1
|
Xiao Y, Xia L, Jiang W, Qin J, Zhao L, Li Z, Huang L, Li K, Yu P, Wei L, Jiang X, Chen Z, Yu X. Cardiopulmonary progenitors facilitate cardiac repair via exosomal transfer of miR-27b-3p targeting the SIK1-CREB1 axis. Cell Prolif 2024; 57:e13593. [PMID: 38185757 PMCID: PMC11056695 DOI: 10.1111/cpr.13593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/27/2023] [Accepted: 12/17/2023] [Indexed: 01/09/2024] Open
Abstract
Ischemic heart disease, especially myocardial infarction (MI), is one of the leading causes of death worldwide, and desperately needs effective treatments, such as cell therapy. Cardiopulmonary progenitors (CPPs) are stem cells for both heart and lung, but their repairing role in damaged heart is still unknown. Here, we obtained CPPs from E9.5 mouse embryos, maintained their stemness while expanding, and identified their characteristics by scRNA-seq, flow cytometry, quantitative reverse transcription-polymerase chain reaction, and differentiation assays. Moreover, we employed mouse MI model to investigate whether CPPs could repair the injured heart. Our data identified that CPPs exhibit hybrid fibroblastic, endothelial, and mesenchymal state, and they could differentiate into cell lineages within the cardiopulmonary system. Moreover, intramyocardial injection of CPPs improves cardiac function through CPPs exosomes (CPPs-Exo) by promotion of cardiomyocytic proliferation and vascularization. To uncover the underlying mechanism, we used miRNA-seq, bulk RNA-seq, and bioinformatic approaches, and found the highly expressed miR-27b-3p in CPPs-Exo and its target gene Sik1, which can influence the transcriptional activity of CREB1. Therefore, we postulate that CPPs facilitate cardiac repair partially through the SIK1-CREB1 axis via exosomal miR-27b-3p. Our study offers a novel insight into the role of CPPs-Exo in heart repair and highlights the potential of CPPs-Exo as a promising therapeutic strategy for MI.
Collapse
Affiliation(s)
- Ying‐Ying Xiao
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Luo‐Xing Xia
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Wen‐Jing Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Jian‐Feng Qin
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li‐Xin Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhan Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li‐Juan Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Ke‐Xin Li
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Peng‐Jiu Yu
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Li Wei
- Department of Pharmacy, The First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Xue‐Yan Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Institute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Xi‐Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, The Fifth Affiliated Hospital & the First Affiliated HospitalGuangzhou Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
2
|
Tong X, Xiao Z, Li P, Liu X, Wang M, Wen S, Wang N, Liao S, Zhou J. Angiogenesis and flap-related research: A bibliometric analysis. Int Wound J 2023; 20:3057-3072. [PMID: 37312275 PMCID: PMC10502283 DOI: 10.1111/iwj.14181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 06/15/2023] Open
Abstract
Adequate blood supply, a prerequisite for flap survival after grafting, makes angiogenesis of the flap the biggest problem to be solved. Researches have been conducted around vascularisation in correlation with flap grafting. However, bibliometric analyses systematically examining this research field are lacking. As such, we herein sought to conduct comprehensive comparative analyses of the contributions of different researchers, institutions, and countries to this research space in an effort to identify trends and hotspots in angiogenesis and vascularisation in the context of flap grafting. Publications pertaining to angiogenesis and vascularisation in the context of flap grafting were retrieved from the Web of Science Core Collection. References were then analysed and plotted using Microsoft Excel 2019, VOSviewer, and CiteSpace V. In total, 2234 papers that were cited 40 048 times (17.63 citations/paper) were included in this analysis. The greatest number of studies were from the United States, with these studies exhibiting both the highest number of citations (13 577) and the greatest overall H-index (60). For The institutions that published the greatest number of studies were WENZHOU MEDICAL UNIVERSITY (681), while UNIVERSITY OF ERLANGEN NUREMBERG has the highest number of citations (1458), and SHANGHAI JIAO TONG UNIVERSITY holds the greatest overall H-index (20). The greatest number of studies in this research space were published by Gao WY, while Horch RE was the most commonly cited researcher in the field. The VOS viewer software clustered relevant keywords into three clusters, with clusters 1, 2, 3, and 4 corresponding to studies in which the keywords 'anatomy', 'survival', 'transplantation', 'therapy' most frequently appeared. The most promising research hotspot-related terms in this field included 'autophagy', 'oxidative stress', 'ischemia/reperfusion injury', which exhibited a most recent average appearing year (AAY) of 2017 and after. Generally speaking, the results of this analysis indicate that the number of articles exploring angiogenesis and flap-related research has risen steadily, with the United States and China being the two countries publishing the greatest proportion of studies in this field. The overall focus of these studies has shifted away from 'infratest and tissue engineering' towards 'mechanisms'. In the future, particular attention should be paid to emerging research hotspots, which include 'ischemia/reperfusion injury' and treatments for promoting vascularization, such as 'platelet-rich plasma'. In light of these findings, funding agencies should continue increasing their investment in the exploration of the concrete mechanisms and interventional therapeutic relevance of angiogenesis during flap transplantation.
