cardiac function, histological change, mitochondrial structure, myocardial death, apoptosis, inflammation, and molecular alterations were measured systemically. RESULTS The results showed that the protein and mRNA levels of MD-1 were dramatically downregulated in DOX-treated cardiomyocytes. DOX insult markedly accelerated cardiac dysfunction and injury, followed by enhancements of apoptosis and inflammation, all of which were further aggravated in MD-1 knockout mice. Mechanistically, the TLR4/MAPKs/NF-kappaB pathways, which were over-activated in MD-1-deficient mice, were significantly increased in DOX-damaged cardiomyocytes. Moreover, the abolishment of TLR4 or NF-kappaB via a specific inhibitor exerted protective effects against the adverse effects of MD-1 loss on DOX-caused cardiotoxicity. CONCLUSIONS Collectively, these findings suggest that MD-1 is a novel target for the treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Ying-Jun Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - Guangji Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| |
Collapse
|
10
|
Geng Z, Fan WY, Zhou B, Ye C, Tong Y, Zhou YB, Xiong XQ. FNDC5 attenuates obesity-induced cardiac hypertrophy by inactivating JAK2/STAT3-associated inflammation and oxidative stress. J Transl Med 2019; 17:107. [PMID: 30940158 PMCID: PMC6444535 DOI: 10.1186/s12967-019-1857-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/26/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chronic low-grade inflammation and oxidative stress play important roles in the development of obesity-induced cardiac hypertrophy. Here, we investigated the role of Fibronectin type III domain containing 5 (FNDC5) in cardiac inflammation and oxidative stress in obesity-induced cardiac hypertrophy. METHODS Male wild-type and FNDC5-/- mice were fed normal chow or high fat diet (HFD) for 20 weeks to induce obesity, and primary cardiomyocytes and H9c2 cells treated with palmitate (PA) were used as in vitro model. The therapeutic effects of lentiviral vector-mediated FNDC5 overexpression were also examined in HFD-induced cardiac hypertrophy. RESULTS High fat diet manifested significant increases in body weight and cardiac hypertrophy marker genes expression, while FNDC5 deficiency aggravated cardiac hypertrophy evidenced by increased Nppa, Nppb and Myh7 mRNA level and cardiomyocytes area, in association with enhanced cardiac inflammatory cytokines expression, oxidative stress level and JAK2/STAT3 activation in HFD-fed mice. FNDC5 deficiency in primary cardiomyocytes or FNDC5 knockdown in H9c2 cells enhanced PA-induced inflammatory responses and NOX4 expression. Exogenous FNDC5 pretreatment attenuated PA-induced cardiomyocytes hypertrophy, inflammatory cytokines up-regulation and oxidative stress in primary cardiomyocytes and H9c2 cells. FNDC5 overexpression attenuated cardiac hypertrophy as well as cardiac inflammation and oxidative stress in HFD-fed mice. CONCLUSIONS FNDC5 attenuates obesity-induced cardiac hypertrophy by inactivating JAK2/STAT3 associated-cardiac inflammation and oxidative stress. The cardio-protective role of FNDC5 shed light on future therapeutic interventions in obesity and related cardiovascular complications.
