1
|
Yuan J, Deng T, Yang Q, Lv D, Zhou Z, You L, Feng Q, Meng X, Pang Q, Li H, Zhu B. Loss of LSD1 ameliorates myocardial infarction by regulating angiogenesis via transcriptional activation of Vegfa. Life Sci 2025; 372:123613. [PMID: 40210117 DOI: 10.1016/j.lfs.2025.123613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/12/2025]
Abstract
AIMS Our study aims to explore the regulatory role and underlying mechanisms of Lysine-specific demethylase 1 (LSD1) in angiogenesis following myocardial infarction (MI). MATERIALS AND METHODS We generated inducible cardiomyocyte-specific Lsd1 knockout (Lsd1-cKO) mice and established a MI model. The function of LSD1 in cardiac angiogenesis in MI mice was assessed through echocardiography, histopathological staining, and immunofluorescence analysis. In vitro, Lsd1 silencing in cardiomyocytes was achieved by transfecting small interfering RNA (siRNA), followed by hypoxic treatment to simulate the in vivo MI model. The above cardiomyocyte-conditioned medium was collected and used to treat endothelial cells to observe changes in endothelial function. Additionally, we employed Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) to investigate the potential mechanisms by which LSD1 exerts its effects. KEY FINDINGS We found that the absence of LSD1 protected against cardiac dysfunction and promoted angiogenesis in mice with MI. Lsd1-silenced cardiomyocytes enhance the migration and tube formation function of endothelial cells by releasing vascular endothelial growth factor A (VEGF-A) under hypoxic conditions. The combined analysis of CUT&Tag-seq data revealed that silencing of Lsd1 promoted the monomethylation of H3K4 at the Vegfa promoter and region, leading to the transcriptional activation of Vegfa mRNA in cardiomyocytes. SIGNIFICANCE Our research indicates that lowered level of LSD1 in cardiomyocytes enhances VEGF-A paracrine secretion and improves endothelial cell function through cross-talk, ultimately promoting angiogenesis. These findings suggest that targeting LSD1 might be an effective therapeutic approach to protect against MI.
Collapse
Affiliation(s)
- Jinghan Yuan
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qingshan Yang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Danyi Lv
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenfang Zhou
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qipu Feng
- Animal Experiment Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xiangmin Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiuyu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hao Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bingmei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Keim C, Wiedenmann L, Schubert T, Rothe M, Dobre BC, Kaess BM, Ehrlich JR, Boehmer AA. Remote Ischemic Preconditioning for Electrical Cardioversion of Atrial Fibrillation-the Prospective Randomized PRECON-AF Study. CJC Open 2025; 7:571-578. [PMID: 40433224 PMCID: PMC12105482 DOI: 10.1016/j.cjco.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/05/2025] [Indexed: 05/29/2025] Open
Abstract
Background Electrical cardioversion (ECV) is highly effective in restoring sinus rhythm in patients with atrial fibrillation (AF), but it does not influence long-term rhythm control. Remote ischemic preconditioning (RIPC) has demonstrated various cardioprotective effects. Combining ECV with RIPC could provide a promising approach to minimizing AF recurrences after successful ECV. Methods This prospective, randomized, single-blinded, single-centre study investigated the impact of RIPC on early AF recurrence following successful ECV (defined as sinus rhythm ≥ 30 seconds). Patients were randomized in a 1:1 ratio to receive either RIPC or sham preconditioning before ECV. RIPC was performed in a standardized manner, with 3 cycles of 5-minute forearm ischemia followed by 5 minutes of reperfusion. The primary efficacy endpoint was AF recurrence after 30 days. Safety endpoints included death, stroke, and procedure-related complications. Secondary endpoints were acute ECV success, mean energy, and number of shocks required to restore sinus rhythm. Results A total of 240 patients were enrolled. Of these, 214 (89%) had successful ECV. At follow-up, the RIPC group did not show a lower AF recurrence rate, compared to that in the sham group (39% vs 36%, P = 0.63), and no effect of RIPC on cardioversion parameters was seen. One stroke occurred in the RIPC group. The study was terminated before the number of prespecified follow-up visits was reached, due to determination of futility. Conclusions RIPC did not impact the short-term rhythm-control or cardioversion procedure in patients with AF undergoing ECV. Clinical Trial Registration NCT05342220.
Collapse
Affiliation(s)
- Christoph Keim
- Department of Cardiology, St. Josefs-Hospital Wiesbaden, Wiesbaden, Germany
| | - Lilli Wiedenmann
- Department of Cardiology, St. Josefs-Hospital Wiesbaden, Wiesbaden, Germany
| | - Tim Schubert
- Department of Cardiology, St. Josefs-Hospital Wiesbaden, Wiesbaden, Germany
- Department of Pediatric Cardiology and Congenital Heart Disease, Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz Rothe
- Department of Cardiology, St. Josefs-Hospital Wiesbaden, Wiesbaden, Germany
| | - Bianca C. Dobre
- Department of Cardiology, St. Josefs-Hospital Wiesbaden, Wiesbaden, Germany
| | - Bernhard M. Kaess
- Department of Cardiology, St. Josefs-Hospital Wiesbaden, Wiesbaden, Germany
| | - Joachim R. Ehrlich
- Department of Cardiology, St. Josefs-Hospital Wiesbaden, Wiesbaden, Germany
| | - Andreas A. Boehmer
- Department of Cardiology, St. Josefs-Hospital Wiesbaden, Wiesbaden, Germany
- Department of Medicine, Montreal Heart Institute, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Babaei G, Sadraei S, Yarahmadi M, Omidvari S, Aarabi A, Rajabibazl M. STAT protein family and cardiovascular diseases: overview of pathological mechanisms and therapeutic implications. Mol Biol Rep 2024; 51:440. [PMID: 38520542 DOI: 10.1007/s11033-024-09371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 02/21/2024] [Indexed: 03/25/2024]
Abstract
Globally, cardiovascular diseases (CVD) are one of the significant causes of death and are considered a major concern of human society. One of the most crucial objectives of scientists is to reveal the mechanisms associated with the pathogenesis of CVD, which has attracted the attention of many scientists. Accumulating evidence showed that the signal transducer and activator of transcription (STAT) signaling pathway is involved in various physiological and pathological processes. According to research on the molecular mechanisms of CVDs, the STAT family of proteins is one of the most crucial players in these diseases. Numerous studies have demonstrated the undeniable relevance of STAT family proteins in various CVDs. The aim of this review is to shed light on how STAT signaling pathways are related to CVD and the potential for using these signaling pathways as therapeutic targets.
Collapse
Affiliation(s)
- Ghader Babaei
- Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Samin Sadraei
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maral Yarahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samareh Omidvari
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aryan Aarabi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Anttila T, Herajärvi J, Laaksonen H, Mustonen C, Honkanen HP, Y Dimova E, Piuhola J, Koivunen P, Juvonen T, Anttila V. Remote ischemic preconditioning and hypoxia-induced biomarkers in acute myocardial infarction: study on a porcine model. SCAND CARDIOVASC J 2023; 57:2251730. [PMID: 37641930 DOI: 10.1080/14017431.2023.2251730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
Objectives. Remote ischemic preconditioning (RIPC) mitigates acute myocardial infarction (AMI). We hypothesized that RIPC reduces the size and severity of AMI and explored molecular mechanisms behind this phenomenon. Design. In two series of experiments, piglets underwent 60 min of the circumflex coronary artery occlusion, resulting in AMI. Piglets were randomly assigned into the RIPC groups (n = 7 + 7) and the control groups (n = 7 + 7). The RIPC groups underwent four 5-min hind limb ischemia-reperfusion cycles before AMI. In series I, the protective efficacy of RIPC was investigated by using biomarkers and echocardiography with a follow-up of 24 h. In series II, the heart of each piglet was harvested for TTC-staining to measure infarct size. Muscle biopsies were collected from the hind limb to explore molecular mechanisms of RIPC using qPCR and Western blot analysis. Results. The levels of CK-MBm (p = 0.032) and TnI (p = 0.007) were lower in the RIPC group. Left ventricular ejection fraction in the RIPC group was greater at the end of the follow-up. The myocardial infarct size in the RIPC group was smaller (p = 0.033). Western blot indicated HIF1α stabilization in the skeletal muscle of the RIPC group. PCR analyses showed upregulation of the HIF target mRNAs for glucose transporter (GLUT1), glucose transporter 4 (GLUT4), phosphofructokinase 1 (PFK1), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), enolase 1 (ENO1), lactate dehydrogenase (LDHA) and endothelial nitric oxidate synthase (eNOS). Conclusions. Biochemical, physiologic, and histologic evidence confirms that RIPC decreases the size of AMI. The HIF pathway is likely involved in the mechanism of the RIPC.