Collapse
Affiliation(s)
- Xiao‐Fei Tong
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Zhen‐Yang Xiao
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Pei‐Ting Li
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Xin Liu
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Ming‐Zhu Wang
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Shi‐Yi Wen
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Na Wang
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| | - Shenghui Liao
- School of Computer Science and EngineeringCentral South UniversityChangshaChina
| | - Jian‐Da Zhou
- Department of Plastic SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
3
|
Berkeley B, Tang MNH, Brittan M. Mechanisms regulating vascular and lymphatic regeneration in the heart after myocardial infarction. J Pathol 2023; 260:666-678. [PMID: 37272582 PMCID: PMC10953458 DOI: 10.1002/path.6093] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/14/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023]
Abstract
Myocardial infarction, caused by a thrombus or coronary vascular occlusion, leads to irreversible ischaemic injury. Advances in early reperfusion strategies have significantly reduced short-term mortality after myocardial infarction. However, survivors have an increased risk of developing heart failure, which confers a high risk of death at 1 year. The capacity of the injured neonatal mammalian heart to regenerate has stimulated extensive research into whether recapitulation of developmental regeneration programmes may be beneficial in adult cardiovascular disease. Restoration of functional blood and lymphatic vascular networks in the infarct and border regions via neovascularisation and lymphangiogenesis, respectively, is a key requirement to facilitate myocardial regeneration. An improved understanding of the endogenous mechanisms regulating coronary vascular and lymphatic expansion and function in development and in adult patients after myocardial infarction may inform future therapeutic strategies and improve translation from pre-clinical studies. In this review, we explore the underpinning research and key findings in the field of cardiovascular regeneration, with a focus on neovascularisation and lymphangiogenesis, and discuss the outcomes of therapeutic strategies employed to date. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Bronwyn Berkeley
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Michelle Nga Huen Tang
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| | - Mairi Brittan
- Centre for Cardiovascular Science, The Queen's Medical Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
4
|
Cheng C, Li H, Liu J, Wu L, Fang Z, Xu G. MCP-1-Loaded Poly(l-lactide- co-caprolactone) Fibrous Films Modulate Macrophage Polarization toward an Anti-inflammatory Phenotype and Improve Angiogenesis. ACS Biomater Sci Eng 2023. [PMID: 37367696 DOI: 10.1021/acsbiomaterials.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Tissue engineering approaches such as the electrospinning technique can fabricate nanofibrous scaffolds which are widely used for small-diameter vascular grafting. However, foreign body reaction (FBR) and lack of endothelial coverage are still the main cause of graft failure after the implantation of nanofibrous scaffolds. Macrophage-targeting therapeutic strategies have the potential to address these issues. Here, we fabricate a monocyte chemotactic protein-1 (MCP-1)-loaded coaxial fibrous film with poly(l-lactide-co-ε-caprolactone) (PLCL/MCP-1). The PLCL/MCP-1 fibrous film can polarize macrophages toward anti-inflammatory M2 macrophages through the sustained release of MCP-1. Meanwhile, these specific functional polarization macrophages can mitigate FBR and promote angiogenesis during the remodeling of implanted fibrous films. These studies indicate that MCP-1-loaded PLCL fibers have a higher potential to modulate macrophage polarity, which provides a new strategy for small-diameter vascular graft designing.