Collapse
Affiliation(s)
- Zhi Geng
- Department of Cardiac Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Wen-Yong Fan
- State Key Laboratory of Medical Neurobiology, Department of Physiology and Biophysics, School of Life Sciences and Collaborative Innovation Centre for Brain Science, Fudan University, Shanghai, 200438, China
| | - Bing Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Chao Ye
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Ying Tong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Xiao-Qing Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
11
|
Hu S, Cheng M, Guo X, Wang S, Liu B, Jiang H, Huang C, Wu G. Down-regulation of miR-200c attenuates AngII-induced cardiac hypertrophy via targeting the MLCK-mediated pathway. J Cell Mol Med 2019; 23:2505-2516. [PMID: 30680929 PMCID: PMC6433679 DOI: 10.1111/jcmm.14135] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 11/21/2018] [Accepted: 12/09/2018] [Indexed: 01/07/2023] Open
Abstract
Background MicroRNAs (miRNAs) have been shown to commonly contribute to cardiac hypertrophy (CH). The aim of this study was to test the hypothesis that miR‐200c plays an important role in the progression of CH by targeting myosin light chain kinase (MLCK/MYLK). Methods and results Cardiac hypertrophy was induced by aortic banding (AB) in rats. Cellular hypertrophy in neonatal rat cardiomyocytes (NCMs) was induced by AngII treatment. Echocardiography, histology and molecular measurements were used to assess the results of the experiments. The levels of apoptosis and reactive oxygen species (ROS) were also measured. Quantitative real‐time PCR (qRT‐PCR) and Western blotting were used to measure mRNA and protein levels respectively. The present results showed that miR‐200c expression was increased in response to CH both in vivo and in vitro. The down‐regulation of miRNA‐200c by a specific inhibitor markedly ameliorated CH resulting from AngII treatment, and the mRNA levels of atrial natriuretic peptide, brain natriuretic peptide and β‐myosin heavy chain were simultaneously decreased. Notably, minimal apoptosis and ROS accumulation were identified in AngII‐induced hypertrophic cardiomyocytes. Conversely, the up‐regulation of miR‐200c using specific mimics reversed these effects. Mechanistic investigations demonstrated that the MLCK gene is a direct target of miR‐200c; an increase in miR‐200c levels led to a decrease in the expression of MLCK and its downstream effector, p‐MLC2, while miR‐200c inhibition increased the expression of these proteins. Furthermore, inhibiting MLCK impaired the anti‐hypertrophic effects contributions produced by the knockdown of miR‐200c. Conclusion Our studies suggest that miR‐200c may serve as a potential therapeutic target that could delay hypertrophy. We have also uncovered a relationship between miR‐200c and MLCK, identifying MLCK as a direct mediator of miR‐200c.
Collapse
Affiliation(s)
- Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Guo
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Beilei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
12
|
Liu BL, Cheng M, Hu S, Wang S, Wang L, Tu X, Huang CX, Jiang H, Wu G. Overexpression of miR-142-3p improves mitochondrial function in cardiac hypertrophy. Biomed Pharmacother 2018; 108:1347-1356. [PMID: 30372837 DOI: 10.1016/j.biopha.2018.09.146] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Our previous studies have shown that Src homology 2 (SH2) B adaptor protein 1 (SH2B1) plays an important role in cardiac hypertrophy, but the specific mechanism remains to be studied. Through bioinformatics and related research, it is found that miR-14 2-3 p is closely related to SH2B1. Exploring the relationship between miR-14 2-3 p and gene SH2B1 expression is beneficial for the treatment of cardiac hypertrophy. SH2B1 is a key factor regulating energy metabolism, mitochondria are the main organelles of energy metabolism and cardiac hypertrophy are closely related to mitochondrial dysfunction. So it is particularly important to explore the relationship between miR-14 2-3 p and SH2B1 and myocardial mitochondrial function. In this study, we investigated whether overexpression of miR-14 2-3 p can inhibit the expression of gene SH2B1, ameliorate cardiac mitochondrial dysfunction and cardiac hypertrophy. METHODS We first constructed a pressure overload myocardial hypertrophy model by ligation of the abdominal