Collapse
Affiliation(s)
- Tuomas Anttila
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Johanna Herajärvi
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Henna Laaksonen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Caius Mustonen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Hannu-Pekka Honkanen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Elitsa Y Dimova
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Jarkko Piuhola
- Department of Cardiology, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Tatu Juvonen
- Research Unit of Surgery, Anesthesia and Intensive Care, Department of Surgery, Oulu University Hospital and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Cardiac Surgery, Heart and Lung Center, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Vesa Anttila
- Heart Center, Turku University Hospital, University of Turku, Turku, Finland
| |
Collapse
|
5
|
Cao N, Wang H. Insulin augments angiotensin II-induced myocardial fibrosis via the MEK/STAT3 pathway. Heliyon 2023; 9:e22860. [PMID: 38125490 PMCID: PMC10731081 DOI: 10.1016/j.heliyon.2023.e22860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Regular insulin therapy is significantly related to worse cardiovascular outcomes in patients with type 2 diabetes and heart failure. However, the mechanisms of the causal relationship remain unclear. In this study, we observed the effect of insulin on cardiac structure and function and found that insulin dramatically augmented angiotensin II (Ang II)-induced cardiac dysfunction, as well as the proliferation and collagen production of primary cardiac fibroblasts. Total STAT3 expression, but not activation was stimulated by insulin; the effect of insulin on Ang II-induced fibrosis disappeared when STAT3 was blocked and could be entirely suppressed by the MEK inhibitor PD0325901. Our findings suggest a noninsulin-dependent glucose-lowering regimen for patients with type 2 diabetes (T2DM) and heart failure (HF).
Collapse
Affiliation(s)
- Nanyu Cao
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Heyang Wang
- Department of Cardiology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
6
|
Francisco J, Del Re DP. Inflammation in Myocardial Ischemia/Reperfusion Injury: Underlying Mechanisms and Therapeutic Potential. Antioxidants (Basel) 2023; 12:1944. [PMID: 38001797 PMCID: PMC10669026 DOI: 10.3390/antiox12111944] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myocardial infarction (MI) occurs when blood flow to the myocardium is restricted, leading to cardiac damage and massive loss of viable cardiomyocytes. Timely restoration of coronary flow is considered the gold standard treatment for MI patients and limits infarct size; however, this intervention, known as reperfusion, initiates a complex pathological process that somewhat paradoxically also contributes to cardiac injury. Despite being a sterile environment, ischemia/reperfusion (I/R) injury triggers inflammation, which contributes to infarct expansion and subsequent cardiac remodeling and wound healing. The immune response is comprised of subsets of both myeloid and lymphoid-derived cells that act in concert to modulate the pathogenesis and resolution of I/R injury. Multiple mechanisms, including altered metabolic status, regulate immune cell activation and function in the setting of acute MI, yet our understanding remains incomplete. While numerous studies demonstrated cardiac benefit following strategies that target inflammation in preclinical models, therapeutic attempts to mitigate I/R injury in patients were less successful. Therefore, further investigation leveraging emerging technologies is needed to better characterize this intricate inflammatory response and elucidate its influence on cardiac injury and the progression to heart failure.
Collapse
Affiliation(s)
| | - Dominic P. Del Re
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Kleinbongard P. Perspective: mitochondrial STAT3 in cardioprotection. Basic Res Cardiol 2023; 118:32. [PMID: 37620559 PMCID: PMC10449977 DOI: 10.1007/s00395-023-01003-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Activation of signal transducer and activator of transcription 3 (STAT3) has been identified as a key cardioprotective signal not only in animal studies but also in humans-in animals, STAT3 is causally involved in cardioprotection. In response to late ischemic conditioning, canonical function of STAT3 activation upregulates the expression of cardioprotective and anti-apoptotic proteins. In its non-canonical function, STAT3 is activated during ischemic conditioning and is part of the cardioprotective cytosolic survival activating factor enhancement pathway. Activated STAT3 is imported and localized to the mitochondria. Mitochondrial STAT3 stimulates the activity of mitochondrial electron transport chain complex I, reduces mitochondrial reactive oxygen species production and mitochondrial permeability transition pore opening. Finally, two novel aspects of STAT activation in cardioprotection are discussed: a genetic variance of the STAT encoding region as a potential primordial confounding variable for cardioprotection, and the cardioprotective potential of sodium-glucose cotransporter 2 inhibitors through STAT3 activation.
Collapse
Affiliation(s)
- Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, Hufelandstr. 55, 45122, Essen, Germany.
| |
Collapse
|
8
|
Pang Q, You L, Meng X, Li Y, Deng T, Li D, Zhu B. Regulation of the JAK/STAT signaling pathway: The promising targets for cardiovascular disease. Biochem Pharmacol 2023; 213:115587. [PMID: 37187275 DOI: 10.1016/j.bcp.2023.115587] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/17/2023]
Abstract
Individuals have known that Janus kinase (JAK) signal transducer and activator of transcription (STAT) signaling pathway was involved in the growth of the cell, cell differentiation courses advancement, immune cellular survival, as well as hematopoietic system advancement. Researches in the animal models have already uncovered a JAK/STAT regulatory function in myocardial ischemia-reperfusion injury (MIRI), acute myocardial infarction (MI), hypertension, myocarditis, heart failure, angiogenesis and fibrosis. Evidences originating in these studies indicate a therapeutic JAK/STAT function in cardiovascular diseases (CVDs). In this retrospection, various JAK/STAT functions in the normal and ill hearts were described. Moreover, the latest figures about JAK/STAT were summarized under the background of CVDs. Finally, we discussed the clinical transformation prospects and technical limitations of JAK/STAT as the potential therapeutic targets for CVDs. This collection of evidences has essential meanings for the clinical application of JAK/STAT as medicinal agents for CVDs. In this retrospection, various JAK/STAT functions in the normal and ill hearts were described. Moreover, the latest figures about JAK/STAT were summarized under the background of CVDs. Finally, we discussed the clinical transformation prospects and toxicity of JAK/STAT inhibitors as potential therapeutic targets for CVDs. This collection of evidences has essential meanings for the clinical application of JAK/STAT as medicinal agents for CVDs.
Collapse
Affiliation(s)
- Qiuyu Pang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lu You
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangmin Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yumeng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Deng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Deyong Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Bingmei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
9
|
Vaparanta K, Jokilammi A, Paatero I, Merilahti JA, Heliste J, Hemanthakumar KA, Kivelä R, Alitalo K, Taimen P, Elenius K. STAT5b is a key effector of NRG-1/ERBB4-mediated myocardial growth. EMBO Rep 2023; 24:e56689. [PMID: 37009825 PMCID: PMC10157316 DOI: 10.15252/embr.202256689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/04/2023] Open
Abstract
The growth factor Neuregulin-1 (NRG-1) regulates myocardial growth and is currently under clinical investigation as a treatment for heart failure. Here, we demonstrate in several in vitro and in vivo models that STAT5b mediates NRG-1/EBBB4-stimulated cardiomyocyte growth. Genetic and chemical disruption of the NRG-1/ERBB4 pathway reduces STAT5b activation and transcription of STAT5b target genes Igf1, Myc, and Cdkn1a in murine cardiomyocytes. Loss of Stat5b also ablates NRG-1-induced cardiomyocyte hypertrophy. Dynamin-2 is shown to control the cell surface localization of ERBB4 and chemical inhibition of Dynamin-2 downregulates STAT5b activation and cardiomyocyte hypertrophy. In zebrafish embryos, Stat5 is activated during NRG-1-induced hyperplastic myocardial growth, and chemical inhibition of the Nrg-1/Erbb4 pathway or Dynamin-2 leads to loss of myocardial growth and Stat5 activation. Moreover, CRISPR/Cas9-mediated knockdown of stat5b results in reduced myocardial growth and cardiac function. Finally, the NRG-1/ERBB4/STAT5b signaling pathway is differentially regulated at mRNA and protein levels in the myocardium of patients with pathological cardiac hypertrophy as compared to control human subjects, consistent with a role of the NRG-1/ERBB4/STAT5b pathway in myocardial growth.