Collapse
Affiliation(s)
- Can Cheng
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Heng Li
- Department of Comprehensive Surgery, Anhui Provincial Cancer Hospital, West District of The First Affiliated Hospital of USTC, Hefei, Anhui 230001, P. R. China
| | - Jingwen Liu
- Anhui Provincial Hospital Health Management Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Liang Wu
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Zhengdong Fang
- Department of Vascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| | - Geliang Xu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, P. R. China
| |
Collapse
|
5
|
Mohammed SA, Albiero M, Ambrosini S, Gorica E, Karsai G, Caravaggi CM, Masi S, Camici GG, Wenzl FA, Calderone V, Madeddu P, Sciarretta S, Matter CM, Spinetti G, Lüscher TF, Ruschitzka F, Costantino S, Fadini GP, Paneni F. The BET Protein Inhibitor Apabetalone Rescues Diabetes-Induced Impairment of Angiogenic Response by Epigenetic Regulation of Thrombospondin-1. Antioxid Redox Signal 2022; 36:667-684. [PMID: 34913726 DOI: 10.1089/ars.2021.0127] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Aims: Therapeutic modulation of blood vessel growth holds promise for the prevention of limb ischemia in diabetic (DM) patients with peripheral artery disease (PAD). Epigenetic changes, namely, posttranslational histone modifications, participate in angiogenic response suggesting that chromatin-modifying drugs could be beneficial in this setting. Apabetalone (APA), a selective inhibitor of bromodomain (BRD) and bromodomain and extraterminal containing protein family (BET) proteins, prevents bromodomain-containing protein 4 (BRD4) interactions with chromatin thus modulating transcriptional programs in different organs. We sought to investigate whether APA affects angiogenic response in diabetes. Results: Compared with vehicle, APA restored tube formation and migration in human aortic endothelial cells (HAECs) exposed to high-glucose (HG) levels. Expression profiling of angiogenesis genes showed that APA prevents HG-induced upregulation of the antiangiogenic molecule thrombospondin-1 (THBS1). ChIP-seq and chromatin immunoprecipitation (ChIP) assays in HG-treated HAECs showed the enrichment of both BRD4 and active marks (H3K27ac) on THBS1 promoter, whereas BRD4 inhibition by APA prevented chromatin accessibility and THBS1 transcription. Mechanistically, we show that THBS1 inhibits angiogenesis by suppressing vascular endothelial growth factor A (VEGFA) signaling, while APA prevents these detrimental changes. In diabetic mice with hind limb ischemia, epigenetic editing by APA restored the THBS1/VEGFA axis, thus improving limb vascularization and perfusion, compared with vehicle-treated animals. Finally, epigenetic regulation of THBS1 by BRD4/H3K27ac was also reported in DM patients with PAD compared with nondiabetic controls. Innovation: This is the first study showing that BET protein inhibition by APA restores angiogenic response in experimental diabetes. Conclusions: Our findings set the stage for preclinical studies and exploratory clinical trials testing APA in diabetic PAD. Antioxid. Redox Signal. 36, 667-684.