aorta(AB) of rats. After 4 weeks of modeling, echocardiographic examination showed that the heart volume of the model group became larger, and Hematoxylin and Eosin Staining Kit (HE) staining showed that the cross-sectional area of the heart tissue became larger. The expression of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), β-Myosin Heavy Chain (β-MHC) messenger RNA (mRNA) increased by real‑time polymerase chain reaction (PCR), which proved that the model of cardiac hypertrophy was successfully constructed. Then, miR-14 2-3 p agomir was injected into the tail vein of rats 2 weeks and 4 weeks respectively. The expression of miR-4 2-3 p mRNA was increased by PCR, suggesting that the miR-14 2-3 p plasmid was successfully transfected. At 4 weeks of pressure overload myocardial hypertrophy model, echocardiography was used to detect cardiac function. HE staining of heart tissue and the expression of ANP, BNP, β-MHC mRNA were used to detect cardiac hypertrophy. Flow cytometry was used to detect changes in mitochondrial membrane potential. Secondly, we observed the effect of miR-14 2-3 p on cardiomyocyte hypertrophy and mitochondrial function in vitro by culture neonatal rat cardiomyocytes. Afterwards, using angiotensin (Ang)II-, miRNA mimic- and miRNA mimic nc- treated cardiomyocytes for a given time. α-actin staining found that the myocardial cells became larger, The expression of ANP, BNP, β-MHC mRNA increased by PCR, which proved that AngII-induced cardiac hypertrophy was successfully constructed. Then, the mitochondrial density was measured using mitochondrial Mito-Red staining by Confocal microscope, the mitochondrial membrane potential was evaluated using flow cytometry, Mitochondrial respiration oxygen consumption rate (OCR) was measured by a Seahorse Extracellular Flux Analyzer XF96, and the expression levels of miR-14 2-3 p, ANP, BNP, β-MHC mRNA, SH2B1 in the cardiomyocytes of different groups were measured by RT-PCR and Western blotting. Finally, we used luciferase assay and transfected miR-14 2-3 p agomir in rats, transfected miR-14 2-3 p mimic in Cardiomyocytes, it is found that myocardial SH2B1 mRNA and protein expression both were reduced. RESULTS When the pressure overload myocardial hypertrophy model was constructed for four weeks, echocardiography revealed that the heart volume, Left ventricular end diastolic diameter(LVIDd), Left ventricular end systolic diameter (LVIDs), Left ventricular posterior wall thickness (LVPWd), Systolic left ventricular posterior wall (LVPWs), Left ventricle (LV) Mass increased, Ejection fraction (EF) % decreased of AB group increased, but transfected with miR-14 2-3 p agomir of AB, these increase was not significant, EF% reduction was not obvious. HE staining showed that the myocardial cross-sectional area of AB group increased significantly, but the miR-14 2-3 p agomir treatment of AB group did not increase significantly. PCR analysis showed that the expression of ANP, BNP,β-MHC mRNA was significantly increased in AB group, but the miR-14 2-3 p agomir treatment of AB group was not significantly increased. Flow cytometry showed that the mitochondrial membrane potential of AB group was significantly reduced, and the miR-14 2-3 p agomir treatment of AB group was not significantly decreased. During AngII-induced cardiomyocyte hypertrophy, ANP, BNP,β-MHC mRNA expression was increased, while these factors was not significantly increased in miR-14 2-3 p mimic treatment group; mitochondrial membrane potential, mitochondrial density and OCR was significantly decreased in AngII treated group, and these were not significantly reduced in miR-14 2-3 p mimic treatment group; CONCLUSIONS: miR-14 2-3 p not only mitigate cardiac hypertrophy by directly inhibit the expression of gene SH2B1, but also can protect mitochondrial function in cardiac hypertrophy of vitro and vivo.
Collapse
Affiliation(s)
- Bei-Lei Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China.
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China.
| | - Shun Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China.
| | - Le Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China.
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China.
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, Wuhan, Hubei 430060, China; Department of Cardiology, Ezhou Hospital, Renmin Hospital of Wuhan University, Ezhou, Hubei 436000, China.