Collapse
Affiliation(s)
- Katri Vaparanta
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Medicity Research LaboratoriesUniversity of TurkuTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Anne Jokilammi
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Medicity Research LaboratoriesUniversity of TurkuTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Ilkka Paatero
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Johannes A Merilahti
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Juho Heliste
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Medicity Research LaboratoriesUniversity of TurkuTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Karthik Amudhala Hemanthakumar
- Wihuri Research InstituteHelsinkiFinland
- Translational Cancer Biology Program, Research Programs Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Riikka Kivelä
- Wihuri Research InstituteHelsinkiFinland
- Translational Cancer Biology Program, Research Programs Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Faculty of Sport and Health SciencesUniversity of JyväskyläJyväskyläFinland
| | - Kari Alitalo
- Wihuri Research InstituteHelsinkiFinland
- Translational Cancer Biology Program, Research Programs Unit, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| | - Pekka Taimen
- Institute of Biomedicine and FICAN West Cancer CentreUniversity of TurkuTurkuFinland
- Department of PathologyTurku University HospitalTurkuFinland
| | - Klaus Elenius
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
- Medicity Research LaboratoriesUniversity of TurkuTurkuFinland
- Institute of BiomedicineUniversity of TurkuTurkuFinland
- Department of OncologyTurku University HospitalTurkuFinland
| |
Collapse
|
10
|
Xu Y, Wang Y, Ji X. Immune and inflammatory mechanism of remote ischemic conditioning: A narrative review. Brain Circ 2023; 9:77-87. [PMID: 37576576 PMCID: PMC10419737 DOI: 10.4103/bc.bc_57_22] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/06/2023] [Accepted: 02/17/2023] [Indexed: 08/15/2023] Open
Abstract
The benefits of remote ischemic conditioning (RIC) on multiple organs have been extensively investigated. According to existing research, suppressing the immune inflammatory response is an essential mechanism of RIC. Based on the extensive effects of RIC on cardiovascular and cerebrovascular diseases, this article reviews the immune and inflammatory mechanisms of RIC and summarizes the effects of RIC on immunity and inflammation from three perspectives: (1) the mechanisms of the impact of RIC on inflammation and immunity; (2) evidence of the effects of RIC on immune and inflammatory processes in ischaemic stroke; and (3) possible future applications of this effect, especially in systemic infectious diseases such as sepsis and sepsis-associated encephalopathy. This review explores the possibility of using RIC as a treatment in more inflammation-related diseases, which will provide new ideas for the treatment of this kind of disease.
Collapse
Affiliation(s)
- Yi Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
- China-America Institute of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Gu C, Kong F, Zeng J, Geng X, Sun Y, Chen X. Remote ischemic preconditioning protects against spinal cord ischemia-reperfusion injury in mice by activating NMDAR/AMPK/PGC-1α/SIRT3 signaling. Cell Biosci 2023; 13:57. [PMID: 36927808 PMCID: PMC10018930 DOI: 10.1186/s13578-023-00999-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND To study the protective effects of delayed remote ischemic preconditioning (RIPC) against spinal cord ischemia-reperfusion injury (SCIRI) in mice and determine whether SIRT3 is involved in this protection and portrayed its upstream regulatory mechanisms. METHODS In vivo, WT or SIRT3 global knockout (KO) mice were exposed to right upper and lower limbs RIPC or sham ischemia. After 24 h, the abdominal aorta was clamped for 20 min, then re-perfused for 3 days. The motor function of mice, number of Nissl bodies, apoptotic rate of neurons, and related indexes of oxidative stress in the spinal cord were measured to evaluate for neuroprotective effects. The expression and correlation of SIRT3 and NMDAR were detected by WB and immunofluorescence. In vitro, primary neurons were exacted and OGD/R was performed to simulate SCIRI in vivo. Neuronal damage was assessed by observing neuron morphology, detecting LDH release ratio, and flow cytometry to analyze the apoptosis. MnSOD and CAT enzyme activities, GSH and ROS level were also measured to assess neuronal antioxidant capacity. NMDAR-AMPK-PGC-1α signaling was detected by WB to portray upstream regulatory mechanisms of RIPC regulating SIRT3. RESULTS Compared to the SCIRI mice without RIPC, mice with RIPC displayed improved motor function recovery, a reduced neuronal loss, and enhanced antioxidant capacity. To the contrary, the KO mice did not exhibit any effect of RIPC-induced neuroprotection. Similar results were observed in vitro. Further analyses with spinal cord tissues or primary neurons detected enhanced MnSOD and CAT activities, as well as increased GSH level but decreased MDA or ROS production in the RIPC + I/R mice or NMDA + OGD/R neurons. However, these changes were completely inhibited by the absence of SIRT3. Additionally, NMDAR-AMPK-PGC-1α signaling was activated to upregulate SIRT3 levels, which is essential for RIPC-mediated neuroprotection. CONCLUSIONS RIPC enhances spinal cord ischemia tolerance in a SIRT3-dependent manner, and its induced elevated SIRT3 levels are mediated by the NMDAR-AMPK-PGC-1α signaling pathway. Combined therapy targeting SIRT3 is a promising direction for treating SCIRI.
Collapse
Affiliation(s)
- Changjiang Gu
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Fanqi Kong
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Junkai Zeng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Xiangwu Geng
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China
| | - Yanqing Sun
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, 200080, Shanghai, PR China.
| | - Xiongsheng Chen
- Spine Center, Department of Orthopaedics, Changzheng Hospital, Naval Medical University (Second Military Medical University), Shanghai, 200003, People's Republic of China. .,Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 85 Wujin Road, 200080, Shanghai, PR China.
| |
Collapse
|
12
|
Hu Y, Lu H, Li H, Ge J. Molecular basis and clinical implications of HIFs in cardiovascular diseases. Trends Mol Med 2022; 28:916-938. [PMID: 36208988 DOI: 10.1016/j.molmed.2022.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022]
Abstract
Oxygen maintains the homeostasis of an organism in a delicate balance in different tissues and organs. Under hypoxic conditions, hypoxia-inducible factors (HIFs) are specific and dominant factors in the spatiotemporal regulation of oxygen homeostasis. As the most basic functional unit of the heart at the cellular level, the cardiomyocyte relies on oxygen and nutrients delivered by the microvasculature to keep the heart functioning properly. Under hypoxic stress, HIFs are involved in acute and chronic myocardial pathology because of their spatiotemporal specificity, thus granting them therapeutic potential. Most adult animals lack the ability to regenerate their myocardium entirely following injury, and complete regeneration has long been a goal of clinical treatment for heart failure. The precise manipulation of HIFs (considering their dynamic balance and transformation) and the development of HIF-targeted drugs is therefore an extremely attractive cardioprotective therapy for protecting against myocardial ischemic and hypoxic injury, avoiding myocardial remodeling and heart failure, and promoting recovery of cardiac function.
Collapse
Affiliation(s)
- Yiqing Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China
| | - Hao Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Hua Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, China; National Clinical Research Center for Interventional Medicine, Shanghai, China; Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China; Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai, China; Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
13
|
Liu SB, Meng XM, Li YM, Wang JM, Guo HH, Wang C, Zhu BM. Histone methyltransferase KMT2D contributes to the protection of myocardial ischemic injury. Front Cell Dev Biol 2022; 10:946484. [PMID: 35938163 PMCID: PMC9354747 DOI: 10.3389/fcell.2022.946484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Histone H3 lysine 4 (H3K4) methyltransferase 2D (KMT2D) plays an important role in cell development in early life. However, the function of KMT2D in adult cells such as cardiomyocytes or neurons has not been reported. In this study, cardiomyocyte-specific KMT2D knockout (KMT2D-cKO) and control (KMT2D-Ctl) mice were exposed to sham or myocardial ischemia (MI) surgery. Depletion of KMT2D aggravated the ischemic area, led to the increased mortality (26.5% in KMT2D-cKO vs 12.5% in KMT2D-Ctl) of the mice, and weakened the left ventricular systolic function. RNA-seq analysis in cardiac tissues identified genes whose expression was changed by MI and KMT2D deletion. Combined with the genome-wide association study (GWAS) analysis, cardiac disease-associated genes Rasd1, Thsd7a, Ednra, and Tns1 were identified. The expression of the Rasd1 was significantly decreased by MI or the loss of KMT2D in vivo. Meanwhile, ChIP assays demonstrated that either MI or loss of KMT2D attenuated monomethylated H3K4 (H3K4me1) enrichment on the enhancer of Rasd1. By generating a KMT2D knockout (H9C2-KO) H9C2 monoclone, we verified that the expression of Rasd1 was controlled by KMT2D, and the expression of Rasd1 was decreased by serum starvation but not low-(O2) treatment in H9C2 cells. KMT2D has a protective effect on ischemic myocardium by regulating cardiac disease-associated genes including Rasd1. KMT2D is required for the H3K4me1 deposition on the enhancer of Rasd1. Our data for the first time suggest that KMT2D-mediated Rasd1 expression may play an important protective effect on adult cells during nutritional deficiency caused by ischemic injury.