Collapse
Affiliation(s)
- Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Mattia Albiero
- Department of Medicine, University of Padua, Padova, Italy.,Veneto Institute of Molecular Medicine, Padova, Italy
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | - Era Gorica
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,Department of Pharmacy, University of Pisa, Pisa, Italy
| | - Gergely Karsai
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | | - Stefano Masi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.,Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| | - Florian A Wenzl
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | | | - Paolo Madeddu
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Sebastiano Sciarretta
- IRCCS Neuromed, Pozzilli, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Christian M Matter
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland
| | - Gaia Spinetti
- Cardiovascular Physiopathology-Regenerative Medicine Laboratory, IRCCS MultiMedica, Milan, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,Royal Brompton and Harefield Hospital Trust, London, United Kingdom
| | - Frank Ruschitzka
- University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland
| | | | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Schlieren, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
6
|
Paul P, Picard C, Lyonnet L, Resseguier N, Hubert L, Arnaud L, Di Cristofaro J, Laine M, Paganelli F, Dignat-George F, Frère C, Sabatier F, Guieu R, Bonello L. FCGR2A-HH Gene Variants Encoding the Fc Gamma Receptor for the C-Reactive Protein Are Associated with Enhanced Monocyte CD32 Expression and Cardiovascular Events’ Recurrence after Primary Acute Coronary Syndrome. Biomedicines 2022; 10:biomedicines10020495. [PMID: 35203703 PMCID: PMC8962261 DOI: 10.3390/biomedicines10020495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
Fcγ receptors (FcγRs) interact with the C-reactive protein (CRP) and mediate activation of inflammation-related pathogenic mechanisms affecting cardiovascular health. Our study evaluated whether FcγRIIA and FcγRIIIA profiles are associated with the recurrence of adverse cardiovascular events during the first year after a primary acute coronary syndrome (ACS). The primary endpoint was the recurrence of cardiovascular events (RCE), identified as a composite outcome comprising acute heart failure (AHF) and major adverse cardiovascular events (MACE). We obtained blood samples of 145 ACS patients to measure hsCRP circulating levels, to identify FcγRIIA-131RH rs1801274 and FcγRIIIA-158FV rs396991 polymorphisms, to analyze circulating monocytes and NK cell subsets expressing CD16 and CD32, and to detect serum-mediated FCGR2A-HH activation by luciferase reporter assays. The hsCRP, CD32-expression, and Fc-R mediated activation levels were similar in all patients regardless of their MACE risk. In contrast, the hsCRP levels and the proportion of CD14+ circulating monocytes expressing the CD32 receptor for CRP were significantly higher in the patients who developed AHF. The FCGR2A rs1801274 HH genotype was significantly more common in patients who developed RCE and MACE than in RCE-free patients and associated with an enhanced percentage of circulating CD32+CD14+ monocytes. The FCGR2A-HH genotype was identified as an independent predictor of subsequent RCE (OR, 2.7; p = 0.048; CI, 1.01–7.44) by multivariate analysis. These findings bring preliminary evidence that host FCGR2A genetic variants can influence monocyte CD32 receptor expression and may contribute to the fine-tuning of CD32-driven chronic activating signals that affect the risk of developing RCEs following primary ACS events.
Collapse
Affiliation(s)
- Pascale Paul
- INSERM 1263, Aix Marseille Université, INRAE, 13005 Marseille, France; (F.D.-G.); (F.S.); (R.G.); (L.B.)
- Department of Hematology, Hopital de la Conception, Assistance Publique-Hôpitaux Marseille, 13005 Marseille, France; (L.L.); (L.A.)
- INSERM UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Parc Scientifique de Luminy Case 928, 163 Avenue de Luminy, CEDEX 09, 13288 Marseille, France
- Correspondence:
| | - Christophe Picard
- Biologie des Groupes Sanguins, Établissement Français du Sang, UMR 7268 ADÉS EFS/CNRS, Aix-Marseille Université, 13005 Marseille, France; (C.P.); (L.H.); (J.D.C.)
| | - Luc Lyonnet
- Department of Hematology, Hopital de la Conception, Assistance Publique-Hôpitaux Marseille, 13005 Marseille, France; (L.L.); (L.A.)
| | - Noémie Resseguier
- Support Unit for Clinical Research and Economic Evaluation, EA3279, CEReSS-Health Service Research and Quality of Life Center, Assistance Publique Hôpitaux de Marseille, 13005 Marseille, France;
| | - Lucas Hubert
- Biologie des Groupes Sanguins, Établissement Français du Sang, UMR 7268 ADÉS EFS/CNRS, Aix-Marseille Université, 13005 Marseille, France; (C.P.); (L.H.); (J.D.C.)
| | - Laurent Arnaud
- Department of Hematology, Hopital de la Conception, Assistance Publique-Hôpitaux Marseille, 13005 Marseille, France; (L.L.); (L.A.)
| | - Julie Di Cristofaro
- Biologie des Groupes Sanguins, Établissement Français du Sang, UMR 7268 ADÉS EFS/CNRS, Aix-Marseille Université, 13005 Marseille, France; (C.P.); (L.H.); (J.D.C.)
| | - Marc Laine
- Mediterranean Association for Research and Studies in Cardiology (MARS Cardio), 13015 Marseille, France; (M.L.); (F.P.)