| |
Collapse
|
13
|
Yuan J, Zeng L, Sun Y, Wang N, Sun Q, Cheng Z, Wang Y. SH2B1 protects against OGD/R‑induced apoptosis in PC12 cells via activation of the JAK2/STAT3 signaling pathway. Mol Med Rep 2018; 18:2613-2620. [PMID: 30015896 PMCID: PMC6102733 DOI: 10.3892/mmr.2018.9265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
Apoptosis acts as the primary pathogenesis of cerebral ischemia/reperfusion (I/R) injury. Prior studies have revealed the effects of src homology 2 (SH2)B adaptor protein 1 (SH2B1) in myocardial infarction; however, involvement of SH2B1 in cerebral I/R injury and the underlying mechanisms remain to be investigated. In the present study, neural-like PC12 cells underwent 6 h of oxygen-glucose deprivation (OGD) followed by 24 h of reoxygenation (OGD/R). PC12 cells were pre-transfected with an adenovirus encoding for SH2B1 or GFP prior to exposure to OGD/R. Cell viability, LDH release and the apoptotic cascade were investigated. Reverse transcription-quantitative polymerase chain reaction and western blotting were employed to analyze mRNA and protein expression levels, respectively. The results of the present study revealed that OGD/R reduced SH2B1 expression in PC12 cells, accompanied by suppressed cell viability and enhanced cell death. Adenovirus-mediated SH2B1 overexpression, however, resulted in increased viability, reduced LDH release and a reduction in the expression levels of proteins associated with the apoptotic cascade in PC12 cells under the OGD/R condition. A mechanistic explanation may be that the positive effects of SH2B1 on neurons were in part derived from the activation of the JAK2/STAT3 signaling pathway. Furthermore, abolishment of JAK2/STAT3 signaling using a pharmacological inhibitor suppressed the inhibitory effects of SH2B1 under the OGD/R condition. The results of the present study suggested that SH2B1 may protect PC12 cells from OGD/R injury partially by the JAK2/STAT3-dependent inhibition of apoptosis and may provide a novel therapeutic target for the treatment of cerebral I/R injury.
Collapse
Affiliation(s)
- Jiang Yuan
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Lei Zeng
- Department of Radiology, Ren‑Min Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yanpeng Sun
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Na Wang
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Qiang Sun
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhaohui Cheng
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yunfu Wang
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
14
|
Abstract
Heart diseases are major causes of mortality. Cardiac hypertrophy, myocardial infarction (MI), viral cardiomyopathy, ischemic and reperfusion (I/R) heart injury finally lead to heart failure and death. Insulin and IGF1 signal pathways play key roles in normal cardiomyocyte growth and physiological cardiac hypertrophy while inflammatory signal pathway is associated with pathological cardiac hypertrophy, MI, viral cardiomyopathy, I/R heart injury, and heart failure. Adapter proteins are the major family proteins, which transduce signals from insulin, IGF1, or cytokine receptors to the downstream pathways and have been shown to regulate variety of heart diseases. Here, we summarized the recent advances in understanding the physiological and pathological roles of adapter proteins in heart failure.
Collapse
Affiliation(s)
- Li Tao
- Cardiovascular Center, 305 Hospital of People's Liberation Army, Beijing, 100017, China
| | - Linna Jia
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, 130024, Jilin, China
| | - Yuntian Li
- Cardiovascular Center, 305 Hospital of People's Liberation Army, Beijing, 100017, China
| | - Chengyun Song
- Cardiovascular Center, 305 Hospital of People's Liberation Army, Beijing, 100017, China.
| | - Zheng Chen
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), School of Life Sciences, Northeast Normal University, Changchun, 130024, Jilin, China.