Collapse
Affiliation(s)
- Shu-Bao Liu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiang-Min Meng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Meng Li
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Meng Wang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hui-Hui Guo
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Chaochen Wang
- Zhejiang University-University of Edinburgh Institute, International Campus, Zhejiang University, Haining, Zhejiang, China
- *Correspondence: Bing-Mei Zhu, ; Chaochen Wang,
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Bing-Mei Zhu, ; Chaochen Wang,
| |
Collapse
|
14
|
The histone demthylase KDM3A protects the myocardium from ischemia/reperfusion injury via promotion of ETS1 expression. Commun Biol 2022; 5:270. [PMID: 35338235 PMCID: PMC8956629 DOI: 10.1038/s42003-022-03225-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/01/2022] [Indexed: 11/29/2022] Open
Abstract
Our prior studies have characterized the participation of histone demethylase KDM3A in diabetic vascular remodeling, while its roles in myocardial ischemia/reperfusion (I/R) injury (MIRI) remain to be illustrated. Here we show that KDM3A was significantly downregulated in rat I/R and cellular hypoxia/reoxygenation (H/R) models. Subsequently, gain- and loss-of-function experiments were performed to investigate the effects of KDM3A in the settings of MIRI. KDM3A knockout exacerbated cardiac dysfunction and cardiomyocytes injury both in vivo and in vitro. The deteriorated mitochondrial apoptosis, reactive oxygen species, and inflammation were simultaneously observed. Conversely, KDM3A overexpression developed the ameliorated alternations in MIRI. Mechanistically, the MIRI-alleviating effects of KDM3A were associated with the enhancement of ETS1 expression. ChIP-PCR affirmed that KDM3A bound to the ETS1 promoter and removed dimethylation of histone H3 lysine 9 (H3K9me2), thus promoting ETS1 transcription. Our findings suggest that KDM3A is available for alleviating multi-etiologies of MIRI through the regulation of ETS1. Prevention of cardiac injury requires a deeper mechanistic understanding of ischemia/reperfusion (I/R) episodes. Here, the authors find that the epigenetic modifier KDM3A plays a crucial role in myocardial I/R injury through its activation of the gene ETS1 and suggest boosting KDM3A expression could be a potential treatment strategy.
Collapse
|
15
|
A TRICk to Improve the Effectiveness of RIC: Role of Limb Temperature in Enhancing the Effectiveness of Remote Ischemic Conditioning. BIOLOGY 2022; 11:biology11010146. [PMID: 35053144 PMCID: PMC8773203 DOI: 10.3390/biology11010146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/09/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
Abstract
Simple Summary Remote ischemic conditioning is a simple cardioprotective practice consisting in brief intermittent ischemia applied to a limb. Remote ischemic conditioning has been repeatedly validated in animal models. However, translation from animal experiments to clinics for remote ischemic conditioning has been disappointing. We have demonstrated that keeping the animal’s limb warm while performing intermittent ischemia reduces infarct size more effectively than cold intermittent ischemia; thus, we propose that a more accurate temperature control of the limb undergoing remote ischemic conditioning can increase the efficacy of this cardioprotective maneuver. A simple thermal blanket around the ischemic limb while performing remote ischemic conditioning could be an easy approach to test in humans, as it is simple and safe. Abstract Background: Treatment of myocardial ischemia/reperfusion (IR) injury is still an unmet clinical need. A large variability of remote ischemic conditioning (RIC) protection has been reported; however, no studies have considered the temperature of the ischemic limb. We analyzed the effects of temperature on RIC protection. Methods: Left hind-limbs of anesthetized male mice were immersed in warm (40 °C, warm-RIC) or cold (20 °C, cold-RIC) water and subjected to a RIC protocol (4 × 5 min limb ischemia/reperfusion). In the control groups (warm-CTR or cold-CTR), the limbs underwent thermic conditions only. Isolated hearts underwent 30 min ischemia and 60 min reperfusion. A PI3K-inhibitor, LY294002 (5 µM), was infused in warm-RIC hearts before the IR protocol (warm-RIC LY). Infarct size was evaluated by nitro blue tetrazolium staining and expressed as the percent of risk area. Results: While cold-RIC did not reduce the infarct size compared to cold-CTR (51 ± 1.62% vs. 54 ± 1.07% of risk area, p = NS), warm-RIC (44 ± 1.13%) significantly reduced the infarct size with respect to either cold-RIC (p < 0.001) or warm-CTR (58 ± 1.41%, p < 0.0001). LY294002 infusion revealed the PI3K/Akt involvement in the warm-RIC protection. Infarct size reduction was abrogated by LY294002 pretreatment (warm-RIC: 44 ± 1.13% vs. warm-CTR 58 ± 1.41% p < 0.0001; vs. warm-RIC LY 54 ± 1.69% p = 0.0002). Conclusion: our study shows a remarkable difference between warm-RIC and cold-RIC in terms of infarct size reduction, supporting a pivotal role for limb temperature in RIC-induced cardioprotection.
Collapse
|
16
|
Concomitant Activation of OSM and LIF Receptor by a Dual-Specific hlOSM Variant Confers Cardioprotection after Myocardial Infarction in Mice. Int J Mol Sci 2021; 23:ijms23010353. [PMID: 35008777 PMCID: PMC8745562 DOI: 10.3390/ijms23010353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/23/2021] [Accepted: 12/25/2021] [Indexed: 01/11/2023] Open
Abstract
Oncostatin M (OSM) and leukemia inhibitory factor (LIF) signaling protects the heart after myocardial infarction (MI). In mice, oncostatin M receptor (OSMR) and leukemia inhibitory factor receptor (LIFR) are selectively activated by the respective cognate ligands while OSM activates both the OSMR and LIFR in humans, which prevents efficient translation of mouse data into potential clinical applications. We used an engineered human-like OSM (hlOSM) protein, capable to signal via both OSMR and LIFR, to evaluate beneficial effects on cardiomyocytes and hearts after MI in comparison to selective stimulation of either LIFR or OSMR. Cell viability assays, transcriptome and immunoblot analysis revealed increased survival of hypoxic cardiomyocytes by mLIF, mOSM and hlOSM stimulation, associated with increased activation of STAT3. Kinetic expression profiling of infarcted hearts further specified a transient increase of OSM and LIF during the early inflammatory phase of cardiac remodeling. A post-infarction delivery of hlOSM but not mOSM or mLIF within this time period combined with cardiac magnetic resonance imaging-based strain analysis uncovered a global cardioprotective effect on infarcted hearts. Our data conclusively suggest that a simultaneous and rapid activation of OSMR and LIFR after MI offers a therapeutic opportunity to preserve functional and structural integrity of the infarcted heart.