- Department of Cardiology, Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Aix-Marseille University, 13015 Marseille, France
| | - Franck Paganelli
- Mediterranean Association for Research and Studies in Cardiology (MARS Cardio), 13015 Marseille, France; (M.L.); (F.P.)
- Department of Cardiology, Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Aix-Marseille University, 13015 Marseille, France
| | - Françoise Dignat-George
- INSERM 1263, Aix Marseille Université, INRAE, 13005 Marseille, France; (F.D.-G.); (F.S.); (R.G.); (L.B.)
- Department of Hematology, Hopital de la Conception, Assistance Publique-Hôpitaux Marseille, 13005 Marseille, France; (L.L.); (L.A.)
| | - Corinne Frère
- Institute of Cardiometabolism and Nutrition, GRC 27 GRECO, Sorbonne University, INSERM UMRS_1166, 75013 Paris, France;
| | - Florence Sabatier
- INSERM 1263, Aix Marseille Université, INRAE, 13005 Marseille, France; (F.D.-G.); (F.S.); (R.G.); (L.B.)
- Department of Hematology, Hopital de la Conception, Assistance Publique-Hôpitaux Marseille, 13005 Marseille, France; (L.L.); (L.A.)
| | - Regis Guieu
- INSERM 1263, Aix Marseille Université, INRAE, 13005 Marseille, France; (F.D.-G.); (F.S.); (R.G.); (L.B.)
- Department of Biochemistry, Assistance Publique-Hôpitaux, 13005 Marseille, France
| | - Laurent Bonello
- INSERM 1263, Aix Marseille Université, INRAE, 13005 Marseille, France; (F.D.-G.); (F.S.); (R.G.); (L.B.)
- Mediterranean Association for Research and Studies in Cardiology (MARS Cardio), 13015 Marseille, France; (M.L.); (F.P.)
- Department of Cardiology, Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Aix-Marseille University, 13015 Marseille, France
| |
Collapse
|
7
|
Mühleder S, Fernández-Chacón M, Garcia-Gonzalez I, Benedito R. Endothelial sprouting, proliferation, or senescence: tipping the balance from physiology to pathology. Cell Mol Life Sci 2020; 78:1329-1354. [PMID: 33078209 PMCID: PMC7904752 DOI: 10.1007/s00018-020-03664-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
Therapeutic modulation of vascular cell proliferation and migration is essential for the effective inhibition of angiogenesis in cancer or its induction in cardiovascular disease. The general view is that an increase in vascular growth factor levels or mitogenic stimulation is beneficial for angiogenesis, since it leads to an increase in both endothelial proliferation and sprouting. However, several recent studies showed that an increase in mitogenic stimuli can also lead to the arrest of angiogenesis. This is due to the existence of intrinsic signaling feedback loops and cell cycle checkpoints that work in synchrony to maintain a balance between endothelial proliferation and sprouting. This balance is tightly and effectively regulated during tissue growth and is often deregulated or impaired in disease. Most therapeutic strategies used so far to promote vascular growth simply increase mitogenic stimuli, without taking into account its deleterious effects on this balance and on vascular cells. Here, we review the main findings on the mechanisms controlling physiological vascular sprouting, proliferation, and senescence and how those mechanisms are often deregulated in acquired or congenital cardiovascular disease leading to a diverse range of pathologies. We also discuss alternative approaches to increase the effectiveness of pro-angiogenic therapies in cardiovascular regenerative medicine.
Collapse
Affiliation(s)
- Severin Mühleder
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Macarena Fernández-Chacón
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Irene Garcia-Gonzalez
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro 3, 28029, Madrid, Spain.