| |
Collapse
|
15
|
Phosphorylation of the Unique C-Terminal Tail of the Alpha Isoform of the Scaffold Protein SH2B1 Controls the Ability of SH2B1α To Enhance Nerve Growth Factor Function. Mol Cell Biol 2018; 38:MCB.00277-17. [PMID: 29229648 DOI: 10.1128/mcb.00277-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 12/06/2017] [Indexed: 11/20/2022] Open
Abstract
The scaffold protein SH2B1, a major regulator of body weight, is recruited to the receptors of multiple cytokines and growth factors, including nerve growth factor (NGF). The β isoform but not the α isoform of SH2B1 greatly enhances NGF-dependent neurite outgrowth of PC12 cells. Here, we asked how the unique C-terminal tails of the α and β isoforms modulate SH2B1 function. We compared the actions of SH2B1α and SH2B1β to those of the N-terminal 631 amino acids shared by both isoforms. In contrast to the β tail, the α tail inhibited the ability of SH2B1 to both cycle through the nucleus and enhance NGF-mediated neurite outgrowth, gene expression, phosphorylation of Akt and phospholipase C-gamma (PLC-γ), and autophosphorylation of the NGF receptor TrkA. These functions were restored when Tyr753 in the α tail was mutated to phenylalanine. We provide evidence that TrkA phosphorylates Tyr753 in SH2B1α, as well as tyrosines 439 and 55 in both SH2B1α and SH2B1β. Finally, coexpression of SH2B1α but not SH2B1α with a mutation of Y to F at position 753 (Y753F) inhibited the ability of SH2B1β to enhance neurite outgrowth. These results suggest that the C-terminal tails of SH2B1 isoforms are key determinants of the cellular role of SH2B1. Furthermore, the function of SH2B1α is regulated by phosphorylation of the α tail.
Collapse
|
16
|
Hypertrophied myocardium is vulnerable to ischemia/reperfusion injury and refractory to rapamycin-induced protection due to increased oxidative/nitrative stress. Clin Sci (Lond) 2018; 132:93-110. [PMID: 29175946 DOI: 10.1042/cs20171471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/22/2017] [Accepted: 11/24/2017] [Indexed: 11/17/2022]
Abstract
Left ventricular hypertrophy (LVH) is causally related to increased morbidity and mortality following acute myocardial infarction (AMI) via still unknown mechanisms. Although rapamycin exerts cardioprotective effects against myocardial ischemia/reperfusion (MI/R) injury in normal animals, whether rapamycin-elicited cardioprotection is altered in the presence of LVH has yet to be determined. Pressure overload induced cardiac hypertrophied mice and sham-operated controls were exposed to AMI by coronary artery ligation, and treated with vehicle or rapamycin 10 min before reperfusion. Rapamycin produced marked cardioprotection in normal control mice, whereas pressure overload induced cardiac hypertrophied mice manifested enhanced myocardial injury, and was refractory to rapamycin-elicited cardioprotection evidenced by augmented infarct size, aggravated cardiomyocyte apoptosis, and worsening cardiac function. Rapamycin alleviated MI/R injury via ERK-dependent antioxidative pathways in normal mice, whereas cardiac hypertrophied mice manifested markedly exacerbated oxidative/nitrative stress after MI/R evidenced by the increased iNOS/gp91phox expression, superoxide production, total NO metabolites, and nitrotyrosine content. Moreover, scavenging superoxide or peroxynitrite by selective gp91phox assembly inhibitor gp91ds-tat or ONOO- scavenger EUK134 markedly ameliorated MI/R injury, as shown by reduced myocardial oxidative/nitrative stress, alleviated myocardial infarction, hindered cardiomyocyte apoptosis, and improved cardiac function in aortic-banded mice. However, no additional cardioprotective effects were achieved when we combined rapamycin and gp91ds-tat or EUK134 in ischemic/reperfused hearts with or without LVH. These results suggest that cardiac hypertrophy attenuated rapamycin-induced cardioprotection by increasing oxidative/nitrative stress and scavenging superoxide/peroxynitrite protects the hypertrophied heart from MI/R.