Collapse
|
17
|
Beà A, Valero JG, Irazoki A, Lana C, López-Lluch G, Portero-Otín M, Pérez-Galán P, Inserte J, Ruiz-Meana M, Zorzano A, Llovera M, Sanchis D. Cardiac fibroblasts display endurance to ischemia, high ROS control and elevated respiration regulated by the JAK2/STAT pathway. FEBS J 2021; 289:2540-2561. [PMID: 34796659 DOI: 10.1111/febs.16283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 12/30/2022]
Abstract
Cardiovascular diseases are the leading cause of death globally and more than four out of five cases are due to ischemic events. Cardiac fibroblasts (CF) contribute to normal heart development and function, and produce the post-ischemic scar. Here, we characterize the biochemical and functional aspects related to CF endurance to ischemia-like conditions. Expression data mining showed that cultured human CF (HCF) express more BCL2 than pulmonary and dermal fibroblasts. In addition, gene set enrichment analysis showed overrepresentation of genes involved in the response to hypoxia and oxidative stress, respiration and Janus kinase (JAK)/Signal transducer and Activator of Transcription (STAT) signaling pathways in HCF. BCL2 sustained survival and proliferation of cultured rat CF, which also had higher respiration capacity and reactive oxygen species (ROS) production than pulmonary and dermal fibroblasts. This was associated with higher expression of the electron transport chain (ETC) and antioxidant enzymes. CF had high phosphorylation of JAK2 and its effectors STAT3 and STAT5, and their inhibition reduced viability and respiration, impaired ROS control and reduced the expression of BCL2, ETC complexes and antioxidant enzymes. Together, our results identify molecular and biochemical mechanisms conferring survival advantage to experimental ischemia in CF and show their control by the JAK2/STAT signaling pathway. The presented data point to potential targets for the regulation of cardiac fibrosis and also open the possibility of a general mechanism by which somatic cells required to acutely respond to ischemia are constitutively adapted to survive it.
Collapse
Affiliation(s)
- Aida Beà
- Cell Signaling & Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Spain
| | - Juan García Valero
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain
| | - Andrea Irazoki
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universitat de Barcelona, Spain
| | - Carlos Lana
- Cell Signaling & Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Spain
| | - Guillermo López-Lluch
- Andalusian Center of Developmental Biology, Pablo de Olavide University, Sevilla, Spain.,Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Sevilla, Spain
| | - Manuel Portero-Otín
- Department of Experimental Medicine, IRBLleida, University of Lleida, Lleida, Spain
| | - Patricia Pérez-Galán
- Department of Hematology-Oncology, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red-Oncología (CIBERONC), Barcelona, Spain
| | - Javier Inserte
- Laboratory of Experimental Cardiology, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV (CIBER-CV), Barcelona, Spain
| | - Marisol Ruiz-Meana
- Laboratory of Experimental Cardiology, Vall d'Hebron-Institut de Recerca, Universitat Autònoma de Barcelona, Spain.,Centro de Investigación Biomédica en Red-CV (CIBER-CV), Barcelona, Spain
| | - Antonio Zorzano
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Centro de Investigación Biomédica en Red Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Universitat de Barcelona, Spain
| | - Marta Llovera
- Cell Signaling & Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Spain
| | - Daniel Sanchis
- Cell Signaling & Apoptosis Group, Institut de Recerca Biomèdica de Lleida (IRBLleida), Universitat de Lleida, Spain
| |
Collapse
|
18
|
Comità S, Femmino S, Thairi C, Alloatti G, Boengler K, Pagliaro P, Penna C. Regulation of STAT3 and its role in cardioprotection by conditioning: focus on non-genomic roles targeting mitochondrial function. Basic Res Cardiol 2021; 116:56. [PMID: 34642818 PMCID: PMC8510947 DOI: 10.1007/s00395-021-00898-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/23/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Ischemia–reperfusion injury (IRI) is one of the biggest challenges for cardiovascular researchers given the huge death toll caused by myocardial ischemic disease. Cardioprotective conditioning strategies, namely pre- and post-conditioning maneuvers, represent the most important strategies for stimulating pro-survival pathways essential to preserve cardiac health. Conditioning maneuvers have proved to be fundamental for the knowledge of the molecular basis of both IRI and cardioprotection. Among this evidence, the importance of signal transducer and activator of transcription 3 (STAT3) emerged. STAT3 is not only a transcription factor but also exhibits non-genomic pro-survival functions preserving mitochondrial function from IRI. Indeed, STAT3 is emerging as an influencer of mitochondrial function to explain the cardioprotection phenomena. Studying cardioprotection, STAT3 proved to be crucial as an element of the survivor activating factor enhancement (SAFE) pathway, which converges on mitochondria and influences their function by cross-talking with other cardioprotective pathways. Clearly there are still some functional properties of STAT3 to be discovered. Therefore, in this review, we highlight the evidence that places STAT3 as a promoter of the metabolic network. In particular, we focus on the possible interactions of STAT3 with processes aimed at maintaining mitochondrial functions, including the regulation of the electron transport chain, the production of reactive oxygen species, the homeostasis of Ca2+ and the inhibition of opening of mitochondrial permeability transition pore. Then we consider the role of STAT3 and the parallels between STA3/STAT5 in cardioprotection by conditioning, giving emphasis to the human heart and confounders.
Collapse
Affiliation(s)
- Stefano Comità
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy
| | - Saveria Femmino
- Department of Medical Sciences, University of Turin, Torino, Italy
| | - Cecilia Thairi
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy
| | | | - Kerstin Boengler
- Institute of Physiology, University of Giessen, Giessen, Germany
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, Orbassano, 10043, Torino, TO, Italy.
| |
Collapse
|
19
|
Ren Y, Lin S, Liu W, Ding H. Hepatic Remote Ischemic Preconditioning (RIPC) Protects Heart Damages Induced by Ischemia Reperfusion Injury in Mice. Front Physiol 2021; 12:713564. [PMID: 34671267 PMCID: PMC8520907 DOI: 10.3389/fphys.2021.713564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/27/2021] [Indexed: 11/13/2022] Open
Abstract
It has been convincingly demonstrated that remote ischemic preconditioning (RIPC) can make the myocardium resistant to the subsequent ischemia reperfusion injury (IRI), which causes severe damages by mainly generating cell death. However, the cardioprotective effects of the hepatic RIPC, which is the largest metabolic organ against I/R, have not been fully studied. The aim of our research is whether remote liver RIPC may provide cardioprotective effects against the I/R-induced injury. Here, we generated an I/R mice model in four groups to analyze the effect. The control group is the isolated hearts with 140-min perfusion. I/R group added ischemia in 30 min following 90-min reperfusion. The third group (sham) was subjected to the same procedure as the latter group. The animals in the fourth group selected as the treatment group, underwent a hepatic RIPC by three cycles of 5-min occlusion of the portal triad and then followed by induction of I/R in the isolated heart. The level of myocardial infarction and the preventive effects of RIPC were assessed by pathological characteristics, namely, infarct, enzyme releases, pressure, and cardiac mechanical activity. Subjected to I/R, the hepatic RIPC minimized the infarct size (17.7 ± 4.96 vs. 50.06 ± 5, p < 0.001) and improved the left ventricular-developed pressure (from 47.42 ± 6.27 to 91.62 ± 5.22 mmHg) and the mechanical activity. Release of phosphocreatine kinase-myocardial band (73.86 ± 1.95 vs. 25.93 ± 0.66 IUL-1) and lactate dehydrogenase (299.01 ± 10.7 vs. 152.3 ± 16.7 IUL-1) was also decreased in the RIPC-treated group. These results demonstrate the cardioprotective effects of the hepatic remote preconditioning against the injury caused by I/R in the isolated perfused hearts.
Collapse
Affiliation(s)
- Yanlong Ren
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China
| | - Shujin Lin
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Wenxian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Lab for Cardiovascular Precision Medicine, Capital Medical University, Beijing, China
| | - Huiguo Ding
- Department of Gastroenterology and Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Yu H, Guo Y, Yang Z, Zhang Q, Xu J, Yang Q, Qu Y, Tan R, Li L, He Y, Li C, Zhang S, Luo B, Gao Y. Regulatory variation within 3’UTR of STAT5A correlates with sudden cardiac death in Chinese populations. Forensic Sci Res 2021; 7:726-735. [PMID: 37101540 PMCID: PMC9976584 DOI: 10.1080/20961790.2021.1895410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Definitive diagnosis to sudden cardiac death (SCD) is often challenging since the postmortem examination on SCD victims could hardly demonstrate an adequate cause of death. It is therefore important to uncover the inherited risk component to SCD. Signal transducer and activators of transcription 5 A (STAT5A) is a member of the STAT family and a transcription factor that is activated by many cell ligands and associated with various cardiovascular processes. In this study, we performed a systematic variant screening on the STAT5A to filter potential functional genetic variations. Based on the screening results, an insertion/deletion polymorphism (rs3833144) in 3'UTR of STAT5A was selected as the candidate variant. A total of 159 SCD cases and 668 SCD matched healthy controls was enrolled to perform a case-control study and evaluate the association between rs3833144 and SCD susceptibility in Chinese populations. Logistic regression analysis showed that the deletion allele of rs3833144 had significantly increased the SCD risk (odds ratio (OR) = 1.54; 95% confidence interval (CI) = 1.18-2.01; P = 0.000955). Further genotype-expression eQTL analysis showed that samples with deletion allele appeared to lower expression of STAT5A, and in silico prediction suggested the local 3 D structure changes of STAT5A mRNA caused by the variant. On the other hand, the bioinformatic analysis presented that promoters of RARA and PTGES3L-AARSD1 could interact with rs3833144, and eQTL analysis showed the higher expression of both genes in samples with deletion allele. Dual-luciferase activity assays also suggested the significant regulatory role of rs3833144 in gene transcription. Our current data thus suggested a possible involvement of rs3833144 to SCD predisposition in Chinese populations and rs3833144 with potential function roles may become a candidate marker for SCD diagnosis and prevention.