| |
Collapse
|
8
|
Pirri D, Fragiadaki M, Evans PC. Diabetic atherosclerosis: is there a role for the hypoxia-inducible factors? Biosci Rep 2020; 40:BSR20200026. [PMID: 32816039 PMCID: PMC7441368 DOI: 10.1042/bsr20200026] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 07/28/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis is a major cause of mortality worldwide and is driven by multiple risk factors, including diabetes. Diabetes is associated with either an insulin deficiency in its juvenile form or with insulin resistance and obesity in Type 2 diabetes mellitus, and the latter is clustered with other comorbidities to define the metabolic syndrome. Diabetes and metabolic syndrome are complex pathologies and are associated with cardiovascular risk via vascular inflammation and other mechanisms. Several transcription factors are activated upon diabetes-driven endothelial dysfunction and drive the progression of atherosclerosis. In particular, the hypoxia-inducible factor (HIF) transcription factor family is a master regulator of endothelial biology and is raising interest in the field of atherosclerosis. In this review, we will present an overview of studies contributing to the understanding of diabetes-driven atherosclerosis, integrating the role of HIF in this disease with the knowledge of its functions in metabolic syndrome and diabetic scenario.
Collapse
Affiliation(s)
- Daniela Pirri
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Maria Fragiadaki
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
| | - Paul C. Evans
- Department of Infection, Immunity and Cardiovascular disease, The University of Sheffield, U.K
| |
Collapse
|
9
|
Castellan RF, Vitiello M, Vidmar M, Johnstone S, Iacobazzi D, Mellis D, Cathcart B, Thomson A, Ruhrberg C, Caputo M, Newby DE, Gray GA, Baker AH, Caporali A, Meloni M. miR-96 and miR-183 differentially regulate neonatal and adult postinfarct neovascularization. JCI Insight 2020; 5:134888. [PMID: 32544097 PMCID: PMC7453899 DOI: 10.1172/jci.insight.134888] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Following myocardial infarction (MI), the adult heart has minimal regenerative potential. Conversely, the neonatal heart can undergo extensive regeneration, and neovascularization capacity was hypothesized to contribute to this difference. Here, we demonstrate the higher angiogenic potential of neonatal compared with adult mouse cardiac endothelial cells (MCECs) in vitro and use this difference to identify candidate microRNAs (miRs) regulating cardiac angiogenesis after MI. miR expression profiling revealed miR-96 and miR-183 upregulation in adult compared with neonatal MCECs. Their overexpression decreased the angiogenic potential of neonatal MCECs in vitro and prevented scar resolution and neovascularization in neonatal mice after MI. Inversely, their inhibition improved the angiogenic potential of adult MCECs, and miR-96/miR-183–KO mice had increased peri-infarct neovascularization. In silico analyses identified anillin (ANLN) as a direct target of miR-96 and miR-183. In agreement, Anln expression declined following their overexpression and increased after their inhibition in vitro. Moreover, ANLN expression inversely correlated with miR-96 expression and age in cardiac ECs of cardiovascular patients. In vivo, ANLN+ vessels were enriched in the peri-infarct area of miR-96/miR-183–KO mice. These findings identify miR-96 and miR-183 as regulators of neovascularization following MI and miR-regulated genes, such as anillin, as potential therapeutic targets for cardiovascular disease. MiR-96 and miR-183 act as molecular switches to regulate endothelial cells angiogenic potential and differentially regulate neovascularization following myocardial infarction in neonatal and adult mice.