Collapse
|
17
|
Gal D, Sipido KR, Vandevelde W. Editorial highlights from Cardiovascular Research. Cardiovasc Res 2017; 113:e64-e68. [PMID: 29186440 DOI: 10.1093/cvr/cvx210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Diane Gal
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, Campus Gasthuisberg, KU Leuven, Belgium
| | - Karin R Sipido
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, Campus Gasthuisberg, KU Leuven, Belgium
| | - Wouter Vandevelde
- Division of Experimental Cardiology, Department of Cardiovascular Sciences, Campus Gasthuisberg, KU Leuven, Belgium
| |
Collapse
|
18
|
Hernán Gómez Llambí H, Cao G, Donato M, Suárez D, Ottaviano G, Müller A, Buchholz B, Gelpi R, Otero-Losada M, Milei J. Left ventricular hypertrophy does not prevent heart failure in experimental hypertension. Int J Cardiol 2017; 238:57-65. [PMID: 28410843 DOI: 10.1016/j.ijcard.2017.03.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Revised: 03/04/2017] [Accepted: 03/24/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Left ventricular hypertrophy (LVH) secondary to hypertension has been accepted to prevent heart failure (HF) while paradoxically increasing cardiovascular morbi-mortality. OBJECTIVES To evaluate whether antihypertensive treatment inhibits LVH, restores beta-adrenergic response and affects myocardial oxidative metabolism. METHODS Ninety spontaneously hypertensive rats (SHR) were distributed into groups and treated (mg/kg, p.o.) with: losartan 30 (L), hydralazine 11 (H), rosuvastatin 10 (R), carvedilol 20 (C). Hypertension control group comprised 18 normotensive rats (Wistar-Kyoto, WKY). Following euthanasia at 16months, contractility was measured in 50% of rats (Langendorff system) before and after isoproterenol (Iso) 10-9M, 10-7M and 10-5M stimulation. Left ventricular weight (LVW) was measured in the remaining hearts, and normalized by BW. Expression of thioredoxin 1 (Trx-1), peroxyredoxin 2 (Prx-2), glutaredoxin 3 (Grx-3), caspase-3 and brain natriuretic peptide (BNP) was determined. RESULTS Systolic blood pressure (mmHg): 154±3 (L), 137±1 (H), 190±3 (R)*, 206±3 (SHR)*, 183±1 (C)**, and 141±1 (WKY) (*p<0.05 vs. L, H, WKY, **p<0.05 vs. L, H, WKY, SHR). LVW/BW was higher in SHR and R (p<0.05). Groups SHR, R and C evidenced baseline contractile depression. Response to Iso 10-5M was similar in WKY and L. Expression of Trx-1, Prx-2 and Grx-3 increased in C, H, R and L (p<0.01). CONCLUSIONS Present findings argue against the traditional idea and support that LVH might not be required to prevent HF. Increased expression of thioredoxins by antihypertensive treatment might be involved in protection from HF.
Collapse
Affiliation(s)
- H Hernán Gómez Llambí
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| | - G Cao
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| | - M Donato
- Institute of Cardiovascular Pathophysiology, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| | - D Suárez
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| | - G Ottaviano
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| | - A Müller
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| | - B Buchholz
- Institute of Cardiovascular Pathophysiology, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| | - R Gelpi
- Institute of Cardiovascular Pathophysiology, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| | - M Otero-Losada
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina.
| | - J Milei
- Institute of Cardiological Research, School of Medicine, University of Buenos Aires, UBA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
19
|
Li L, Huang L, Lin S, Luo Y, Fang Q. Discordant phenotypes in monozygotic twins with 16p11.2 microdeletions including the SH2B1 gene. Am J Med Genet A 2017; 173:2284-2288. [PMID: 28544142 DOI: 10.1002/ajmg.a.38284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 04/13/2017] [Indexed: 11/07/2022]
Abstract
A 200∼240 kb SH2B1-containing deletion region on 16p11.2 is associated with early-onset obesity and developmental delay. Here, we describe monozygotic twin brothers with discordant clinical presentations. Intrauterine fetal growth restriction was present in both twins. Additionally, twin A exhibited coarctation of aorta, left ventricular noncompaction, atrial septal defect, pericardial effusion, left hydronephrosis, and moderate developmental delay, whereas twin B exhibited single umbilical artery. Chromosome microarray analysis was performed on both twins and their parents. An identical 244 kb microdeletion on 16p11.2 including 9 Refseq genes, including SH2B1, was identified in the twins. The novel findings in monozygotic twins may expand the phenotypic spectrum of 16p11.2 microdeletion. Further studies are needed to strengthen the correlation between genotypes and abnormal clinical features.