Collapse
Affiliation(s)
- Huan Yu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zhenzhen Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Qing Zhang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Jiabin Xu
- Public Security Bureau of Taixing, Taizhou, China
| | - Qi Yang
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yiling Qu
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Rui Tan
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Lijuan Li
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| | - Yan He
- Department of Epidemiology, Medical College of Soochow University, Suzhou, China
| | - Chengtao Li
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Suhua Zhang
- Shanghai Key Laboratory of Forensic Medicine, Academy of Forensic Science, Shanghai, China
| | - Bin Luo
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yuzhen Gao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
21
|
Guo HH, Jing XY, Chen H, Xu HX, Zhu BM. STAT3 but Not STAT5 Contributes to the Protective Effect of Electroacupuncture Against Myocardial Ischemia/Reperfusion Injury in Mice. Front Med (Lausanne) 2021; 8:649654. [PMID: 34307396 PMCID: PMC8299366 DOI: 10.3389/fmed.2021.649654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/13/2021] [Indexed: 02/05/2023] Open
Abstract
Electroacupuncture (EA) can help reduce infarct size and injury resulting from myocardial ischemia/reperfusion (I/R); however, the underlying molecular mechanism remains unknown. We previously reported that STAT5 plays a critical role in the cardioprotective effect of remote ischemic preconditioning (RIPC). Here, we assessed the effects of electroacupuncture pretreatment (EAP) on myocardial I/R injury in the presence and/or absence of Stat5 in mice and investigated whether EAP exerts its cardioprotective effects in a STAT5-dependent manner. Adult Stat5fl/fl and Stat5-cKO mice were exposed to EAP at Neiguan (PC6) for 7 days before the induction of I/R injury by left anterior descending (LAD) coronary artery ligation. The myocardial infarct size (IS), area at risk, and apoptotic rate of cardiomyocytes were detected. RT-qPCR and western blotting were used to measure gene and protein expression, respectively, in homogenized heart tissues. RNA-seq was used to identify candidate genes and pathways. Our results showed that EAP decreased IS and the rate of cardiomyocyte apoptosis. We further found that STAT5 was activated by EAP in Stat5fl/fl mice but not in Stat5-cKO mice, whereas the opposite was observed for STAT3. Following EAP, the levels of the antiapoptotic proteins Bcl-xL, Bcl-2, and p-AKT were increased in the presence of Stat5, while that of interleukin 10 (IL-10) was increased in both Stat5fl/fl and Stat5-cKO. The gene expression profile in heart tissues was different between Stat5fl/fl and the Stat5-cKO mice with EAP. Importantly, the top 30 DEGs under EAP in the Stat5-cKO mice were enriched in the IL-6/STAT3 signaling pathway. Our results revealed for the first time that the protective effect of EAP following myocardial I/R injury was attributable to, but not dependent on, STAT5. Additionally, we found that EAP could activate STAT3 signaling in the absence of the Stat5 gene, and could also activate antiapoptotic, survival, and anti-inflammatory signaling pathways.
Collapse
Affiliation(s)
- Hui-Hui Guo
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin-Yue Jing
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui Chen
- Rehabilitation Medicine Department, YE DA Hospital of Yantai, Yantai, China
| | - Hou-Xi Xu
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| | - Bing-Mei Zhu
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Yuan J, Wang JM, Li ZW, Zhang CS, Cheng B, Yang SH, Liu BT, Zhu LJ, Cai DJ, Yu SG. Full-length transcriptome analysis reveals the mechanism of acupuncture at PC6 improves cardiac function in myocardial ischemia model. Chin Med 2021; 16:55. [PMID: 34238326 PMCID: PMC8268520 DOI: 10.1186/s13020-021-00465-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/03/2021] [Indexed: 11/28/2022] Open
Abstract
Background The pathological process of myocardial ischemia (MI) is very complicated. Acupuncture at PC6 has been proved to be effective against MI injury, but the mechanism remains unclear. This study investigated the mechanism that underlies the effect of acupuncture on MI through full-length transcriptome. Methods Adult male C57/BL6 mice were randomly divided into control, MI, and PC6 groups. Mice in MI and PC6 group generated MI model by ligating the left anterior descending (LAD) coronary artery. The samples were collected 5 days after acupuncture treatment. Results The results showed that treatment by acupuncture improved cardiac function, decreased myocardial infraction area, and reduced the levels of cTnT and cTnI. Based on full-length transcriptome sequencing, 5083 differential expression genes (DEGs) and 324 DEGs were identified in the MI group and PC6 group, respectively. These genes regulated by acupuncture were mainly enriched in the inflammatory response pathway. Alternative splicing (AS) is a post-transcriptional action that contributes to the diversity of protein. In all samples, 8237 AS events associated with 1994 genes were found. Some differential AS-involved genes were enriched in the pathway related to heart disease. We also identified 602 new genes, 4 of which may the novel targets of acupuncture in MI. Conclusions Our findings suggest that the effect of acupuncture on MI may be based on the multi-level regulation of the transcriptome. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00465-8.
Collapse
Affiliation(s)
- Jing Yuan
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Jun-Meng Wang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Zhi-Wei Li
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Cheng-Shun Zhang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Bin Cheng
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Su-Hao Yang
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Bai-Tong Liu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Li-Juan Zhu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China
| | - Ding-Jun Cai
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| | - Shu-Guang Yu
- Acupuncture and Tuina School/Third Teaching Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan Province, China.
| |
Collapse
|
23
|
Myocardial remote ischemic preconditioning: from cell biology to clinical application. Mol Cell Biochem 2021; 476:3857-3867. [PMID: 34125317 DOI: 10.1007/s11010-021-04192-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/26/2021] [Indexed: 12/25/2022]
Abstract
Remote ischemic preconditioning (rIPC) is a cardioprotective phenomenon where brief periods of ischemia followed by reperfusion of one organ/tissue can confer subsequent protection against ischemia/reperfusion injury in other organs, such as the heart. It involves activation of humoral, neural or systemic communication pathways inducing different intracellular signals in the heart. The main purpose of this review is to summarize the possible mechanisms involved in the rIPC cardioprotection, and to describe recent clinical trials to establish the efficacy of these strategies in cardioprotection from lethal ischemia/reperfusion injury. In this sense, certain factors weaken the subcellular mechanisms of rIPC in patients, such as age, comorbidities, medication, and anesthetic protocol, which could explain the heterogeneity of results in some clinical trials. For these reasons, further studies, carefully designed, are necessary to develop a clearer understanding of the pathways and mechanism of early and late rIPC. An understanding of the pathways is important for translation to patients.
Collapse
|
24
|
Zheng J, Chen P, Zhong J, Cheng Y, Chen H, He Y, Chen C. HIF‑1α in myocardial ischemia‑reperfusion injury (Review). Mol Med Rep 2021; 23:352. [PMID: 33760122 PMCID: PMC7974458 DOI: 10.3892/mmr.2021.11991] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a severe injury to the ischemic myocardium following the recovery of blood flow. Currently, there is no effective treatment for MIRI in clinical practice. Over the past two decades, biological studies of hypoxia and hypoxia-inducible factor-1α (HIF-1α) have notably improved understanding of oxygen homeostasis. HIF-1α is an oxygen-sensitive transcription factor that mediates adaptive metabolic responses to hypoxia and serves a pivotal role in MIRI. In particular, previous studies have demonstrated that HIF-1α improves mitochondrial function, decreases cellular oxidative stress, activates cardioprotective signaling pathways and downstream protective genes and interacts with non-coding RNAs. The present review summarizes the roles and associated mechanisms of action of HIF-1α in MIRI. In addition, HIF-1α-associated MIRI intervention, including natural compounds, exosomes, ischemic preconditioning and ischemic post-processing are presented. The present review provides evidence for the roles of HIF-1α activation in MIRI and supports its use as a therapeutic target.