Collapse
Affiliation(s)
- Raphael Fp Castellan
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.,UCL Institute of Ophthalmology, London, United Kingdom
| | - Milena Vitiello
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Martina Vidmar
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Steven Johnstone
- Institute of Cardiovascular and Medical Sciences, British Heart Foundation Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Dominga Iacobazzi
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - David Mellis
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin Cathcart
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adrian Thomson
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Massimo Caputo
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - David E Newby
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Gillian A Gray
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew H Baker
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrea Caporali
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Marco Meloni
- British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Nazir MS, Nicol E. The SCOT-HEART trial: cardiac CT to guide patient management and improve outcomes. Cardiovasc Res 2020; 115:e88-e90. [PMID: 31334807 DOI: 10.1093/cvr/cvz173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Muhummad Sohaib Nazir
- Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, Westminster Bridge Road, London, UK
| | - Ed Nicol
- Department of Cardiology, Royal Brompton and Harefield NHS Foundation Trust, Sydney Street, London, UK
| |
Collapse
|
11
|
Guzik TJ, Antoniades C, Baker AH, Harrison DG, Loughrey CM, Maffia P, Murphy E, Nicklin SA, Peter K, Pearson J, Casadei B. What matters in Cardiovascular Research? Scientific discovery driving clinical delivery. Cardiovasc Res 2019; 114:1565-1568. [PMID: 30629152 DOI: 10.1093/cvr/cvy214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, Glasgow, UK.,Department of Internal and Agricultural Medicine, Jagiellonian University Collegium Medicum, Anny 12 Krakow, Poland
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, UK
| | - Andrew H Baker
- Centre for Cardiovascular Sciences, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, UK
| | - David G Harrison
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 2201 West End Ave, Nashville, TN, USA.,Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Centre, 1161 21st Ave S, Nashville, TN, USA
| | - Christopher M Loughrey
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, Glasgow, UK
| | - Pasquale Maffia
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, Glasgow, UK.,Institute of Infection, Immunity & Inflammation, Sir Graeme Davies Building, 120 University Place, University of Glasgow, Glasgow, UK.,Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, Naples, Italy
| | - Elizabeth Murphy
- Systems Biology Centre, NHLBI, NIH, 31 Center Drive, Bethesda, MD, USA
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, 126 University Place, University of Glasgow, Glasgow, UK
| | - Karlheinz Peter
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne VIC, Australia
| | - Jeremy Pearson
- British Heart Foundation, Greater London House, 180 Hampstead Road, London, UK
| | - Barbara Casadei
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, UK
| |
Collapse
|
12
|
Davidson SM. FAM3A - A mitochondrial route to the stimulation of angiogenesis? EBioMedicine 2019; 43:3-4. [PMID: 31029586 PMCID: PMC6562064 DOI: 10.1016/j.ebiom.2019.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/17/2019] [Indexed: 12/05/2022] Open
Affiliation(s)
- Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, WC1E 6HX London, United Kingdom.
| |
Collapse
|
13
|
Jin F, Zheng X, Yang Y, Yao G, Ye L, Doeppner TR, Hermann DM, Wang H, Dai Y. Impairment of hypoxia-induced angiogenesis by LDL involves a HIF-centered signaling network linking inflammatory TNFα and angiogenic VEGF. Aging (Albany NY) 2019; 11:328-349. [PMID: 30659163 PMCID: PMC6366960 DOI: 10.18632/aging.101726] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023]
Abstract
Hypoxia inducible factors (HIFs) mediate angiogenesis via up-regulation of various pro-angiogenic factors (particularly VEGF) in response to hypoxia. Here, we report that hypoxia unexpectedly induced robust production of the pro-inflammatory factor TNFα by endothelial cells (ECs), suggesting an autocrine loop that in turn activated HIFs via an NF-κB-dependent process, resulting in production of VEGF and thereby promotion of angiogenesis. In contrast, low-density lipoprotein (LDL) prevented expression of HIFs in ECs exposed to either hypoxia or TNFα, while knockdown of either HIF-1α or HIF-2α strikingly attenuated hypoxia-induced production of VEGF by ECs as well as EC colony formation and tube formation. Significantly, LDL attenuated hypoxia-induced angiogenesis by disrupting the TNFα/NF-κB/HIF/VEGF signaling cascade via down-regulation of the TNF receptor TNF-R1, rather than TNFα itself, and multiple key components of both canonical and non-canonical NF-κB pathways. By doing so, LDL was able to either inhibit or down-regulate a wide spectrum of HIF-dependent pro-angiogenic downstream targets and signals. Together, these findings argue existence of a self-regulatory TNFα/NF-κB/HIF/VEGF signaling network in ECs, which mediates and fine-tones angiogenesis, at least in response to hypoxia. They also suggest that LDL impairs angiogenesis by disrupting this network, which might represent a novel mechanism underlying anti-angiogenic property of LDL.
Collapse
Affiliation(s)
- Fengyan Jin
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Xiangyu Zheng
- Department of Neurology, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yanping Yang
- Department of Hematology, Cancer Center, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Gang Yao
- Department of Neurology, the Second Affiliated Hospital of Jilin University, Changchun, Jilin, China
| | - Long Ye
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Thorsten R. Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk M. Hermann
- Department of Neurology, University Duisburg-Essen Medical School, Essen, Germany
| | - Haifeng Wang
- Department of Neurosurgery, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, the First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|