Collapse
Affiliation(s)
- Lin Li
- Fetal Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Linhuan Huang
- Fetal Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shaobin Lin
- Fetal Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yanmin Luo
- Fetal Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qun Fang
- Fetal Medicine Centre, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Chen KW, Chang YJ, Yeh CM, Lian YL, Chan MWY, Kao CF, Chen L. SH2B1 modulates chromatin state and MyoD occupancy to enhance expressions of myogenic genes. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:270-281. [PMID: 28039048 DOI: 10.1016/j.bbagrm.2016.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/29/2016] [Accepted: 12/23/2016] [Indexed: 10/20/2022]
Abstract
As mesoderm-derived cell lineage commits to myogenesis, a spectrum of signaling molecules, including insulin growth factor (IGF), activate signaling pathways and ultimately instruct chromatin remodeling and the transcription of myogenic genes. MyoD is a key transcription factor during myogenesis. In this study, we have identified and characterized a novel myogenic regulator, SH2B1. Knocking down SH2B1 delays global chromatin condensation and decreases the formation of myotubes. SH2B1 interacts with histone H1 and is required for the removal of histone H1 from active transcription sites, allowing for the expressions of myogenic genes, IGF2 and MYOG. Chromatin immunoprecipitation assays suggest the requirement of SH2B1 for the induction of histone H3 lysine 4 trimethylation as well as the reduction of histone H3 lysine 9 trimethylation at the promoters and/or enhancers of IGF2 and MYOG genes during myogenesis. Furthermore, SH2B1 is required for the transcriptional activity of MyoD and MyoD occupancy at the enhancer/promoter regions of IGF2 and MYOG during myogenesis. Together, this study demonstrates that SH2B1 fine-tunes global-local chromatin states, expressions of myogenic genes and ultimately promotes myogenesis.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Yu-Jung Chang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Chia-Ming Yeh
- Department of Life Science, National Chung Cheng University, Chia-yi, Taiwan, R.O.C
| | - Yen-Ling Lian
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Michael W Y Chan
- Department of Life Science, National Chung Cheng University, Chia-yi, Taiwan, R.O.C
| | - Cheng-Fu Kao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan, R.O.C.; Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan, R.O.C..
| |
Collapse
|
21
|
Gao L, Cao JT, Liang Y, Zhao YC, Lin XH, Li XC, Tan YJ, Li JY, Zhou CL, Xu HY, Sheng JZ, Huang HF. Calcitriol attenuates cardiac remodeling and dysfunction in a murine model of polycystic ovary syndrome. Endocrine 2016; 52:363-73. [PMID: 26578366 DOI: 10.1007/s12020-015-0797-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 11/01/2015] [Indexed: 12/25/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex reproductive and metabolic disorder affecting 10 % of reproductive-aged women, and is well associated with an increased prevalence of cardiovascular risk factors. However, there are few data concerning the direct association of PCOS with cardiac pathologies. The present study aims to investigate the changes in cardiac structure, function, and cardiomyocyte survival in a PCOS model, and explore the possible effect of calcitriol administration on these changes. PCOS was induced in C57BL/6J female mice by chronic dihydrotestosterone administration, as evidenced by irregular estrous cycles, obesity and dyslipidemia. PCOS mice progressively developed cardiac abnormalities including cardiac hypertrophy, interstitial fibrosis, myocardial apoptosis, and cardiac dysfunction. Conversely, concomitant administration of calcitriol significantly attenuated cardiac remodeling and cardiomyocyte apoptosis, and improved cardiac function. Molecular analysis revealed that the beneficial effect of calcitriol was associated with normalized autophagy function by increasing phosphorylation levels of AMP-activated protein kinase and inhibiting phosphorylation levels of mammalian target of rapamycin complex. Our findings provide the first evidence for the presence of cardiac remodeling in a PCOS model, and vitamin D supplementation may be a potential therapeutic strategy for the prevention and treatment of PCOS-related cardiac remodeling.