Collapse
Affiliation(s)
- Jie Zheng
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Peier Chen
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Jianfeng Zhong
- Guangdong Key Laboratory of Age‑related Cardiac and Cerebral Diseases, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524001, P.R. China
| | - Yu Cheng
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Hao Chen
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Yuan He
- Laboratory of Cardiovascular Diseases, Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Can Chen
- Department of Cardiology, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524003, P.R. China
| |
Collapse
|
25
|
Raupach A, Feige K, Reiter C, Brandenburger T, Heinen N, Heinen A, Hollmann MW, Huhn R, Torregroza C. Remote ischemic preconditioning does not induce activation of Akt and STAT5 in the rat heart. Exp Ther Med 2021; 21:432. [PMID: 33747171 DOI: 10.3892/etm.2021.9849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/22/2020] [Indexed: 11/06/2022] Open
Abstract
Remote ischemic preconditioning (RIPC) is hypothesized to be a promising cardioprotective strategy to protect hearts against ischemia and reperfusion (I/R) injury; however, the current understanding of the underlying signal transduction pathways involved remains unclear. It has been previously demonstrated that protein kinase B/AKT, which is a crucial protein of the reperfusion injury salvage kinases pathway, and STAT5, which is a member of the survivor activating factor enhancement pathway, serve a pivotal role in cardioprotection. However, whether and at what time-points (TPs) RIPC leads to the activation of AKT and STAT5 in a rat model of RIPC and I/R injury remains to be determined. The present study hypothesized that RIPC may induce the phosphorylation of AKT and/or STAT5 immediately following RIPC and/or at a later TP with or without subsequent I/R. In the first set of experiments (part A), male Wistar rats were randomized into 2 groups (n=6 per group): The first group underwent RIPC via a hind limb tourniquet (4x5 min I/R episodes), while the second group received the respective sham treatment. In the second set of experiments (part B), the rats were randomized into 4 groups (n=6 per group) that either underwent RIPC or sham treatment prior to 35 min of ischemia by occlusion of the left anterior descending coronary artery followed by 120 min reperfusion or a respective sham treatment. At the end of the experiments, the heart tissue was isolated in order to analyze the phosphorylation levels of AKT and STAT5. The results revealed that RIPC did not induce the immediate or late phosphorylation of AKT or STAT5. In addition, following I/R, the activation of AKT and STAT5 was not modulated by RIPC. In conclusion, the findings of the present study suggested that RIPC-induced cardioprotection may not be mediated by the activation of AKT or STAT5 at the investigated TPs.
Collapse
Affiliation(s)
- Annika Raupach
- Department of Anesthesiology, University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Katharina Feige
- Department of Anesthesiology, University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Christian Reiter
- Department of Anesthesiology, University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Timo Brandenburger
- Department of Anesthesiology, University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Nicole Heinen
- Department of Anesthesiology, University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - André Heinen
- Institute of Cardiovascular Physiology, Heinrich-Heine-University Duesseldorf, D-40225 Duesseldorf, Germany
| | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, 1100 DD Amsterdam, The Netherlands
| | - Ragnar Huhn
- Department of Anesthesiology, University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| | - Carolin Torregroza
- Department of Anesthesiology, University Hospital Duesseldorf, D-40225 Duesseldorf, Germany
| |
Collapse
|
26
|
Pearce L, Davidson SM, Yellon DM. Does remote ischaemic conditioning reduce inflammation? A focus on innate immunity and cytokine response. Basic Res Cardiol 2021; 116:12. [PMID: 33629195 PMCID: PMC7904035 DOI: 10.1007/s00395-021-00852-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
The benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19 pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel therapies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release via a reduction in nuclear factor kappa beta (NF-κB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group, cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective surgery are the most suitable clinical conditions in which to test this hypothesis.
Collapse
Affiliation(s)
- Lucie Pearce
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK
| | - Derek M Yellon
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, UK.
| |
Collapse
|
27
|
Tsibulnikov SY, Maslov LN, Gorbunov AS, Voronkov NS, Boshchenko AA, Popov SV, Prokudina ES, Singh N, Downey JM. A Review of Humoral Factors in Remote Preconditioning of the Heart. J Cardiovasc Pharmacol Ther 2019; 24:403-421. [PMID: 31035796 DOI: 10.1177/1074248419841632] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A humoral mechanism of cardioprotection by remote ischemic preconditioning (RIP) has been clearly demonstrated in various models of ischemia-reperfusion including upper and lower extremities, liver, and the mesenteric and renal arteries. A wide range of humoral factors for RIP have been proposed including hydrophobic peptides, opioid peptides, adenosine, prostanoids, endovanilloids, endocannabinoids, calcitonin gene-related peptide, leukotrienes, noradrenaline, adrenomedullin, erythropoietin, apolipoprotein, A-I glucagon-like peptide-1, interleukin 10, stromal cell-derived factor 1, and microRNAs. Virtually, all of the components of ischemic preconditioning's signaling pathway such as nitric oxide synthase, protein kinase C, redox signaling, PI3-kinase/Akt, glycogen synthase kinase β, ERK1/2, mitoKATP channels, Connexin 43, and STAT were all found to play a role. The signaling pattern also depends on which remote vascular bed was subjected to ischemia and on the time between applying the rip and myocardial ischemia occurs. Because there is convincing evidence for many seemingly diverse humoral components in RIP, the most likely explanation is that the overall mechanism is complex like that seen in ischemic preconditioning where multiple components are both in series and in parallel and interact with each other. Inhibition of any single component in the right circumstance may block the resulting protective effect, and selectively activating that component may trigger the protection. Identifying the humoral factors responsible for RIP might be useful in developing drugs that confer RIP's protection in a more comfortable and reliable manner.
Collapse
Affiliation(s)
- Sergey Y Tsibulnikov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Leonid N Maslov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alexander S Gorbunov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nikita S Voronkov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Alla A Boshchenko
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Sergey V Popov
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Ekaterina S Prokudina
- 1 Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, Russia
| | - Nirmal Singh
- 2 Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India
| | - James M Downey
- 3 Department of Physiology and Cell Biology, College of Medicine, University of South Alabama, Mobile, AL, USA
| |
Collapse
|
28
|
Hummitzsch L, Zitta K, Berndt R, Wong YL, Rusch R, Hess K, Wedel T, Gruenewald M, Cremer J, Steinfath M, Albrecht M. Remote ischemic preconditioning attenuates intestinal mucosal damage: insight from a rat model of ischemia-reperfusion injury. J Transl Med 2019; 17:136. [PMID: 31036020 PMCID: PMC6489261 DOI: 10.1186/s12967-019-1885-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022] Open
Abstract
Background Remote ischemic preconditioning (RIPC) is a phenomenon, whereby repeated, non-lethal episodes of ischemia to an organ or limb exert protection against ischemia–reperfusion (I/R) injury in distant organs. Despite intensive research, there is still an apparent lack of knowledge concerning the RIPC-mediated mechanisms, especially in the intestine. Aim of this study was to evaluate possible protective effects RIPC on intestinal I/R injury. Methods Thirty rats were randomly assigned to four groups: I/R; I/R + RIPC; Sham; Sham + RIPC. Animals were anesthetized and the superior mesenteric artery was clamped for 30 min, followed by 60 min of reperfusion. RIPC-treated rats received 3 × 5 min of bilateral hindlimb I/R prior to surgery, sham groups obtained laparotomy without clamping. After I/R injury serum/tissue was analyzed for: Mucosal damage, Caspase-3/7 activity, expression of cell stress proteins, hydrogen peroxide (H2O2) and malondialdehyde (MDA) production, Hypoxia-inducible factor-1α (HIF-1α) protein expression and matrix metalloproteinase (MMP) activity. Results Intestinal I/R resulted in increased mucosal injury (P < 0.001) and elevated Caspase-3/7 activity (P < 0.001). RIPC significantly reduced the histological signs of intestinal I/R injury (P < 0.01), but did not affect Caspase-3/7 activity. Proteome profiling suggested a RIPC-mediated regulation of several cell stress proteins after I/R injury: Cytochrome C (+ 157%); Cited-2 (− 39%), ADAMTS1 (+ 74%). Serum concentrations of H2O2 and MDA remained unchanged after RIPC, while the reduced intestinal injury was associated with increased HIF-1α levels. Measurements of MMP activities in serum and intestinal tissue revealed an attenuated gelatinase activity at 130 kDa within the serum samples (P < 0.001) after RIPC, while the activity of MMPs within the intestinal tissue was not affected by I/R injury or RIPC. Conclusions RIPC ameliorates intestinal I/R injury in rats. The underlying mechanisms may involve HIF-1α protein expression and a decreased serum activity of a 130 kDa factor with gelatinase activity. Electronic supplementary material The online version of this article (10.1186/s12967-019-1885-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lars Hummitzsch
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105, Kiel, Germany.