Collapse
Affiliation(s)
- Ling Gao
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jia-Tian Cao
- Department of Cardiology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Yan Liang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yi-Chao Zhao
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xian-Hua Lin
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiao-Cui Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Ya-Jing Tan
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jing-Yi Li
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, 310058, China
| | - Cheng-Liang Zhou
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, 310058, China
| | - Hai-Yan Xu
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, 310058, China
| | - Jian-Zhong Sheng
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, 310058, China
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - He-Feng Huang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China.
- The Key Laboratory of Reproductive Genetics, Ministry of Education (Zhejiang University), Hangzhou, 310058, China.
| |
Collapse
|
22
|
Zouein FA, Altara R, Chen Q, Lesnefsky EJ, Kurdi M, Booz GW. Pivotal Importance of STAT3 in Protecting the Heart from Acute and Chronic Stress: New Advancement and Unresolved Issues. Front Cardiovasc Med 2015; 2:36. [PMID: 26664907 PMCID: PMC4671345 DOI: 10.3389/fcvm.2015.00036] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/12/2015] [Indexed: 12/25/2022] Open
Abstract
The transcription factor, signal transducer and activator of transcription 3 (STAT3), has been implicated in protecting the heart from acute ischemic injury under both basal conditions and as a crucial component of pre- and post-conditioning protocols. A number of anti-oxidant and antiapoptotic genes are upregulated by STAT3 via canonical means involving phosphorylation on Y705 and S727, although other incompletely defined posttranslational modifications are involved. In addition, STAT3 is now known to be present in cardiac mitochondria and to exert actions that regulate the electron transport chain, reactive oxygen species production, and mitochondrial permeability transition pore opening. These non-canonical actions of STAT3 are enhanced by S727 phosphorylation. The molecular basis for the mitochondrial actions of STAT3 is poorly understood, but STAT3 is known to interact with a critical subunit of complex I and to regulate complex I function. Dysfunctional complex I has been implicated in ischemic injury, heart failure, and the aging process. Evidence also indicates that STAT3 is protective to the heart under chronic stress conditions, including hypertension, pregnancy, and advanced age. Paradoxically, the accumulation of unphosphorylated STAT3 (U-STAT3) in the nucleus has been suggested to drive pathological cardiac hypertrophy and inflammation via non-canonical gene expression, perhaps involving a distinct acetylation profile. U-STAT3 may also regulate chromatin stability. Our understanding of how the non-canonical genomic and mitochondrial actions of STAT3 in the heart are regulated and coordinated with the canonical actions of STAT3 is rudimentary. Here, we present an overview of what is currently known about the pleotropic actions of STAT3 in the heart in order to highlight controversies and unresolved issues.
Collapse
Affiliation(s)
- Fouad A Zouein
- American University of Beirut Faculty of Medicine , Beirut , Lebanon
| | - Raffaele Altara
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA
| | - Qun Chen
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University , Richmond, VA , USA
| | - Edward J Lesnefsky
- Division of Cardiology, Department of Internal Medicine, Pauley Heart Center, Virginia Commonwealth University , Richmond, VA , USA ; Department of Biochemistry and Molecular Biology, Virginia Commonwealth University , Richmond, VA , USA ; McGuire Department of Veterans Affairs Medical Center , Richmond, VA , USA
| | - Mazen Kurdi
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA ; Department of Chemistry and Biochemistry, Faculty of Sciences, Lebanese University , Hadath , Lebanon
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center , Jackson, MS , USA
| |
Collapse
|
23
|
Ikeda Y, Takimoto E, Komuro I. SH2B1: a new player in the regulation of cardiac hypertrophic response in failing hearts. Cardiovasc Res 2015; 107:197-9. [PMID: 26077625 DOI: 10.1093/cvr/cvv172] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuichi Ikeda
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|