| | - Karina Zitta
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105, Kiel, Germany
| | - Rouven Berndt
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Yuk Lung Wong
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105, Kiel, Germany
| | - Rene Rusch
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Katharina Hess
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Thilo Wedel
- Institute of Anatomy, Christian-Albrechts-University, Kiel, Germany
| | - Matthias Gruenewald
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105, Kiel, Germany
| | - Jochen Cremer
- Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Markus Steinfath
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105, Kiel, Germany
| | - Martin Albrecht
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Schwanenweg 21, 24105, Kiel, Germany
| |
Collapse
|
29
|
Bartekova M, Radosinska J, Jelemensky M, Dhalla NS. Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev 2019; 23:733-758. [PMID: 29862462 DOI: 10.1007/s10741-018-9716-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By virtue of their actions on NF-κB, an inflammatory nuclear transcription factor, various cytokines have been documented to play important regulatory roles in determining cardiac function under both physiological and pathophysiological conditions. Several cytokines including TNF-α, TGF-β, and different interleukins such as IL-1 IL-4, IL-6, IL-8, and IL-18 are involved in the development of various inflammatory cardiac pathologies, namely ischemic heart disease, myocardial infarction, heart failure, and cardiomyopathies. In ischemia-related pathologies, most of the cytokines are released into the circulation and serve as biological markers of inflammation. Furthermore, there is an evidence of their direct role in the pathogenesis of ischemic injury, suggesting cytokines as potential targets for the development of some anti-ischemic therapies. On the other hand, certain cytokines such as IL-2, IL-4, IL-6, IL-8, and IL-10 are involved in the post-ischemic tissue repair and thus are considered to exert beneficial effects on cardiac function. Conflicting reports regarding the role of some cytokines in inducing cardiac dysfunction in heart failure and different types of cardiomyopathies seem to be due to differences in the nature, duration, and degree of heart disease as well as the concentrations of some cytokines in the circulation. In spite of extensive research work in this field of investigation, no satisfactory anti-cytokine therapy for improving cardiac function in any type of heart disease is available in the literature.
Collapse
Affiliation(s)
- Monika Bartekova
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Jana Radosinska
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic.,Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Marek Jelemensky
- Institute for Heart Research, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Naranjan S Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Center, 351 Tache Avenue, Winnipeg, MB, R2H 2A6, Canada. .,Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
30
|
Ni SH, Sun SN, Huang ZY, Huang YS, Li H, Wang JJ, Xian SX, Yang ZQ, Wang LJ, Lu L. The pleiotropic association between IL-10 levels and CVD prognosis: Evidence from a meta-analysis. Cytokine 2019; 119:37-46. [PMID: 30875589 DOI: 10.1016/j.cyto.2019.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/24/2019] [Accepted: 02/22/2019] [Indexed: 01/21/2023]
Abstract
We examined the precise association between IL-10 levels and cardiovascular disease (CVD) prognosis and explored the pleiotropic role of IL-10 in different cardiac pathologies. We performed a meta-analysis of cross-sectional and longitudinal studies investigating IL-10 levels. Meta-regression analyses were used to determine the cause of the discrepancies. To assess publication bias, funnel plots were constructed, and Egger's tests were performed. Data from the GSE58015 dataset were used to investigate the levels of IL-10 under certain conditions. Because of substantial heterogeneity in the data used to compare the IL-10 levels between patients with CVD and healthy people, we could not determine the differences between the healthy controls and patients with ischemic or nonischemic pathologies (p > 0.05). The analysis of the association between IL-10 levels and CVD prognosis indicated that higher IL-10 levels were significantly associated with a poor prognosis in patients with nonischemic pathologies (HR = 1.10, 95% CI = 1.00-1.20, p = 0.043) but differentially associated with the prognosis of patients with ischemic pathologies based on the sampling time point (before percutaneous coronary intervention (PCI): HR = 4.90, 95% CI = 1.24-19.30, p < 0.001; after PCI: HR = 0.57, 95% CI = 0.43-0.75, p = 0.023). The meta-regression analysis showed that the pooled HR of the IL-10 levels was positively correlated with the IL-10/IL-6 ratio (β = 0.644, p = 0.024). The funnel plots and Egger's tests revealed no statistically significant bias in our meta-analysis (p > 0.1). Furthermore, our data mining analysis supported our findings. Our analysis showed that IL-10 levels may be pleiotropically associated with the CVD prognosis possibly based on the type of pathology, disease stage and levels of other proinflammatory factors, such as IL-6.
Collapse
Affiliation(s)
- Shi-Hao Ni
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Shu-Ning Sun
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zeng-Yan Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Yu-Sheng Huang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Huan Li
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Jia-Jia Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Shao-Xiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Zhong-Qi Yang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China
| | - Ling-Jun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| | - Lu Lu
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou 510407, China; Key Laboratory of Chronic Heart Failure, Guangzhou University of Chinese Medicine, Guangzhou 510407, China.
| |
Collapse
|
31
|
Song Y, Zhong C, Wang X. Heat shock protein 70: A promising therapeutic target for myocardial ischemia–reperfusion injury. J Cell Physiol 2018; 234:1190-1207. [DOI: 10.1002/jcp.27110] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 06/29/2018] [Indexed: 12/30/2022]
Affiliation(s)
- Yan‐Jun Song
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
- School of Laboratory Medicine and Biotechnology Southern Medical University Guangzhou China
| | - Chong‐Bin Zhong
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| | - Xian‐Bao Wang
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Sino‐Japanese Cooperation Platform for Translational Research in Heart Failure, Laboratory of Heart Center, Department of Cardiology, Heart Center, Zhujiang Hospital Southern Medical University Guangzhou China
| |
Collapse
|
32
|
Remote ischemic preconditioning STAT3-dependently ameliorates pulmonary ischemia/reperfusion injury. PLoS One 2018; 13:e0196186. [PMID: 29768493 PMCID: PMC5955491 DOI: 10.1371/journal.pone.0196186] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/03/2018] [Indexed: 02/05/2023] Open
Abstract
The lungs are highly susceptible to injury, including ischemia/reperfusion (I/R) injury. Pulmonary I/R injury can occur when correcting conditions such as primary pulmonary hypertension, and is also relatively common after lung transplantation or other cardiothoracic surgery. Methods to reduce pulmonary I/R injury are urgently needed to improve outcomes following procedures such as lung transplantation. Remote liver ischemic preconditioning (RLIPC) is an effective cardioprotective measure, reducing damage caused by subsequent cardiac I/R injury, but little is known about its potential role in pulmonary protection. Here, we analyzed the efficacy and mechanistic basis of RLIPC in a rat model of pulmonary I/R injury. RLIPC reduced lung I/R injury, lessening structural damage, inflammatory cytokine production and apoptosis. In addition, RLIPC preserved pulmonary function compared to controls following lung I/R injury. RLIPC stimulated phosphorylation of pulmonary STAT3, a component of the SAFE signaling pathway, but not phosphorylation of RISK pathway signaling proteins. Accordingly, STAT3 inhibition using AG490 eliminated the pulmonary protection afforded by RLIPC. Our data demonstrate for the first time that RLIPC protects against pulmonary I/R injury, via a signaling pathway requiring STAT3 phosphorylation.
Collapse
|